
Large

Language

Models

Riccardo Coppola

LLM4SE

[Large Language Models]

Definitions

• AI4SE applies augmented intelligence and machine learning
techniques to support systems engineering practicesMore and more
systems are software controlled

• SE4AI applies systems engineering methods to learning- based
systems' design and operation

[LLM4SE]

[Large Language Models]

Definitions

• LLM-Based Software Engineering (LLMSE): integration of Large
Language Models (LLMs) into software engineering. It encompasses
any application where the products or processes leverage LLMs to
enhance development and operational efficiency.

[LLM4SE]

[Large Language Models]

Definitions

• LLM Application: Defined as any task or activity that benefits from
LLM insights. This broad definition captures the essence of LLM's
versatility across various domains, offering improvements through its
advanced computational capabilities.

• LLM Consumer: Any individual, system, or process that utilizes LLM
outputs. This definition acknowledges the wide array of LLM
beneficiaries, from developers and businesses to automated systems,
all relying on LLM-generated intelligence.

[LLM4SE]

[Large Language Models]

Definitions

• Assured LLMSE: This innovative approach guarantees the reliability of
LLM outputs. Every response from an LLM, possibly after undergoing
post-processing, comes with a verifiable assertion of its usefulness.
Assured LLMSE sets a standard for trust and quality in the application
of LLMs in software engineering.

[LLM4SE]

[Large Language Models]

LLM4SE

[LLM4SE]

[Large Language Models]

A Word Cloud

[LLM4SE]

[Large Language Models]

Current state of the art

• In Software Engineering literature, more than 70 different LLMs have been
used for SE tasks. All three categories of LLMs (decoder-only, encoder-
decoder, and encoder-only) have been used.

• Different categories of LLMs serve a specific purpose in SE tasks:

- Encoder-only LLMs are mostly used on comprehensive understanding;

- Encoder-decoder LLMs are mostly used for tasks requiring understanding input
information followed by content generation;

- Decoder-only LLMs are more suitable for generation tasks.

• The most widely used LLMs are with decoder-only architectures.

[LLM4SE]

[Large Language Models]

Current state of the art

[LLM4SE]

[Large Language Models]

Some Examples

[LLM4SE]

[Large Language Models]

Criteria for LLM selection

• The selection of LLM for SE tasks should involve more careful consideration
rather than arbitrary choice.

• Key factors guiding this selection are:

• Model proficiency in understanding the context of the code

• Ability to generate relevant content

• Responsiveness to fine-tuning

• Demonstrated performance in SE-specific benchmarks

[LLM4SE]

[Large Language Models]

Task-specific fine tuning

• A notable trend is the customization of LLMs for precise SE tasks.

• By fine tuning models with datasets tailored to specific functions (e.g., bug
detection or code review) researchers are able to achieve marked
performance improvements.

[LLM4SE]

[Large Language Models]

Types of Datasets

[LLM4SE]

[Large Language Models]

Sources for datasets

• Data determines the generalization ability, effectiveness, and performance of the
models.

• Four different methods can be used for data collection:

• Open-source datasets: publicly accessible collections of data that are often disseminated
through open-source platforms or repositories.

• Collected datasets: datasets compiled from the researchers directly from a multitude of
sources, including (but not limited to) major websites, forums, blogs, and social media
platforms.

• Constructed datasets: specialized datasets that researchers create by modifying or
augmenting collected datasets to better align with their specific research objectives.

• Industrial datasets: obtained from commercial or industrial entities; often contain
proprietary business data, user behaviour logs, and other sensitive information.

[LLM4SE]

[Large Language Models]

Sources for datasets

[LLM4SE]

[Large Language Models]

Sources for datasets

• Main benefits of open-source datasets:

• Authenticity and credibility;

• They often contain real-world data collected from various sources;

• LLMs have recently emerged – so a lack of suitable sets does exist. Therefore,
researchers often collect data from open-source repositories.

[LLM4SE]

[Large Language Models]

Types of data utilized in training
LLM4SE
• Text-based datasets: datasets composed by textual (natural language)

elements, or non-functioning code (snippets).

• Among text-based datasets there are programming tasks/problems, the most frequently
used of all data types. This dominance can be attributed to the diverse and challenging
nature of programming problems.

