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[ Large Language Models ]

Definitions

• AI4SE applies augmented intelligence and machine learning 
techniques to support systems engineering practicesMore and more 
systems are software controlled

• SE4AI applies systems engineering methods to learning- based 
systems' design and operation

[LLM4SE]
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Definitions

• LLM-Based Software Engineering (LLMSE): integration of Large 
Language Models (LLMs) into software engineering. It encompasses 
any application where the products or processes leverage LLMs to 
enhance development and operational efficiency.

[LLM4SE]
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Definitions

• LLM Application: Defined as any task or activity that benefits from 
LLM insights. This broad definition captures the essence of LLM's 
versatility across various domains, offering improvements through its 
advanced computational capabilities.

• LLM Consumer: Any individual, system, or process that utilizes LLM 
outputs. This definition acknowledges the wide array of LLM 
beneficiaries, from developers and businesses to automated systems, 
all relying on LLM-generated intelligence.

[LLM4SE]
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Definitions

• Assured LLMSE: This innovative approach guarantees the reliability of 
LLM outputs. Every response from an LLM, possibly after undergoing 
post-processing, comes with a verifiable assertion of its usefulness. 
Assured LLMSE sets a standard for trust and quality in the application 
of LLMs in software engineering.

[LLM4SE]
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LLM4SE
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A Word Cloud

[LLM4SE]



[ Large Language Models ]

Current state of the art

• In Software Engineering literature, more than 70 different LLMs have been 
used for SE tasks. All three categories of LLMs (decoder-only, encoder-
decoder, and encoder-only) have been used.

• Different categories of LLMs serve a specific purpose in SE tasks:

- Encoder-only LLMs are mostly used on comprehensive understanding;

- Encoder-decoder LLMs are mostly used for tasks requiring understanding input 
information followed by content generation;

- Decoder-only LLMs are more suitable for generation tasks.

• The most widely used LLMs are with decoder-only architectures.

[LLM4SE]
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Current state of the art
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Some Examples

[LLM4SE]
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Criteria for LLM selection 

• The selection of LLM for SE tasks should involve more careful consideration 
rather than arbitrary choice.

• Key factors guiding this selection are:

• Model proficiency in understanding the context of the code

• Ability to generate relevant content

• Responsiveness to fine-tuning

• Demonstrated performance in SE-specific benchmarks

[LLM4SE]
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Task-specific fine tuning

• A notable trend is the customization of LLMs for precise SE tasks.

• By fine tuning models with datasets tailored to specific functions (e.g., bug 
detection or code review) researchers are able to achieve marked 
performance improvements.

[LLM4SE]
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Types of Datasets
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Sources for datasets

• Data determines the generalization ability, effectiveness, and performance of the 
models.

• Four different methods can be used for data collection:

• Open-source datasets: publicly accessible collections of data that are often disseminated 
through open-source platforms or repositories.

• Collected datasets: datasets compiled from the researchers directly from a multitude of 
sources, including (but not limited to) major websites, forums, blogs, and social media 
platforms.

• Constructed datasets: specialized datasets that researchers create by modifying or 
augmenting collected datasets to better align with their specific research objectives.

• Industrial datasets: obtained from commercial or industrial entities; often contain 
proprietary business data, user behaviour logs, and other sensitive information. 

[LLM4SE]
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Sources for datasets
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Sources for datasets

• Main benefits of open-source datasets:

• Authenticity and credibility;

• They often contain real-world data collected from various sources;

• LLMs have recently emerged – so a lack of suitable sets does exist. Therefore, 
researchers often collect data from open-source repositories.

[LLM4SE]
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Types of data utilized in training 
LLM4SE
• Text-based datasets: datasets composed by textual (natural language) 

elements, or non-functioning code (snippets). 

• Among text-based datasets there are programming tasks/problems, the most frequently 
used of all data types. This dominance can be attributed to the diverse and challenging 
nature of programming problems. 

