Large
Language
Models

LLM4SE

Riccardo Coppola




Definitions

* AI4SE applies augmented intelligence and machine learning
techniques to support systems engineering practicesMore and more
systems are software controlled

e SE4AIl applies systems engineering methods to learning- based
systems' desigh and operation



Eng

Definitions

* LLM-Based Software Engineering (LLMSE): integration of Large
Language Models (LLMSs) into software engineering. It encompasses
any application where the products or processes leverage LLMs to
enhance development and operational efficiency.



Definitions

* LLM Application: Defined as any task or activity that benefits from
LLM insights. This broad definition captures the essence of LLM's
versatility across various domains, offering improvements through its
advanced computational capabilities.

* LLM Consumer: Any individual, system, or process that utilizes LLM
outputs. This definition acknowledges the wide array of LLM
beneficiaries, from developers and businesses to automated systemes,
all relying on LLM-generated intelligence.



Eng

Definitions

* Assured LLMSE: This innovative approach guarantees the reliability of
LLM outputs. Every response from an LLM, possibly after undergoing
post-processing, comes with a verifiable assertion of its usefulness.
Assured LLMSE sets a standard for trust and quality in the application
of LLMs in software engineering.



4 giemee GOftEng—— [ Large Language Models ] [LLM4SE])

LLMA4SE




{w‘ sl GOftEng—— [ Large Language Models ] [LLM4SE]

A Word Cloud

l"-—

case i usérp various socorrectness

t :
| -
inp utl ltwo englneerlng @ S Ceou?pm%m - domain
praq ammer

semantlcg -
hwe

T ODOSEe p-{ ; 1

evelopment Ork tec er q wet M thout L/
S
E

tY

Ompt ljslngope% > 1)
data . enchmark
r rma n“ anal SlS “?;;;;";e r g ram

ransformer evaluate new generateprOblem Mo e repalr

ffective ability ecapabilities

rogramming ¢ oo ¢ generated .
potB\fttlal huma n g § ) 5; 8:co!::xoe S summar lXI“ context t r a l,,pr,s,em,?,n =’
knowledge kg_ .t;;g“ e n]-eLr a l O nStUCyw

e T I 1n'ﬁ§|"o'vp X information 00

- spec1f1c C -"- = ><a hieve ,epon e a r n l roa C
_% GPT f _]_ n e Q a u r a l -example leveldetecnon g § m.t”E)
L automated three <M)l kg E different
g,,a ches @ = finding 1 BERT g paper
; mggrmo e I c typ,i.automatlca e a < ta te

given

%

text

use ltranslolxon

1nvest1gotc

|

3

error
proccssl
understan
Uath

- . s
= requirement

Inerability
:‘CS
=38
5

2%
elpcrlmcnla]

< Vu
P |
e
> =
5 0a
'3(D
1
N
-~
-
<

,.-'

f SS

—



£
‘;5 | B "
o e
G5 i
& E:EP s
Mizgen?

P
oo
&3

Eng

Current state of the art

* |[n Software Engineering literature, more than 70 different LLMs have been
used for SE tasks. All three categories of LLMs (decoder-only, encoder-
decoder, and encoder-only) have been used.

* Different categories of LLMs serve a specific purpose in SE tasks:

- Encoder-only LLMs are mostly used on comprehensive understanding;

- Encoder-decoder LLMs are mostly used for tasks requiring understanding input
information followed by content generation;

- Decoder-only LLMs are more suitable for generation tasks.

* The most widely used LLMs are with decoder-only architectures.



LaEly
{fe! friem SOftEng

[ Large Language Models

[LLM4SE]

Current state of the art

Encoder-only

Encoder-decoder

Decoder-only

m2024
m2023
@2022
02021
02020

432

80

120 160 200 240 280 320 360 400 440 480



-

LR
{%@égﬂgﬁg‘y SOftEng—[ Large Language Models ] [LLM4SE]

Some Examples

Model Type Example of SE tasks

Encoder-only Understanding Code Understanding
Bug localization
Vulnerability detection

Encoder-Decoder | Understanding and Generation | Code summarization
Code translation
Program repair

Decoder-only Generation Code generation
Code completion
Test case generation




Eng

Criteria for LLM selection

* The selection of LLM for SE tasks should involve more careful consideration
rather than arbitrary choice.