[LLM4SE]

[Large Language Models]

Types of data utilized in training
LLM4SE
• Code-based datasets: datasets composed only by code artefacts.

• Among code-based datasets, the predominant ones are repository of production source
code. This predominance is due to the fundamental role in SE, since source code serves
as the foundation of any software project.

• Other common data types are bugs/buggy code, patches for program repair, vulnerable
source code.

[LLM4SE]

[Large Language Models]

Types of data utilized in training
LLM4SE
• Graph-based datasets: can be used when representing the GUI states of an

application to develop or test.

• An example is the use of screenshot from Google Play Android to construct a graphical
user interface (GUI) repository.

[LLM4SE]

[Large Language Models]

Types of data utilized in training
LLM4SE
• Software repository based-datasets: compilations of data extracted from

version control systems, such as Git repositories, containing code,
documentation, and related artefacts.

• This data includes code repository, issues and commits, and so on.

• The data in code repositories provide information covering all aspects of the software
development process (history, issue fixes, feature improvements, quality
assessments…)

• These data are valuable for studying behaviours and trends in the software development
process.

[LLM4SE]

[Large Language Models]

Types of data utilized in training
LLM4SE
• Combined datasets: combinations of multiple types of datasets.

• Most common datasets are “programming tasks and test suites/cases”

• …or source code and comments/documentation

[LLM4SE]

[Large Language Models]

Data-preprocessing

• The data types influence the selection of data-preprocessing techniques

[LLM4SE]

[Large Language Models]

Used tuning techniques

• Many general-purpose LLMs (e.g., ChatGPT) are efficiently and directly
applied to SE tasks such as code generation, code summarization, and
program repair without fine tuning.

• Tuning is often needed to realize the true potential of LLMs.

[LLM4SE]

[Large Language Models]

Used tuning techniques

• Many studies have used BERT series models with full tuning

• This requires a large amount of computational resources, and massive amounts of data.

• It is also costly to train and deploy the fine-tuned models separately for each downstream task.

• Some efforts to reduce the burden:

• In-Context Learning (ICL)

• Parameter Efficient Fine-Tuning (PEFT)

• Low-Rank Adaptation (LoRA)

• Prompt tuning

• Prefix Tuning

• Adapter Tuning

• Reinforcement Learning (RL)

[LLM4SE]

[Large Language Models]

Types of data utilized in training
LLM4SE

[LLM4SE]

[Large Language Models]

Text-based datasets: MBPP

• Mostly Basic Python Programming

• A benchmark of around 1000 crowd-sourced Python programming problem,
designed to be solvable by entry-level programmers, covering programming
fundamentals, standard library functionalities, and so on. Each problem
consists of a task description, code solution, and 3 automated test cases.

• https://huggingface.co/datasets/google-research-datasets/mbpp

Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan, Samuel R Bowman, Kyunghyun Cho,
and Ethan Perez. 2023. Improving code generation by training with natural language feedback. arXiv preprint
arXiv:2303.16749 (2023).

[LLM4SE]

https://huggingface.co/datasets/google-research-datasets/mbpp

[Large Language Models]

Text-based datasets: MBPP

Text Code Test List

Write a function to reverse words in a
given string.

def reverse_words(s): return '
'.join(reversed(s.split()))

["assert reverse_words(\"python
program\")==(\"program python\")",
"assert reverse_words(\"java
language\")==(\"language java\")",
"assert reverse_words(\"indian
man\")==(\"man indian\")"]

Write a function to check if the given
integer is a prime number.

def prime_num(num): if num >=1: for
i in range(2, num//2): if (num % i) ==
0: return False else: return True else:
return False

["assert prime_num(13)==True",
"assert prime_num(7)==True", "assert
prime_num(-1010)==False"]

[LLM4SE]

[Large Language Models]

Text-based datasets: Bug Reports and
Changesets

Agnieszka Ciborowska and Kostadin Damevski. 2023. Too Few Bug Reports? Exploring Data Augmentation for
Improved Changeset-based Bug Localization. arXiv preprint arXiv:2305.16430 (2023)

• Changesets can encapsulate code
changes across one or multiple source
code files.