[LLM4SE]
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Types of data utilized in training 
LLM4SE
• Code-based datasets: datasets composed only by code artefacts.

• Among code-based datasets, the predominant ones are repository of production source 
code. This predominance is due to the fundamental role in SE, since source code serves 
as the foundation of any software project. 

• Other common data types are bugs/buggy code, patches for program repair, vulnerable 
source code. 

[LLM4SE]
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Types of data utilized in training 
LLM4SE
• Graph-based datasets: can be used when representing the GUI states of an 

application to develop or test.

• An example is the use of screenshot from Google Play Android to construct a graphical 
user interface (GUI) repository.

[LLM4SE]
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Types of data utilized in training 
LLM4SE
• Software repository based-datasets: compilations of data extracted from 

version control systems, such as Git repositories, containing code, 
documentation, and related artefacts.

• This data includes code repository, issues and commits, and so on.

• The data in code repositories provide information covering all aspects of the software 
development process (history, issue fixes, feature improvements, quality 
assessments…)

• These data are valuable for studying behaviours and trends in the software development 
process.

[LLM4SE]
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Types of data utilized in training 
LLM4SE
• Combined datasets: combinations of multiple types of datasets.

• Most common datasets are “programming tasks and test suites/cases”

• …or source code and comments/documentation

[LLM4SE]
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Data-preprocessing

• The data types influence the selection of data-preprocessing techniques

[LLM4SE]
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Used tuning techniques

• Many general-purpose LLMs (e.g., ChatGPT) are efficiently and directly 
applied to SE tasks such as code generation, code summarization, and 
program repair without fine tuning.

• Tuning is often needed to realize the true potential of LLMs.

[LLM4SE]
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Used tuning techniques

• Many studies have used BERT series models with full tuning

• This requires a large amount of computational resources, and massive amounts of data.

• It is also costly to train and deploy the fine-tuned models separately for each downstream task.

• Some efforts to reduce the burden:

• In-Context Learning (ICL)

• Parameter Efficient Fine-Tuning (PEFT)

• Low-Rank Adaptation (LoRA)

• Prompt tuning

• Prefix Tuning

• Adapter Tuning

• Reinforcement Learning (RL)

[LLM4SE]
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Types of data utilized in training 
LLM4SE

[LLM4SE]



[ Large Language Models ]

Text-based datasets: MBPP

• Mostly Basic Python Programming

• A benchmark of around 1000 crowd-sourced Python programming problem, 
designed to be solvable by entry-level programmers, covering programming 
fundamentals, standard library functionalities, and so on. Each problem 
consists of a task description, code solution, and 3 automated test cases.

• https://huggingface.co/datasets/google-research-datasets/mbpp 

Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan, Samuel R Bowman, Kyunghyun Cho, 
and Ethan Perez. 2023. Improving code generation by training with natural language feedback. arXiv preprint 
arXiv:2303.16749 (2023).

[LLM4SE]
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Text-based datasets: MBPP

Text Code Test List

Write a function to reverse words in a 
given string.

def reverse_words(s): return ' 
'.join(reversed(s.split()))

[ "assert reverse_words(\"python
program\")==(\"program python\")", 
"assert reverse_words(\"java 
language\")==(\"language java\")", 
"assert reverse_words(\"indian
man\")==(\"man indian\")" ]

Write a function to check if the given 
integer is a prime number.

def prime_num(num): if num >=1: for 
i in range(2, num//2): if (num % i) == 
0: return False else: return True else: 
return False

[ "assert prime_num(13)==True", 
"assert prime_num(7)==True", "assert
prime_num(-1010)==False" ]

[LLM4SE]
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Text-based datasets: Bug Reports and 
Changesets

Agnieszka Ciborowska and Kostadin Damevski. 2023. Too Few Bug Reports? Exploring Data Augmentation for
Improved Changeset-based Bug Localization. arXiv preprint arXiv:2305.16430 (2023)

• Changesets can encapsulate code 
changes across one or multiple source 
code files.