* Key factors guiding this selection are:
* Model proficiency in understanding the context of the code
* Ability to generate relevant content

* Responsiveness to fine-tuning

* Demonstrated performance in SE-specific benchmarks



Task-specific fine tuning

* Anotable trend is the customization of LLMs for precise SE tasks.

* By fine tuning models with datasets tailored to specific functions (e.g., bug
detection or code review) researchers are able to achieve marked
performance improvements.



“ail di Torino

woowsd
Ly 22
g

{A ‘“i Politecnico SOftEng—[ Large Language Models ] [LLM4SE]

Types of Datasets




Eng

Sources for datasets

* Data determines the generalization ability, effectiveness, and performance of the
models.

 Four different methods can be used for data collection:

* Open-source datasets: publicly accessible collections of data that are often disseminated
through open-source platforms or repositories.

* Collected datasets: datasets compiled from the researchers directly from a multitude of
sources, including (but not limited to) major websites, forums, blogs, and social media
platforms.

* Constructed datasets: specialized datasets that researchers create by modifying or
augmenting collected datasets to better align with their specific research objectives.

* Industrial datasets: obtained from commercial or industrial entities; often contain
proprietary business data, user behaviour logs, and other sensitive information.



eice COftEng

Sources for datasets

300

240

— —
(o) NN 00
o o o

Number of papers

o

[ Large Language Models ]

[LLM4SE]

235

datasets

datasets

Open-source Collected Constructed

datasets

6

Industrial
datasets




Eng

Sources for datasets

* Main benefits of open-source datasets:
* Authenticity and credibility;
* They often contain real-world data collected from various sources;

* LLMs have recently emerged —so a lack of suitable sets does exist. Therefore,
researchers often collect data from open-source repositories.



AN
YA LAY Politecni

Yy
Lt
(=t

Eng

Types of data uftilized in training
LLMA4SE

* Text-based datasets: datasets composed by textual (natural language)
elements, or non-functioning code (snippets).

* Among text-based datasets there are programming tasks/problems, the most frequently
used of all data types. This dominance can be attributed to the diverse and challenging
nature of programming problems.



Eng

Types of data uftilized in training
LLMA4SE

* Code-based datasets: datasets composed only by code artefacts.

* Among code-based datasets, the predominant ones are repository of production source
code. This predominance is due to the fundamental role in SE, since source code serves
as the foundation of any software project.

 Other common data types are bugs/buggy code, patches for program repair, vulnerable
source code.



AN
YA LAY Politecni

Yy
Lt
(=t

Eng

Types of data uftilized in training
LLMA4SE

* Graph-based datasets: can be used when representing the GUI states of an
application to develop or test.

* An example is the use of screenshot from Google Play Android to construct a graphical
user interface (GUI) repository.



L
a‘es.%"‘.&"e.

== P,
S asRTELY di

Eng

Types of data uftilized in training
LLMA4SE

* Software repository based-datasets: compilations of data extracted from
version control systems, such as Git repositories, containing code,
documentation, and related artefacts.

* This data includes code repository, issues and commits, and so on.

* The datain code repositories provide information covering all aspects of the software

development process (history, issue fixes, feature improvements, quality
assessments...)

* These data are valuable for studying behaviours and trends in the software development
process.



AN
YA LAY Politecni

Yy
Lt
(M=

Eng

Types of data utilized in training
LLMA4SE

« Combined datasets: combinations of multiple types of datasets.
* Most common datasets are “programming tasks and test suites/cases”

e ...0r source code and comments/documentation



[ Large Language Models ] [LLM4SE]

fc e SOftEng

Data-preprocessing

* The data types influence the selection of data-preprocessing techniques

e N N o §
= - - - 6 - 6 - -




Eng

Used tuning technigques

* Many general-purpose LLMs (e.g., ChatGPT) are efficiently and directly
applied to SE tasks such as code generation, code summarization, and
program repair without fine tuning.

* Tuning is often needed to realize the true potential of LLMs.



g
Fa o

=Y

AY Politecnico E
WJJ di Torino n g
NPT

Used tuning technigques

* Many studies have used BERT series models with full tuning
* Thisrequires a large amount of computational resources, and massive amounts of data.

* [tis also costly to train and deploy the fine-tuned models separately for each downstream task.