• Modifications to each file are divided
into hunks – groups of modified lines
surrounded by unchanged (context
lines)

[LLM4SE]

[Large Language Models]

Text-based datasets: Bug Reports and
Changesets

[LLM4SE]

[Large Language Models]

Text-based datasets: Post2Vec (Stack
Overflow posts)
• Posts on stackoverflow can be separated

in several different steps:

1) Separation of description and code
snippets from the body

2) Remove HTML tags

3) Tokenize title, description and code
snippets

4) Construct component-specific
vocabularies

[LLM4SE]

[Large Language Models]

Text-based datasets: Post2Vec (Stack
Overflow posts)

Bowen Xu, Thong Hoang, Abhishek Sharma, Chengran Yang, Xin Xia, and David Lo. 2021. Post2Vec: Learning Distributed
Representations of Stack Overflow Posts. IEEE Transactions on Software Engineering (2021), 1–1. https://doi.org/10.
1109/TSE.2021.3093761

[LLM4SE]

https://doi.org/10

[Large Language Models]

Code-based datasets:
CodeSearchNet

https://github.com/github/CodeSearchNet?tab=readme-ov-file#data

• 2 million (comment, code) pairs from
open source libraries. Concretely, a
comment is a top-level function or
method comment (e.g. docstrings in
Python), and code is an entire function
or method.

• Currently, the dataset contains Python,
Javascript, Ruby, Go, Java, and PHP
code.

[LLM4SE]

[Large Language Models]

Code-based datasets:
CodeSearchNet

[LLM4SE]

[Large Language Models]

Software repository-based datasets:
DeHallucinator

De-Hallucinator: Mitigating LLM Hallucinations in Code Generation Tasks via Iterative Grounding

• Utilization of full projects mined from
GitHub as dataset to fine-tune a LLM
agent.

• To create a dataset for API-related code
completion, API usages are removed from the
benchmark projects. The removed API calls are
used as ground truth to be predicted from the
model.

• For test generation, tests are removed from the
projects.

[LLM4SE]

[Large Language Models]

Software repository-based datasets:
DeHallucinator
• The whole codebase

of (several) projects is
used for fine-tuning!

[LLM4SE]

[Large Language Models]

Graph-based datasets: the RICO
dataset

http://www.interactionmining.org/rico.html

• A dataset built by mining Android apps
at runtime by programmatic and human
exploration

[LLM4SE]

[Large Language Models]

Graph-based datasets: the RICO
dataset

http://www.interactionmining.org/rico.html

• For each app, Rico exposes:
• Google play store metadata (app’s category, average

rating, number of ratings, number of downloads)

• A set of user interaction traces (screenshot +
augmented Android view hierarchy, set of explored
user interactions, set of effects in response to user
interactions, learned vector representation of the UI’s
layout)

• A list of all the unique UIs discovered

[LLM4SE]

[Large Language Models]

Graph-based datasets: the RICO
dataset

[LLM4SE]

[Large Language Models]

Prompt Engineering

• Prompt engineering is a method of enhancing model performance by using
task-specific instructions, known as prompts, without modifying the core
model parameters (more on this later…)

• Several prompt engineering techniques have been efficiently applied in the
LLM4SE domain.

[LLM4SE]

[Large Language Models]

Prompt Engineering

[LLM4SE]

[Large Language Models]

Evaluation Metrics to assess LLM4SE

• The evaluation metrics to use to assess LLM4SE tasks are related to the type
of activity that is performed by the LLM agent.

• For classification tasks, the most commonly used metrics are Precision and F1-Score.

• For recommendation tasks, MRR (Mean Reciprocal Rank) is the most frequent metric.

• For generation task, metrics like BLEU and Pass@k are used.

[LLM4SE]

[Large Language Models]

Evaluation Metrics to assess LLM4SE

[LLM4SE]

[Large Language Models]

SE Tasks

[LLM4SE]

[Large Language Models]

Let's consider the V-model

[LLM4SE]

[Large Language Models]

Distribution of LLM usages in SE
Activities

[LLM4SE]

[Large Language Models]

Problem classification

[LLM4SE]

[Large Language Models]

Distribution of LLM usages in SE
Activities
• The primary focus to date is to utilize LLMs to enhance coding and

development processes.