• Modifications to each file are divided 
into hunks – groups of modified lines 
surrounded by unchanged (context 
lines)

[LLM4SE]
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Text-based datasets: Bug Reports and 
Changesets
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Text-based datasets: Post2Vec (Stack 
Overflow posts)
• Posts on stackoverflow can be separated 

in several different steps:

1) Separation of description and code 
snippets from the body

2) Remove HTML tags

3) Tokenize title, description and code 
snippets

4) Construct component-specific 
vocabularies

[LLM4SE]
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Text-based datasets: Post2Vec (Stack 
Overflow posts)

Bowen Xu, Thong Hoang, Abhishek Sharma, Chengran Yang, Xin Xia, and David Lo. 2021. Post2Vec: Learning Distributed 
Representations of Stack Overflow Posts. IEEE Transactions on Software Engineering (2021), 1–1. https://doi.org/10. 
1109/TSE.2021.3093761

[LLM4SE]
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Code-based datasets: 
CodeSearchNet

https://github.com/github/CodeSearchNet?tab=readme-ov-file#data

• 2 million (comment, code) pairs from 
open source libraries. Concretely, a 
comment is a top-level function or 
method comment (e.g. docstrings in 
Python), and code is an entire function 
or method. 

• Currently, the dataset contains Python, 
Javascript, Ruby, Go, Java, and PHP 
code.

[LLM4SE]
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Code-based datasets: 
CodeSearchNet

[LLM4SE]
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Software repository-based datasets: 
DeHallucinator

De-Hallucinator: Mitigating LLM Hallucinations in Code Generation Tasks via Iterative Grounding

• Utilization of full projects mined from 
GitHub as dataset to fine-tune a LLM 
agent.

• To create a dataset for API-related code 
completion, API usages are removed from the 
benchmark projects. The removed API calls are 
used as ground truth to be predicted from the 
model.

• For test generation, tests are removed from the 
projects.

[LLM4SE]
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Software repository-based datasets: 
DeHallucinator
• The whole codebase 

of (several) projects is 
used for fine-tuning!

[LLM4SE]
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Graph-based datasets: the RICO 
dataset 

http://www.interactionmining.org/rico.html

• A dataset built by mining Android apps 
at runtime by programmatic and human 
exploration

[LLM4SE]
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Graph-based datasets: the RICO 
dataset 

http://www.interactionmining.org/rico.html

• For each app, Rico exposes:
• Google play store metadata (app’s category, average 

rating, number of ratings, number of downloads)

• A set of user interaction traces (screenshot + 
augmented Android view hierarchy, set of explored 
user interactions, set of effects in response to user 
interactions, learned vector representation of the UI’s 
layout)

• A list of all the unique UIs discovered

[LLM4SE]
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Graph-based datasets: the RICO 
dataset 

[LLM4SE]
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Prompt Engineering

• Prompt engineering is a method of enhancing model performance by using 
task-specific instructions, known as prompts, without modifying the core 
model parameters (more on this later…)

• Several prompt engineering techniques have been efficiently applied in the 
LLM4SE domain.

[LLM4SE]
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Prompt Engineering

[LLM4SE]
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Evaluation Metrics to assess LLM4SE

• The evaluation metrics to use to assess LLM4SE tasks are related to the type 
of activity that is performed by the LLM agent. 

• For classification tasks, the most commonly used metrics are Precision and F1-Score.

• For recommendation tasks, MRR (Mean Reciprocal Rank) is the most frequent metric.

• For generation task, metrics like BLEU and Pass@k are used.

[LLM4SE]
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Evaluation Metrics to assess LLM4SE
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SE Tasks

[LLM4SE]
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Let's consider the V-model

[LLM4SE]
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Distribution of LLM usages in SE 
Activities

[LLM4SE]
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Problem classification

[LLM4SE]
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Distribution of LLM usages in SE 
Activities
• The primary focus to date is to utilize LLMs to enhance coding and 

development processes.