* Some efforts to reduce the burden:
* In-Context Learning (ICL)
* Parameter Efficient Fine-Tuning (PEFT)
* Low-Rank Adaptation (LoRA)
* Prompt tuning
* Prefix Tuning
* Adapter Tuning

* Reinforcement Learning (RL)



L I

[LLM4SE]

A AY politecnico SOftEng—[ Large Language Models ]

Types of data utilized in fraining
LLMA4SE

Category Data type Total
Text-based | Programming tasks/problems (42) Prompts (33) 151
datasets | SO (ie. Stack Overflow) posts (12) Bug reports (11)
Requirements documentation (9) APIs/API documentation (8)
Q&A pairs (6) Vulnerability descriptions (4)
Reviews (4) Logs (3)
Methods (3) Project issues (3)
Code comments (2) Theorems (2)
Buggy text (1) Dockerfiles (1)
Outage descriptions (1) Semantic merge conflicts (1)
Site text (1) Software development tasks (1)
User intents (1) Software specifications (1)
User reviews (1)
Code-based | Source code (60) Bugs/Buggy code (16) 103
datasets | Vulnerable source code (8) Patches (4)
Code changes (3) Test suites/cases (3)
Bug-fix pairs (2) Error code (2)
Error-fix pairs (1) Flaky test cases (1)
Identifiers (1) Labeled clone pairs (1)
Packages (1)
Graph-based | GUI Images (1) 1
datasets
Software | Code repository (9) Android apps (3) 20
repository | Issues and commits (3) Pull-requests (2)
-based datasets | Industrial projects (1) Open-source projects (1)
Web applications (1)
Combined | Programming tasks and test suites/cases (17) Source code and comments (12) 55
datasets | Programming tasks and solutions (8) Source code and description (3)
Code-text pairs (2) Souce code and API usage sequences (2)
Source code and test suites/cases (2) Bug report and test suites/cases (1)
Buggy code and comments (1) Buggy code and solutions (1)
Code files and summaries (1) Binary code and related annotations (1)
Failing test code and error messages (1) Source code and Q&A pairs (1)
Source code, methods, and logs (1) Vulnerable code and description (1)




A

A% Politecnico

Eng

Text-based datasets: MBPP

* Mostly Basic Python Programming

* Abenchmark of around 1000 crowd-sourced Python programming problem,
designed to be solvable by entry-level programmers, covering programming
fundamentals, standard library functionalities, and so on. Each problem
consists of a task description, code solution, and 3 automated test cases.

* https://huggingface.co/datasets/google-research-datasets/mbpp



https://huggingface.co/datasets/google-research-datasets/mbpp

o &l ~,
' AN . -
; 2+ Politecnico En
il 4 I Torino g
(] ..,”

Text-based datasets: MBPP

Text

Write a function to reverse words in a
given string.

Write a function to check if the given
integer is a prime number.

Code

def reverse_words(s): return'
'.join(reversed(s.split()))

def prime_num(num): if num >=1: for
i in range(2, num//2): if (num % i) ==
0: return False else: return True else:
return False

Test List

[ "assert reverse_words(\"python
program\")==(\"program python\")",
"assert reverse_words(\"java
language\")==(\"language java\")",
"assert reverse_words(\"indian
man\")==(\"man indian\")" ]

[ "assert prime_num(13)==True",

"assert prime_num(7)==True", "assert
prime_num(-1010)==False" ]



clitecnico \C '_”Eng—[ Large Language Models ]

Text-based datasets: Bug Reports and
Changesets

* Changesets can encapsulate code
changes across one or multiple source
code files.

* Modifications to each file are divided
into hunks — groups of modified lines
surrounded by unchanged (context

lines)

[LLM4SE]

#Bugs  #Changesets #Changeset-files #Hunks
Aspect] 200 2,939 14,030 23,446
JDT 94 13,860 58,619 150,630
PDE 60 9,419 42,303 100,373
SWT 90 10,206 25,666 69,833
Tomeat 193 10,034 30,866 72,134
ZXing 20 843 2,846 6,165




XM Poltecnico SOftEng—[ Large Language Models ] [LLM4SE]

