
Large

Language

Models

Riccardo Coppola

Introduction to

Software

Engineering

[Large Language Models] [Intro to SoftEng]

[Large Language Models]

Software and Economy

• The economies of ALL developed nations are dependent on software.

• More and more systems are software controlled

• Expenditure on software represents a significant fraction of GNP in
all developed countries.

[Intro to SoftEng]

[Large Language Models]

Definition of Software

• A collection of
• Computer programs,

• Procedures,

• Rules,

• Associated documentation

• Data

• Example:
• Requirements document,

• Project plan,

• Test plan,

• Test cases,

• Build scripts,

• Deployment scripts,

• User manuals

[Intro to SoftEng]

[Large Language Models]

Software Engineering

• Multi person construction of multi version software

• Multi person:
• Issues in communication: misunderstandings, language gaps

• Issues in coordination

• Multi version:
• Issue in maintenance over many years

[Intro to SoftEng]

[Large Language Models]

Software Types

• Embedded in non-software product
• Car, washing machine, ..

• Production line (Industry 4.0)

• Stand alone
• Office suites, social networks, ..

• Embedded in enterprises
• Information systems

[Intro to SoftEng]

[Large Language Models]

Software Criticality

• Safety critical: harms people or environment
• Self-driving car

• (usually embedded software)

• Mission critical: harms business
• Banking, finance, retail

• (usually embedded in enterprises)

• Other levels
• Depending on the characteristics of the software and how it is used in its

environment

[Intro to SoftEng]

[Large Language Models]

Warning

• Software is not free

• Software changes (and it is not easy to change)

• Software is not perfect

• Software is complex

[Intro to SoftEng]

[Large Language Models]

Process and Product

[Intro to SoftEng]

[Large Language Models]

Classical Engineering vs. Software
Engineering

• Design the product

• Design the factory

• Manufacture the product

• Maintain the product

• Software product

• Software Process

• Deployment and Delivery

• Evolution and Maintenance

[Intro to SoftEng]

[Large Language Models]

Software Product Properties

• Functional properties
• characteristics that describe the core capabilities

and behaviors a software system must exhibit to
meet its intended purpose.

• By accurately defining and implementing these
properties, developers ensure that the software
provides the intended value.

[Intro to SoftEng]

[Large Language Models]

Software Product Properties

• Non functional properties
• Usability

• Effort needed to learn using the product (installation, day to
day usage)

• Satisfaction expressed by the user
• Existence of functions needed by the user

• Efficiency
• For a given function in a given context: response time
• For a given function / for a complete product:

• Memory
• CPU
• Bandwidth
• energy used

[Intro to SoftEng]

[Large Language Models]

Software Product Properties

• Non functional properties
• Reliability / availability

• Defects visible by end user per time period / Probability
of defect over a time period

• Percentage of time the product is / is not available to end
user

• Maintainability
• Effort (person hours) needed to add /modify / cancel a

software function

• Effort to fix a defect

• Effort to deploy on a different platform (DB, OS, ..)

[Intro to SoftEng]

[Large Language Models]

Software Product Properties

• Non functional properties
• Security

• Protection from malicious access

• Access only to authorized users

• Sharing of data

• Safety
• Absence of harm to persons

• Absence of hazardous situations for persons

• Dependability
• Safety + security + reliability

[Intro to SoftEng]

[Large Language Models]

Software Product Properties

• Non functional properties
• Are difficult to engineer

• Are often forgotten

• Make the difference between competing
products

[Intro to SoftEng]

[Large Language Models]

Taxonomy of non-functional
requirements

16

Source: ISO 25010

[Intro to SoftEng]

[Large Language Models]

The traditional software process

Development

Operation

Maintenance

[Intro to SoftEng]

[Large Language Models]

Software process – development
phase

Requirements

Design

Coding

Testing

[Intro to SoftEng]

[Large Language Models]

Software Process Properties

• Cost
• Currency (€, $, …)

• Effort
• Person hours

• Punctuality
• Promised delivery date vs actual delivery date

• Conformance (to standards, norms)

[Intro to SoftEng]

[Large Language Models]

Software Engineering Laws

[Endres Rombach, 2005]

• Requirements deficiencies are the prime source of project failures

• Requirements and design cause the majority of defects

• Defects from requirements and design are the more expensive to fix

[Intro to SoftEng]