• LLMs are frequently used also to aid software updates and improvements 
(i.e., software maintenance)

[LLM4SE]
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Requirements: Requirements 
elicitation
• Elicitation of a Software 

Requirements Specification 
(SRS) from natural language

• Generation by using pre-trained 
models (Code-LLAMA and GPT)

• Interpretation of the quality of 
the generated requirements

• After quality interpretation, the 
LLMs are asked again to correct 
the requirements.

Using LLMs in Software Requirements Specifications: An Empirical Evaluation

[LLM4SE]
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Requirements: Requirements 
elicitation
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Requirements: Requirements 
elicitation
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Requirements: Requirements 
classification
• Requirements demand effective classification, especially for early-stage 

project discernment (e.g., security-related ones).

• Is this requirement functional or non-functional?

• Requirements are classified by using five different prompt strategies with 
GPT.

Ronanki, Krishna, et al. "Requirements engineering using generative ai: Prompts and prompting

patterns." Generative AI for Effective Software Development. Cham: Springer Nature Switzerland, 2024. 109-127.

[LLM4SE]
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Requirements: Requirements 
classification

[LLM4SE]
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Design: GUI retrieval

• Kolthoff et al., 2022: a NL-based GUI prototyping approach to create high-
fidelity GUI prototypes.

Data-driven prototyping via natural-language-based GUI retrieval

[LLM4SE]
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Design: GUI retrieval

[LLM4SE]
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Development: Code generation

• Research has demonstrated empirically that LLMs like GPT-4, BERT series, Codex, CodeGen, 
can play a key role in code generation.

• The models, since they are pre-trained on large scale text-data, learn rich linguistic 
knowledge and semantic representations that enable them to understand the meaning and 
structure of natural language.

• The models generate program code from natural language descriptions, enhancing code-
writing efficiency and accuracy.

[LLM4SE]
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Development: Code generation

Li, Jia, et al. "Enabling programming thinking in large language models toward code generation." arXiv preprint 
arXiv:2305.06599 (2023).

[LLM4SE]
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Development: Code generation

• Score is an integer ranging from 0 to 2 (bad, average, good)

Li, Jia, et al. "Enabling programming thinking in large language models toward code generation." arXiv preprint 
arXiv:2305.06599 (2023).

[LLM4SE]
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Development: Code completion

• An assistive feature provided by many integrated development environments 
(IDEs) and code editors.

• The purpose is to automatically display possible code suggestions or options 
as the developers write code.

• Prominent models are Copilot and CodeGPT, pre-trained on extensive code 
datasets.

[LLM4SE]
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Development: Code completion

[LLM4SE]
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Development: Code completion

Hliš, Tilen, et al. "Evaluating the Usability and Functionality of Intelligent Source Code Completion Assistants: A 
Comprehensive Review." Applied Sciences 13.24 (2023): 13061.

[LLM4SE]
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Development: Code completion

• Evaluation metrics (human judgement):
• SUS: System Usability Scale [0, 100] to evaluate the usability of the system.

• User Experience measurement (UEQ) [-3, 3] to evaluate the pragmatic espects of the user experience. 
A questionnaire with 8 standardized questions.

• Net Promoter Score (NPS) [0,10] to gauge the likelihood of participants recommending the intelligent 
assistant

Hliš, Tilen, et al. "Evaluating the Usability and Functionality of Intelligent Source Code Completion Assistants: A 
Comprehensive Review." Applied Sciences 13.24 (2023): 13061.

[LLM4SE]
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Development: Code summarization

• Code summarization is the task of understanding the code and automatically 
generate descriptions directly from the source code – an extended form of 
documentation.

• Successful code summarization facilitates the maintenance of source code, 
but can also be used to improve the performance of code search utilizing 
natural language queries.