Text-based dafasets: Bug Reports and
Changesefts

Bug 83699
Summary: Font reset to default after screen saver
Description: All editors and views using a StyledText widget have the
font reset to default after coming back from my screen saver. [..].
This breakpoint gets hit when | retumn from the screen saver:
[..] StyledText(Control).updateFont({Font, Font) line: 2913

glt |:I|ff 581’?333 1|:I3hd23bb9be3deﬂde4cfaﬁ‘3158453|:|4|5

rg/eclipse/swt/widgets/Composite.java
{Empt}* Hnes ﬂmarred}

”o d upda ercmt {Fﬂnt CllerI'l Fm' newﬂj 1t‘. -:
Cuntml [] children = get{:mldren {}
for (int i=0; i<children.length; i++) {

Control control = children [i];
org/eclipse/swt/widgets/Control.java
{ empr}r lines omitted ]
void updateFont (Font oldFont, Font newFont) {
Font font = getFant ();
| {fu::n e:ualﬁ |::- dFm ‘,| EEtrDI'lt {nechu 1t*,:

— i BRELE [} W s ¥ L s L —

void updatelayout (boolean resize, boclean all) {



: olitecnico (™)1 Eng—[ Large Language Models ] [LLM4SE]

Text-based datasets: Post2Vec (Stack
Overflow posts)

* Posts on stackoverflow can be separated | L U U

____________________________________________________

in several different steps: | Tile || Description | Code

_____________________________________________________

Preprocessing

1) Separation of description and code
snippets from the body

‘ Encoding H Encoding H Encoding J Input layer

rmmmmmeTeeeees N N . | Feature
2) Remove HTML tags . NNgge | NNgescription i NNggge | | extraction

-------------- Phmmmmmeomemmeeed! Neeeeoeeooeot | ayers
3) Tokenize title, description and code r----@ -------- @ --------- @Z ===

snippets

U s

1
1
1
I
1
1
1
1
!
Fully connected layer for mapping H Feature
the post vector to a tag vector I | fusion layer
1
1
1
1
1
1
1
I
1
J

4) Construct component-specific
vocabularies

U 2

A tag vector for the
Stack Overflow post

Tag prediction
layer




AT
f‘%‘s Politecnico SOftEng—[ Large Language Models ] [LLM4SE]

~ Text-based datasets: Post2Vec (Stack
Overflow posts)

!
22
s gt

Title | How do | write JSON data to a file?

| have JSON data stored in the variable data . Description

| |'want to write this to a text file for testing so | dont have to grab the data from the server each time,

| Currently, | am trying this:

oby = open('data.txt’, ‘'wb')
oby.write(data) Code
obj.close

Body

And am receiving the error

TypeError: msust be string or buffer, not dict DeSCI'IptIOI'l

Tags

https://doi.org/10



https://doi.org/10

A

A% Politecnico

Eng

Code-based dataserfs:
CodeSearchNet

* 2 million (comment, code) pairs from
open source libraries. Concretely, a
commentis a top-level function or
method comment (e.g. docstrings in
Python), and code is an entire function
or method.

* Currently, the dataset contains Python,
Javascript, Ruby, Go, Java, and PHP
code.

phe

java
python

go
javascript
ruby

578118
496688
457461
346365
138625

53279



%}}5}’#‘;%"3“ \C '_”Eng—[ Large Language Models ] [LLM4SE]

Code-based dataserfs:
CodeSearchNet

&

'def get _vid _from_url(url):\n'

' """Extracts video ID from URL.

: muny

return matchl(url, r'youtul\\.b

matchl(url, r'youtube\\.com/
matchl(url, r'youtube\\.com/
matchl(url, r'youtube\\.com/
parse_query_param(url, 'v')

parse_query_param(parse_quer



b soiweerico GOftEng—— [ Large Language Models ]

[LLM4SE]

Software repository-based datasets:

DeHallucinator

* Utilization of full projects mined from
GitHub as dataset to fine-tune a LLM
agent.

* To create a dataset for APIl-related code
completion, APl usages are removed from the
benchmark projects. The removed API calls are
used as ground truth to be predicted from the
model.

* Fortest generation, tests are removed from the
projects.