[Large Language Models]

Software Engineering Laws

• Modularity, hierarchical structures allow to manage complexity

• Reuse guarantees higher quality and lower cost

[Intro to SoftEng]

[Large Language Models]

Software engineering Laws

• Good designs require deep application domain knowledge
Customer:
Requires a computer system to achieve some business goals

by user interaction or interaction w ith the problem domain

in a specif ied manner

(includes hardware)

Software-to-be
User

Software Engineer’s task:
To understand how the system-to-be needs to interact w ith

the user or the problem domain so that customer’s requirement is met

and design the software-to-be

Programmer’s task:
To implement the software-to-be

designed by the software engineer

Problem Domain

May be the

same person

System-to-be

© Michael Hilton,

Christian Kåstner

[Intro to SoftEng]

[Large Language Models]

Software Engineering Laws

• Testing can show the presence of defects, not their absence

• A developer is unsuited to test his/her code

[Intro to SoftEng]

[Large Language Models]

Software Engineering Laws

• A system that is used will be changed

• An evolving system will increase its complexity, unless work is done
to reduce it

• Architecture erosion

• Requirements creep

• Refactoring

[Intro to SoftEng]

[Large Language Models]

Software Engineering Laws

• The process should be adapted to the project

[Intro to SoftEng]

[Large Language Models]

The Software Process

[Intro to SoftEng]

[Large Language Models]

No Software Process: Cowboy
Coding
Cowboy coding is coding where the developer has
free rein over the process. The cowboy coder has
complete control over the project schedule; the
languages, algorithms, tools, and frameworks to
use; and the coding style to follow.

Advantages: faster than engineering software

Disadvantages: Lack of testing, quality,
maintainability of code

[Intro to SoftEng]

[Large Language Models]

Goals

Produce software
• documents, data, code

with defined, predictable process properties
• cost, duration

and product properties
• functionality, reliability, ..

[Intro to SoftEng]

[Large Language Models]

The production activities

• Requirement engineering
• What the software should do

• Architecture and design
• Which units and how organized

• Implementation
• Write source code, (executable code)

• Integrate units

L
o
g
ic

a
l D

e
p
e
n
d
e
n
c
ie

s

[Intro to SoftEng]

[Large Language Models]

The production activities

• Logically, each activity depends on the previous one(s)
• To design, one must know the requirements

• To implement, one must know the design and the requirements

• First approach is to do these activities in sequence
• See waterfall model later

• In practice feedbacks and recycles must be provided

• Requirements and design are written down in documents

[Intro to SoftEng]

[Large Language Models]

The production activities

Requirements
engineering

Design

Implement
unit

Implement
unit

Integrate units

Requirement
document

Design
document

Unit

Unit

System

[Intro to SoftEng]

[Large Language Models]

The production activities

• Ok, we did it
• Does it work?

• Is it doing what it should do?

• Or
• Did we understand the requirements correctly?

• Did we implement the requirements correctly?

[Intro to SoftEng]

[Large Language Models]

The Validation & Verification
activities
• These activities are usually called V & V activities

• Control that the requirements are correct
• Externally: did we understand what the customer/user wants?
• Internally: is the document consistent?

• Control that the design is correct
• Externally: is the design capable of supporting the requirements
• Internally: is the design consistent?

• Control that the code is correct
• Externally: is the code capable of supporting the requirements and the

design?
• Internally: is the code consistent (syntactic checks)

[Intro to SoftEng]

[Large Language Models]

The Validation & Verification
activities

Requirements
engineering

Design

Implement
unit

Implement
unit

Integrate units

Requirement
document

Design
document

Unit

Unit

System

V & V Requirements
Requirement

document

V & V Design
Design

document

V & V unit Unit

V & V Unit Unit

V & V System System

[Intro to SoftEng]

[Large Language Models]

The management activities

• Well, seems a lot of work
• Who does what, when?

• With what resources?

• How much will it cost, when will we finish?

• Where are the documents and units? Who can modify what?

• Are we doing it state of the art?