• LLMs are frequently used also to aid software updates and improvements
(i.e., software maintenance)

[LLM4SE]

[Large Language Models]

Requirements: Requirements
elicitation
• Elicitation of a Software

Requirements Specification
(SRS) from natural language

• Generation by using pre-trained
models (Code-LLAMA and GPT)

• Interpretation of the quality of
the generated requirements

• After quality interpretation, the
LLMs are asked again to correct
the requirements.

Using LLMs in Software Requirements Specifications: An Empirical Evaluation

[LLM4SE]

[Large Language Models]

Requirements: Requirements
elicitation

[LLM4SE]

[Large Language Models]

Requirements: Requirements
elicitation

[LLM4SE]

[Large Language Models]

Requirements: Requirements
classification
• Requirements demand effective classification, especially for early-stage

project discernment (e.g., security-related ones).

• Is this requirement functional or non-functional?

• Requirements are classified by using five different prompt strategies with
GPT.

Ronanki, Krishna, et al. "Requirements engineering using generative ai: Prompts and prompting

patterns." Generative AI for Effective Software Development. Cham: Springer Nature Switzerland, 2024. 109-127.

[LLM4SE]

[Large Language Models]

Requirements: Requirements
classification

[LLM4SE]

[Large Language Models]

Design: GUI retrieval

• Kolthoff et al., 2022: a NL-based GUI prototyping approach to create high-
fidelity GUI prototypes.

Data-driven prototyping via natural-language-based GUI retrieval

[LLM4SE]

[Large Language Models]

Design: GUI retrieval

[LLM4SE]

[Large Language Models]

Development: Code generation

• Research has demonstrated empirically that LLMs like GPT-4, BERT series, Codex, CodeGen,
can play a key role in code generation.

• The models, since they are pre-trained on large scale text-data, learn rich linguistic
knowledge and semantic representations that enable them to understand the meaning and
structure of natural language.

• The models generate program code from natural language descriptions, enhancing code-
writing efficiency and accuracy.

[LLM4SE]

[Large Language Models]

Development: Code generation

Li, Jia, et al. "Enabling programming thinking in large language models toward code generation." arXiv preprint
arXiv:2305.06599 (2023).

[LLM4SE]

[Large Language Models]

Development: Code generation

• Score is an integer ranging from 0 to 2 (bad, average, good)

Li, Jia, et al. "Enabling programming thinking in large language models toward code generation." arXiv preprint
arXiv:2305.06599 (2023).

[LLM4SE]

[Large Language Models]

Development: Code completion

• An assistive feature provided by many integrated development environments
(IDEs) and code editors.

• The purpose is to automatically display possible code suggestions or options
as the developers write code.

• Prominent models are Copilot and CodeGPT, pre-trained on extensive code
datasets.

[LLM4SE]

[Large Language Models]

Development: Code completion

[LLM4SE]

[Large Language Models]

Development: Code completion

Hliš, Tilen, et al. "Evaluating the Usability and Functionality of Intelligent Source Code Completion Assistants: A
Comprehensive Review." Applied Sciences 13.24 (2023): 13061.

[LLM4SE]

[Large Language Models]

Development: Code completion

• Evaluation metrics (human judgement):
• SUS: System Usability Scale [0, 100] to evaluate the usability of the system.

• User Experience measurement (UEQ) [-3, 3] to evaluate the pragmatic espects of the user experience.
A questionnaire with 8 standardized questions.

• Net Promoter Score (NPS) [0,10] to gauge the likelihood of participants recommending the intelligent
assistant

Hliš, Tilen, et al. "Evaluating the Usability and Functionality of Intelligent Source Code Completion Assistants: A
Comprehensive Review." Applied Sciences 13.24 (2023): 13061.

[LLM4SE]

[Large Language Models]

Development: Code summarization

• Code summarization is the task of understanding the code and automatically
generate descriptions directly from the source code – an extended form of
documentation.

• Successful code summarization facilitates the maintenance of source code,
but can also be used to improve the performance of code search utilizing
natural language queries.