Project (owner/name) Commit LoC  Stars®

Python projects used for code completion

graphgl-python/graphene 57cbef6 0,484 7.8k
geopy/geopy ef48a8c 10,000 43k
nvbn/thefuck ceeaeab 12,181 833k
aaugustin/websockets™ baled7a 14,186 5k
arrow-py/arrow 74a759b 14,402 8.6k
lektor/lektor be3céch 16,852 3.8k
Parsely/streamparse aabd9d0 26,214 1.5k
Supervisor/supervisor ca54549 29,860 8.3k
mwaskom/seaborn fo827a3 37.367 12.1k
psf/black ef6e079 106,005 37.6k
scikit-learn/scikit-learn f3cefde 193,863 585k
JavaScript projects used for test generation

node-red/node-red 29ed5b2 60 18.8k
winstonjs/winston c63a5ad 496 222k
prettier/prettier 7142¢f3 016 485k
tj/commander.js 83c3f4e 1,134 263k
js-sdsl/js-sdsl 055866a 1,198 0.7k
goldfire/howler.js 003b917 1,319 231k
websockets/ws b73b118 1,546 21.2k
handlebars-lang/handlebars.js  8dc3d25 2,117 178k
petkaantonov/bluebird df70847 3,105 204k
hapijs/joi 5b96852 4,149 207k
Unitech/pm2 a092db2 5,048 409k
11ty/eleventy e71cb94 5,772 164k

* As of June 5, 2024
** Has been moved to python-websockets/websockets



£ Politecnico Eng—[ Large Language Models ] [LLM4SE]

Software repository-based datasets:
DeHallucinator

e The whole codebase - i

- docs

of (several) projects is =
used for fine-tuning! e

&y erikwrede release: 2.4, ccaeT36 - lastweek  {L) 1,783 Commits

[3 .coveragerc

9 .editorconfig

[9 .gitignore

[ .pre-commit-config.yaml
[ uUCENSE

[ MANIFEST.in
[ Makefile

[ READMEmd
[% SECURITY.md

% UPGRADE-v1.0.md

[ UPGRADE-v2.0.md

[ mypy.ini

[9 setup.cfg
[ setuppy

9 toxini




[LLM4SE]

%l
wa’i Politecnico SOftEng— Large Language Models

Graph- based datasets: the RICO
dataset

* A dataset built by mining Android apps Workers Android Devices
at runtime by programmatic and human Eipkraion }" <—|_’ [‘I;!!
2

exploration
é:;?or?gttiii OQ Web Application

o
L

App Mining Infrastructure .

— Rico - Mobile App Design Dataset <

User | from containing
Interaction f —>. 97K apps 72K Unique
Troces ——— o —— UIS
— Data-Driven Design Applications
1 .
2# = : B
;- =
Design Ul Layout Ul Code inteurzgion

Search Generation  Generation Modeling



s %l

Jﬁk}%“ Politecnico SOftEng— Large Language Models [LLM4SE]

 Graph- pased datasets: the RICO
dataset

* For each app, Rico exposes:

1
22
L gt

Play Store Metadata

* Google play store metadata (app’s category, average
rating, number of ratings, number of downloads)

* Asetof userinteraction traces (screenshot +
augmented Android view hierarchy, set of explored
user interactions, set of effects in response to user
interactions, learned vector representation of the Ul’s
layout) '

 Alistof allthe unique Uls discovered

. -9 \\‘_\\D B 3000 T serhvs et s e e g e
Us\er o “ = i - id: header
Interaction i%“"\%\ = - class: CustomView
bdan i - superclass: TextView
L. | B® text: “Amazon” :
Screenshot < = . bounds: [o 72, 24, %]
: Layout
View Vector R e T —— -'

Hierarchy



AT
{Bu st Politecnico SOftEng—[ Large Language Models ] [LLM4SE]

!
22
L gt

Graph-based datasefts: the RICO
dataset

= 0 = &

FILTER - SORT : Featured

ol
% >’@ /\ 9

’

“Contradictorio”: cémo .
la prensa de Rusia estd Olbanio Vi

olvidando su entusiasmo co m— ) adeand CZ - tivity_name": "com.funforfones.android.chicagocta/com.funforfones.android.chicagoct
m*‘“‘""“"““ (Q) e e tivity": {
T owcouons root": {
T p— Nicky Butler Lapis = "scrollable-horizontal”: false,

"ancestors": [
"android.widget.FramelLayout”,
"android.view.ViewGroup",
"android.view.View",
"java.lang.Object"

>
"clickable": false,
"pressed": "not_pressed",
"focusable": false,
"long-clickable": false,
"enabled": true,
"bounds": [

36,

84,

1404,

2392

"Gisibility": "visible",
"content-desc": [
null

2
"rel-bounds™: [
9,
o,
1368,
2308
1,

"focused": false,




Eng

Prompt Engineering

* Prompt engineering is a method of enhancing model performance by using
task-specific instructions, known as prompts, without modifying the core
model parameters (more on this later...)