[Intro to SoftEng]

[Large Language Models]

The management activities

• Project management
• Assign work and monitor progress

• Estimate and control budget

• Configuration management
• Identify, store documents and units

• Keep track of relationships and history

• Quality assurance
• Define quality goals

• Define how work will be done

• Control results

[Intro to SoftEng]

[Large Language Models]

The whole picture
Requirements
engineering

Design

Implement
unit

Implement
unit

Integrate
units

Requirement
document

Design
document

Unit

Unit

System

V & V Requirements
Requirement

document

V & V Design
Design

document

V & V unit Unit

V & V Unit Unit

V & V System System

Project management / Configuration management / Quality Assurance

[Intro to SoftEng]

[Large Language Models]

The whole picture

Requirement
engineering

Architecture
and design

Implementation

Requirement
document

Design
document

Software
system

R
eq

u
ir

em
e

n
t

in
sp

e
ct

io
n

D
es

ig
n

 in
sp

e
ct

io
n

Te
st

, c
o

d
e

in
sp

e
ct

io
n

Configuration management

Project management

[Intro to SoftEng]

[Large Language Models]

The Waterfall Model

• A Linear, sequential approach to the software development lifecycle.

• Advantages:
• Uses a clear structure
• Determines the end goals early
• Transfers information well

• Disadvantages:
• Makes change difficult
• Excludes the client and/or end user
• Delays testing until after completion

[Intro to SoftEng]

[Large Language Models]

The V-Model

[Intro to SoftEng]

[Large Language Models]

The V-Model

• V-Model is focused on Verification & Validation and software. The V-
Model mandates – for every stage in the development cycle – an
associated testing phase is considered

• The testing activities start immediately in any phase (the tests are first
prepared, then executed)

• Advantages:
• More control and more quality of the software

• Disadvantages:
• More expensive than waterfall
• Still, design only happens once

[Intro to SoftEng]

[Large Language Models]

The Iterative model

[Intro to SoftEng]

[Large Language Models]

The Iterative Model

• An iterative life cycle model does not start with a full specification of requirements.
In this model, the development begins by specifying and implementing just part of
the software, which is then reviewed in order to identify further requirements.

• Moreover, in iterative model, the iterative process starts with a simple
implementation of a small set of the software requirements, which iteratively
enhances the evolving versions until the complete system is implemented and
ready to be deployed. Each release of Iterative Model is developed in a specific
and fixed time period, which is called iteration.

• Advantages:
• It is easily adaptable to the ever changing needs of the project as well as the client

• Disadvantages:
• It is not suitable for smaller projects
• Defining increments may require definition of the complete system

[Intro to SoftEng]

[Large Language Models]

Beyond code development

• Development is only the first part of the game
• Operate the software

• Deployment, operation

• Modify the software
• Maintenance

• End up
• retirement

[Intro to SoftEng]

[Large Language Models]

Beyond code development

months years

Operation

Maintenance

time

deployment retirement

release

developers

developers

users

[Intro to SoftEng]

[Large Language Models]

Maintenance

• Can be seen as a sequence of developments

• First development usually longer

• Next developments constrained by previous ones and related
choices

• If dev_0 chooses Java, next developments are in Java

• If dev_0 chooses client server model, next developments keep C/S

[Intro to SoftEng]

[Large Language Models]

Maintenance

months

years

Development_0

Operation

Maintenance

time

deployment retirement

release0

developers

developers

users

Dev_1 Dev_2 Dev_3

rel_1 rel_2 rel_3

[Intro to SoftEng]

[Large Language Models]

Maintenance

• Development and maintenance do the same activities (requirement,
design, etc)

• But in maintenance an activity is constrained by what has been done before

• After years, the constraints are so many that changes become impossible

[Intro to SoftEng]

[Large Language Models]

Maintenance

• Development_0
• Req_0 developed from scratch

• Design_0 developed from req_0

• Impl_0 developed from design_0

• Development_1
• Req_1 from Req_0 (and Des_0, Impl_0)

• Des_1 from Req_1

• Impl_1 from Des_1

[Intro to SoftEng]

[Large Language Models]

ISO / IEC 12207
Primary processes Supporting

processes

Organisational processes

Acquisition

Supply

Development

Maintenance

Operating

Documentation

Configuration

management

Quality

management

Management Improvement Infrastructure Training

[Intro to SoftEng]

[Large Language Models]

Agile Software Engineering

[Intro to SoftEng]

[Large Language Models]

(Beck et al., 2001)

[Intro to SoftEng]

[Large Language Models] [Intro to SoftEng]

[Large Language Models]

The Agile Manifesto - Principles

1. Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

4. Business people and developers must work together daily
throughout the project.

[Intro to SoftEng]

[Large Language Models]

The Agile Manifesto - Principles

5. Build projects around motivated individuals. Give them the environment
and support they need and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely.