• LLMs such as Codex, CodeBERT and T5 comprehend the functionality and
logic of the code, producing easily understandable language descriptions.

[LLM4SE]

[Large Language Models]

Quality Assurance: Bug Localization

• Bug localization refers to the process of identifying the specific source code
files, functions, or lines of code that are responsible for a reported bug or
software defect.

• It typically involves analyzing bug reports or issue descriptions provided by
users or testers and correlating them with the relevant portions of the source
code.

[LLM4SE]

[Large Language Models]

Quality Assurance: Bug Localization

Kang, Sungmin, Gabin An, and Shin Yoo. "A quantitative and qualitative evaluation of LLM-based explainable fault

localization." Proceedings of the ACM on Software Engineering 1.FSE (2024): 1424-1446.

[LLM4SE]

[Large Language Models]

Quality Assurance: Bug Localization

[LLM4SE]

[Large Language Models]

Quality Assurance: Test Generation

• Test generation involves automating the process of creating test cases, to
evaluate the correctness and functionality of software applications

• It encompasses different levels of testing (more on this later…)

• LLM applications in test generation offer several advantages, i.e.
automatically generating diverse test cases, improve coverage, identifying
defects.

[LLM4SE]

[Large Language Models]

Quality Assurance: Test Generation

Schäfer, Max, et al. "An empirical evaluation of using large language models for automated unit test generation." IEEE
Transactions on Software Engineering (2023).

[LLM4SE]

[Large Language Models]

Quality Assurance: Test Generation

[LLM4SE]

[Large Language Models]

Maintenance: Code Reviews

• Code review is a critical quality assurance practice used to inspect, assess and
validate the quality and consinstency of software code.

• Code review aims to identify potential errors, vulnerabilities and code quality issues,
while also improving code maintainability, readability and scalability.

• LLMs like BERT, ChatGPT, and T5, trained on massive code repositories, possess the
ability to understand and learn the semantics, structures, and contextual
information of code.

• In the code review process, LLMs assist reviewers in comprehensively
understanding code intent and implementation details, enabling more accurate
detection of potential issues and errors.

[LLM4SE]

[Large Language Models]

Maintenance: Code Reviews

Lu, Junyi, et al. "LLaMA-Reviewer: Advancing code review automation with large language models through

parameter-efficient fine-tuning." 2023 IEEE 34th International Symposium on Software Reliability Engineering

(ISSRE). IEEE, 2023.

[LLM4SE]

[Large Language Models]

Maintenance: Code Reviews

[LLM4SE]

[Large Language Models]

Maintenance: Code Reviews

[LLM4SE]

[Large Language Models]

Challenges and opportunities

[LLM4SE]

[Large Language Models]

Applicability

• Model size and deployment: the size of LLMs has seen a marked increase
over time (even if limited in novel approaches). Significant computational
costs are associated with training LLMs.

• Data dependency: the quality, diversity, and quantity of data directly affect
the performance and generalizability of the models. LLMs often require large
amounts of data to capture nuances, but obtaining such data can be
challenging.

• Ambiguity in code generation: when code intent is unclear, LLMs may
struggle to produce accurate and contextually appropriate code. This can
lead to syntactically correct but functionally incorrect code.

[LLM4SE]

[Large Language Models]

Generalizability

• Generalizability is the ability of a model to consistently and accurately
perform tasks in different situations.

• The generalizability challenge is particularly evident in the SE domain, since
context and semantics of code or documents vary greatly across projects,
languages, or domains.

[LLM4SE]

[Large Language Models]

Evaluation

• Several key evaluation metrics are used in SE tasks.

• The metrics, while useful in some cases, may not fully capture all the effects
and impacts of a model in a given SE task.

[LLM4SE]

[Large Language Models]

Interpretability, Trustworthiness, and
Ethical usage
• It is often difficult to understand the decision-making process of the models,

due to their black-box nature.

• LLM of code trained based on low-quality datasets can have vulnerabilities
(e.g., insecure code)

• Many LLMs are not open and it is unclear what data they have been trained
on, both quality and representativeness-wise.