* Several prompt engineering techniques have been efficiently applied in the
LLM4SE domain.



AT
{wu“ SOftEng—— [ Large Language Models ] [LLM4SE]
W

Prompt Engineering

Few-shot prompting 88
Zero-shot prompting 79
4 Chain-of-Thought
E.:i Automatic Prompt Engineer
I3 Chain of Code
42_ Automatic Chain-of-Thought
£ Modular-of-Thought |] 1
& Structured Chain-of-Thought || 1
Others 76

0 10 20 30 40 50 60 /0 80 90 100



Eng

Evaluation Metrics to assess LLMA4SE

* The evaluation metrics to use to assess LLMA4SE tasks are related to the type
of activity that is performed by the LLM agent.

* For classification tasks, the most commonly used metrics are Precision and F1-Score.
 Forrecommendation tasks, MRR (Mean Reciprocal Rank) is the most frequent metric.

* For generation task, metrics like BLEU and Pass@k are used.



'f’ ﬁl K]

AsAY poiitecnico SOftEng—[ Large Language Models ] [LLM4SE]

we di Torino

i
2
Rt

Evaluation Metrics to assess LLMA4SE

Problem Type Metric Total
Regression | MAE (Mean Absolute Error) (1) 1
Classification | Precision (35) Recall (34) 147
F1-score (33) Accuracy (23)
AUC (Area Under the ROC Curve) (9) ROC (Receiver Operating Characteristic) (4)
FPR (False Positive Rate) (4) FNR (Falser Negative Rate) (3)
MCC (Matthews Correlation Coefficient) (2)
Recommendation | MRR (Mean Reciprocal Rank) (15) Precision/Precision@k (6) 39
MAP/MAP@k (6) F-score/F-score@k (5)
Recall/Recall@k (4) Accuracy (3)
Generation | BLEU/BLEU-4/BLEU-DC (62) Pass@k (54) 338
Accuracy/Accuracy@k (39) EM (Exact Match) (36)
CodeBLEU (29) ROUGE/ROUGE-L (22)
Precision (18) METEOR (16)
Recall (15) F1-score (15)
MRR (Mean Reciprocal Rank) (6) ES (Edit Similarity) (6)
ED (Edit Distance) (5) MAR (Mean Average Ranking) (4)
ChrF (3) CrystalBLEU (3)
CodeBERTScore (2) MFR (Mean First Ranking) (1)
PP (Perplexity) (1)




4 giemee GOftEng—— [ Large Language Models ] [LLM4SE])

SE Tasks




l§:
"i:;;:? Politecnico SOftEng— Large Language Models ] [LLM4SE]

di Torino

Let's consider the V-model

Concept of Opera:’:lon
= an
Operations Ve";‘,ﬁgtm" Maintenance
] Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration, .

Detailed Test, and Project
Design Verification Test and

Integration

Implameantation

A 4

Time



{w reieerico SO ftEng

D|s’rr|bu’r|on of LLM usages in SE
Activities

Large Language Models [LLM4SE]

Software quality
assurance
15.14%

Software
maintenance

22.71% Requirements

engineering
3.90%

Software design
0.92%

Software
management
0.69%



[ Large Language Models ] [LLM4SE]

o Bl N
A . .
St peeenico SO ftEng

Problem classification

Recommendation

Classification 6.77%

21.61%

Regression
0.65%



o &N
RN

’ o]
Lt
I - ]

Mesrico Eng

Distribution of LLM usages in SE
AcCTivities
* The primary focus to date is to utilize LLMs to enhance coding and

development processes.

* LLMs are frequently used also to aid software updates and improvements
(i.e., software maintenance)



' '§ 1 ™y

fa, = Al

ha_ a5V Politecnico E
Vs Eal di To ng
e

Requirements: Requirements
elicitation

* Elicitation of a Software
Requirements Specification

Format for the SRS
(SRS) from natural language
. . . 1. Problem Background
« Generation by using pre-trained 2. Stakeholders
models (Code-LLAMA and GPT) 3- Functional Reguirements
4. Performance Requirements
5. Design Constraints
* Interpretation of the quality of 6. External Interfaces
. 7. Security Requirements
the generated requil rements 8. Use cases for the application
o Actor
. . . o P
« After quality interpretation, the " Fveut Flow
LLMs are asked again to correct ° Special conditions

9. Glossary of terms

the requirements.