[Intro to SoftEng]

[Large Language Models]

The Agile Manifesto - Principles

9. Continuous attention to technical excellence and good design
enhances agility.

10. Simplicity - the art of maximizing the amount of work not done- is
essential.

11. The best architectures, requirements, and designs emerge from
self-organizing teams.

12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

[Intro to SoftEng]

[Large Language Models]

...in practice? (€$)

[Intro to SoftEng]

[Large Language Models]

...in practice? (€$)

[Intro to SoftEng]

[Large Language Models]

From manifesto to practice

• Tight collaboration between developers and stakeholder over the
entire course of the project

• Self-organizing teams

• Software SCRUM is the most used methodology

• Other methodologies like Kanban and eXtreme Programming are
less used

[Intro to SoftEng]

[Large Language Models]

SCRUM

[Intro to SoftEng]

[Large Language Models]

SCRUM: Essential elements

• User stories

• Estimation

• Planning

• Tight Feedback Loops

• Reflection

[Intro to SoftEng]

[Large Language Models]

SCRUM Roles

• The Product Owner
• Controls the priority order of items in the

team’s backlog
• Works closely with the stakeholders in order to

deliver the maximum business value (deciding
what needs to be built and when)

• Makes sure that the needs of the customers
and the end-user are understood by the team

• Keeps a vision of the product (who the product
is built for, why they need it, how they will use
it)

[Intro to SoftEng]

[Large Language Models]

SCRUM Roles

• The Scrum Master
• Acts as a coach: the goal is to produce a

self-organizing team
• They are a facilitator, not a boss
• Main task is to remove both external or

internal impediments for the team

[Intro to SoftEng]

[Large Language Models]

SCRUM Roles

• Team members
• They cooperate to achieve the final

goal
• The team members self-organize, in

terms of tools used, techniques and
task assignment

• The team members estimate the effort
required to implement the features

• The teams are typically sized 5 to 9

[Intro to SoftEng]

[Large Language Models]

SCRUM Sprint

• The Sprint is the basic iteration in the Scrum approach

• It produces a piece of working software to be demonstrated and
reviewed at the end of the sprint

• It is from 1 to 4 weeks long

[Intro to SoftEng]

[Large Language Models]

SCRUM Sprint

[Intro to SoftEng]

[Large Language Models]

Sprint Planning

• What will we do?
• Set of committed stories
• Product owner proposes story
• Team members decide whether commit

• How will we do it?
• Decompose stories into tasks
• May trigger renegotiation of stories
• Max effort per task: half-day

• Creation of the sprint backlog:
• List of stories with related task
• Estimations: task hours, task points, task count

[Intro to SoftEng]

[Large Language Models]

Story Time

• Backlog refinement
• Upcoming stories are reviewed
• Sizing (estimating) future stories
• Clarification of requirements
• Splitting stories

• Goal:
• Start next sprint with a set of small,
• well-understood, well-sized stories

[Intro to SoftEng]

[Large Language Models]

Daily Scrum

• Performed daily at any time suitable

• Only members of the development
team

• It must be very brief: standing, only
basic updates, max 15 mins

• Points out:
• What’s done
• What will be done
• Current problems and obstacles

[Intro to SoftEng]

[Large Language Models]

Sprint Review

• Show off some piece of working
software to the stakeholders

• Report on incomplete stories

• Record the reactions of the
stakeholders

• They will be the basis for the product
owner’s future decisions

[Intro to SoftEng]

[Large Language Models]

Sprint Retrospective

• Gather data about what happened,
and the time-line and artefacts

• Generates insights about the causes
of issues (no blaming!)