[LLM4SE]

	Diapositiva 1
	Diapositiva 2: Definitions
	Diapositiva 3: Definitions
	Diapositiva 4: Definitions
	Diapositiva 5: Definitions
	Diapositiva 6: LLM4SE
	Diapositiva 7: A Word Cloud
	Diapositiva 8: Current state of the art
	Diapositiva 9: Current state of the art
	Diapositiva 10: Some Examples
	Diapositiva 11: Criteria for LLM selection
	Diapositiva 12: Task-specific fine tuning
	Diapositiva 13: Types of Datasets
	Diapositiva 14: Sources for datasets
	Diapositiva 15: Sources for datasets
	Diapositiva 16: Sources for datasets
	Diapositiva 17: Types of data utilized in training LLM4SE
	Diapositiva 18: Types of data utilized in training LLM4SE
	Diapositiva 19: Types of data utilized in training LLM4SE
	Diapositiva 20: Types of data utilized in training LLM4SE
	Diapositiva 21: Types of data utilized in training LLM4SE
	Diapositiva 22: Data-preprocessing
	Diapositiva 23: Used tuning techniques
	Diapositiva 24: Used tuning techniques
	Diapositiva 25: Types of data utilized in training LLM4SE
	Diapositiva 26: Text-based datasets: MBPP
	Diapositiva 27: Text-based datasets: MBPP
	Diapositiva 28: Text-based datasets: Bug Reports and Changesets
	Diapositiva 29: Text-based datasets: Bug Reports and Changesets
	Diapositiva 30: Text-based datasets: Post2Vec (Stack Overflow posts)
	Diapositiva 31: Text-based datasets: Post2Vec (Stack Overflow posts)
	Diapositiva 32: Code-based datasets: CodeSearchNet
	Diapositiva 33: Code-based datasets: CodeSearchNet
	Diapositiva 34: Software repository-based datasets: DeHallucinator
	Diapositiva 35: Software repository-based datasets: DeHallucinator
	Diapositiva 36: Graph-based datasets: the RICO dataset
	Diapositiva 37: Graph-based datasets: the RICO dataset
	Diapositiva 38: Graph-based datasets: the RICO dataset
	Diapositiva 39: Prompt Engineering
	Diapositiva 40: Prompt Engineering
	Diapositiva 41: Evaluation Metrics to assess LLM4SE
	Diapositiva 42: Evaluation Metrics to assess LLM4SE
	Diapositiva 43: SE Tasks
	Diapositiva 44: Let's consider the V-model
	Diapositiva 45: Distribution of LLM usages in SE Activities
	Diapositiva 46: Problem classification
	Diapositiva 47: Distribution of LLM usages in SE Activities
	Diapositiva 48: Requirements: Requirements elicitation
	Diapositiva 49: Requirements: Requirements elicitation
	Diapositiva 50: Requirements: Requirements elicitation
	Diapositiva 51: Requirements: Requirements classification
	Diapositiva 52: Requirements: Requirements classification
	Diapositiva 53: Design: GUI retrieval
	Diapositiva 54: Design: GUI retrieval
	Diapositiva 55: Development: Code generation
	Diapositiva 56: Development: Code generation
	Diapositiva 57: Development: Code generation
	Diapositiva 58: Development: Code completion
	Diapositiva 59: Development: Code completion
	Diapositiva 60: Development: Code completion
	Diapositiva 61: Development: Code completion
	Diapositiva 62: Development: Code summarization
	Diapositiva 63: Quality Assurance: Bug Localization
	Diapositiva 64: Quality Assurance: Bug Localization
	Diapositiva 65: Quality Assurance: Bug Localization
	Diapositiva 66: Quality Assurance: Test Generation
	Diapositiva 67: Quality Assurance: Test Generation
	Diapositiva 68: Quality Assurance: Test Generation
	Diapositiva 69: Maintenance: Code Reviews
	Diapositiva 70: Maintenance: Code Reviews
	Diapositiva 71: Maintenance: Code Reviews
	Diapositiva 72: Maintenance: Code Reviews
	Diapositiva 73: Challenges and opportunities
	Diapositiva 74: Applicability
	Diapositiva 75: Generalizability
	Diapositiva 76: Evaluation
	Diapositiva 77: Interpretability, Trustworthiness, and Ethical usage