• LLMs such as Codex, CodeBERT and T5 comprehend the functionality and 
logic of the code, producing easily understandable language descriptions.

[LLM4SE]
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Quality Assurance: Bug Localization

• Bug localization refers to the process of identifying the specific source code 
files, functions, or lines of code that are responsible for a reported bug or 
software defect.

• It typically involves analyzing bug reports or issue descriptions provided by 
users or testers and correlating them with the relevant portions of the source 
code.

[LLM4SE]
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Quality Assurance: Bug Localization

Kang, Sungmin, Gabin An, and Shin Yoo. "A quantitative and qualitative evaluation of LLM-based explainable fault 

localization." Proceedings of the ACM on Software Engineering 1.FSE (2024): 1424-1446.

[LLM4SE]
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Quality Assurance: Bug Localization

[LLM4SE]
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Quality Assurance: Test Generation

• Test generation involves automating the process of creating test cases, to 
evaluate the correctness and functionality of software applications

• It encompasses different levels of testing (more on this later…)

• LLM applications in test generation offer several advantages, i.e. 
automatically generating diverse test cases, improve coverage, identifying 
defects.

[LLM4SE]
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Quality Assurance: Test Generation

Schäfer, Max, et al. "An empirical evaluation of using large language models for automated unit test generation." IEEE 
Transactions on Software Engineering (2023).

[LLM4SE]
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Quality Assurance: Test Generation

[LLM4SE]
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Maintenance: Code Reviews

• Code review is a critical quality assurance practice used to inspect, assess and 
validate the quality and consinstency of software code.

• Code review aims to identify potential errors, vulnerabilities and code quality issues, 
while also improving code maintainability, readability and scalability.

• LLMs like BERT, ChatGPT, and T5, trained on massive code repositories, possess the 
ability to understand and learn the semantics, structures, and contextual 
information of code.

• In the code review process, LLMs assist reviewers in comprehensively 
understanding code intent and implementation details, enabling more accurate 
detection of potential issues and errors.

[LLM4SE]
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Maintenance: Code Reviews

Lu, Junyi, et al. "LLaMA-Reviewer: Advancing code review automation with large language models through

parameter-efficient fine-tuning." 2023 IEEE 34th International Symposium on Software Reliability Engineering 

(ISSRE). IEEE, 2023.

[LLM4SE]
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Maintenance: Code Reviews

[LLM4SE]
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Maintenance: Code Reviews

[LLM4SE]
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Challenges and opportunities

[LLM4SE]
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Applicability

• Model size and deployment: the size of LLMs has seen a marked increase 
over time (even if limited in novel approaches). Significant computational 
costs are associated with training LLMs.

• Data dependency: the quality, diversity, and quantity of data directly affect 
the performance and generalizability of the models. LLMs often require large 
amounts of data to capture nuances, but obtaining such data can be 
challenging.

• Ambiguity in code generation: when code intent is unclear, LLMs may 
struggle to produce accurate and contextually appropriate code. This can 
lead to syntactically correct but functionally incorrect code.

[LLM4SE]
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Generalizability

• Generalizability is the ability of a model to consistently and accurately 
perform tasks in different situations.

• The generalizability challenge is particularly evident in the SE domain, since 
context and semantics of code or documents vary greatly across projects, 
languages, or domains.

[LLM4SE]
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Evaluation

• Several key evaluation metrics are used in SE tasks.

• The metrics, while useful in some cases, may not fully capture all the effects 
and impacts of a model in a given SE task.

[LLM4SE]
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Interpretability, Trustworthiness, and 
Ethical usage
• It is often difficult to understand the decision-making process of the models, 

due to their black-box nature.

• LLM of code trained based on low-quality datasets can have vulnerabilities 
(e.g., insecure code)

• Many LLMs are not open and it is unclear what data they have been trained 
on, both quality and representativeness-wise.

[LLM4SE]
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