• Decide what to do next time

• Focus is on lessons learned

[Intro to SoftEng]

[Large Language Models]

The Product Backlog

• It contains anything that will consume team resources

• In general, it contains PBIs (Product Backlog Items)

• Often, PBIs are user stories

• All the PBIs are ordered and assigned a scored in terms of relevance
(a relative scoring)

[Intro to SoftEng]

[Large Language Models]

The Product Backlog

[Intro to SoftEng]

[Large Language Models]

What makes a good PBI: INVEST

• Independent

• Negotiable

• Valuable

• Estimable

• Small

• Testable

[Intro to SoftEng]

[Large Language Models]

What is a user story

• Essential description of a desired functionality

• The acceptance criteria are written by the PO and must be easy to
turn into automated tests

[Intro to SoftEng]

[Large Language Models]

Stories and Epics

• A story is a manageable piece of requirements
• (following the INVEST principle)

• The Epic is a story that we find out it is too large
• … we will refine it by splitting it into stories

[Intro to SoftEng]

[Large Language Models]

What ends in the Sprint Backlog

• In the sprint backlog we put committed stories (and the tasks for
each story)

• Additional tasks, e.g.
• Team improvement
• Research work
• Performance and security requirements
• Bug fixing

• It is frozen at sprint planning and not changed until next sprint

[Intro to SoftEng]

[Large Language Models]

Overview of artifacts, roles, activities

[Intro to SoftEng]

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3: Software and Economy
	Diapositiva 4: Definition of Software
	Diapositiva 5: Software Engineering
	Diapositiva 6: Software Types
	Diapositiva 7: Software Criticality
	Diapositiva 8: Warning
	Diapositiva 9: Process and Product
	Diapositiva 10: Classical Engineering vs. Software Engineering
	Diapositiva 11: Software Product Properties
	Diapositiva 12: Software Product Properties
	Diapositiva 13: Software Product Properties
	Diapositiva 14: Software Product Properties
	Diapositiva 15: Software Product Properties
	Diapositiva 16: Taxonomy of non-functional requirements
	Diapositiva 17: The traditional software process
	Diapositiva 18: Software process – development phase
	Diapositiva 19: Software Process Properties
	Diapositiva 20: Software Engineering Laws
	Diapositiva 21: Software Engineering Laws
	Diapositiva 22: Software engineering Laws
	Diapositiva 23: Software Engineering Laws
	Diapositiva 24: Software Engineering Laws
	Diapositiva 25: Software Engineering Laws
	Diapositiva 26: The Software Process
	Diapositiva 27: No Software Process: Cowboy Coding
	Diapositiva 28: Goals
	Diapositiva 29: The production activities
	Diapositiva 30: The production activities
	Diapositiva 31: The production activities
	Diapositiva 32: The production activities
	Diapositiva 33: The Validation & Verification activities
	Diapositiva 34: The Validation & Verification activities
	Diapositiva 35: The management activities
	Diapositiva 36: The management activities
	Diapositiva 37: The whole picture
	Diapositiva 38: The whole picture
	Diapositiva 39: The Waterfall Model
	Diapositiva 40: The V-Model
	Diapositiva 41: The V-Model
	Diapositiva 42: The Iterative model
	Diapositiva 43: The Iterative Model
	Diapositiva 44: Beyond code development
	Diapositiva 45: Beyond code development
	Diapositiva 46: Maintenance
	Diapositiva 47: Maintenance
	Diapositiva 48: Maintenance
	Diapositiva 49: Maintenance
	Diapositiva 50: ISO / IEC 12207
	Diapositiva 51: Agile Software Engineering
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54: The Agile Manifesto - Principles
	Diapositiva 55: The Agile Manifesto - Principles
	Diapositiva 56: The Agile Manifesto - Principles
	Diapositiva 57: ...in practice? (€$)
	Diapositiva 58: ...in practice? (€$)
	Diapositiva 59: From manifesto to practice
	Diapositiva 60: SCRUM
	Diapositiva 61: SCRUM: Essential elements
	Diapositiva 62: SCRUM Roles
	Diapositiva 63: SCRUM Roles
	Diapositiva 64: SCRUM Roles
	Diapositiva 65: SCRUM Sprint
	Diapositiva 66: SCRUM Sprint
	Diapositiva 67: Sprint Planning
	Diapositiva 68: Story Time
	Diapositiva 69: Daily Scrum
	Diapositiva 70: Sprint Review
	Diapositiva 71: Sprint Retrospective
	Diapositiva 72: The Product Backlog
	Diapositiva 73: The Product Backlog
	Diapositiva 74: What makes a good PBI: INVEST
	Diapositiva 75: What is a user story
	Diapositiva 76: Stories and Epics
	Diapositiva 77: What ends in the Sprint Backlog
	Diapositiva 78: Overview of artifacts, roles, activities