[ Large Language Models ] [LLM4SE]

{%iﬁ piee SOftEng
Requirements: Requirements
elicitation

Complete Concise Internally Consistent Non-Redundant

B Human B Codellama34b B GPT-4 (ChatGPT)




Ali~rit~AtiANn

 peineenico GOftEng—— [ Large Language Models ]

Requirements:

[LLM4SE]

Requirements

Section Requirement Human GPT-4 Old Requirements New Requirements
Number scores scores
175 The platform must support up to 10,000 concur-
Performance 41 4 7,'5 4 345 3 Platform should withstand considerable amounts rent users and maintain functionality during peak
Requirements ' '4 2’5 | T of traffic. usage times, such as event registration openings
' and result announcements.
The platform will include accessibility features
: 3.25, : . : . .
Design 51 175 3.4 5.3 Develop with accessibility features like screen such as screen readers compatibility, font size
Constraints ' 3?'5 3 5 o readers, font adjusters, etc. adjusters, high contrast mode, and keyboard
S navigation support.
The platform’s codebase shall adhere to
Design 2.5, 4.75, Easy to maintain with readable and well- industry-standard practices for readability, in-
: 5.3 3.4,5,3 : . .
Constraints 4.75, 3.25 documented code. cluding clear naming conventions, modular de-
sign, and comprehensive documentation.
The platform must be compatible with the lat-
External 4.5, 4, - ) ) . ) } )
6.1 4,5,5,4 Compatibility with major browsers. est two versions of major browsers including
Interfaces 4.5, 4.75 : .
Chrome, Firefox, Safari, Edge, and Brave.
User data shall be managed in compliance with
Securit 4, 4.25, 4, . . : the institute’s Data Protection Policy, includin
PUFIY 7.4 ’ 3,4,5,3 User data management as per institute’s policy. I S ! © 1€y, InClucing
Requirements 4.5 provisions for data encryption, regular audits,

and adherence to privacy regulations.




Eng

Requirements: Requirements
classification

* Requirements demand effective classification, especially for early-stage
project discernment (e.g., security-related ones).

* |Is this requirement functional or non-functional?

* Requirements are classified by using five different prompt strategies with
GPT.



# '!g! )

St poitemicc GOftEng—— [ Large Language Models |

[LLM4SE]

Requirements: Requirements
classification

Prompt Pattern Precision Recall F-Score Accuracy

Pattern Classification

Cognitive | Classify the given list of requirements

verifier into functional (labelled as F) and
non-functional requirements (labelled
as NF). Ask me questions if needed to
break the given task into smaller
subtasks. All the outputs to the smaller
subtasks must be combined before you
generate the final output

Context Classify the given list of requirements

manager into functional (labelled as F) and

non-functional requirements (labelled
as NF). When you provide an answer,
please explain the reasoning and
assumptions behind your response. If
possible, address any potential
ambiguities or limitations in your
answer, in order to provide a more
complete and accurate response

o I I I I I I I I I | I I

Context Manager I I I I I I I I I I I I




LaEly
{fe! friem SOftEng

[ Large Language Models ] [LLM4SE]

Design: GUI retrieval

* Kolthoff et al., 2022: a NL-based GUI prototyping approach to create high-
fidelity GUI prototypes.

I/I: {1) Natural Language Requirements -‘\\ —

x “”’ L %:?:Q EE_“
-8 E-a8) Qﬁ*

Requirements GUI
{2) Incremental Interactive GLUI I‘-"r|:|l:-:||t'|.|1|'.he_/'I

/2
2/

<
e
o
S
—
/
=il

{rlﬂl?st with Hﬂ'lf:ﬂ . Specification |




i‘\}—ffm Peiitscnico SOftEng— Large Language Models ] [LLM4SE]

W, &
gt

Design: GUI retrieval

7 OA.GUI )

Repository and
Text Extraction

B. GUI Retrieval and Text Preprocessing \

/ img sem meta

| Lowercasing l
___ Tokenizing |

{Query Expansion

~ Stopword v Pseudo-Relevance
._Rico GUI Dataset __ Removal ] ____ Feedback J
l : Numeric/non- ] ’ﬁxh"nsaéﬁlel'il'e’rj
Divergence Score |
Filtering | \. ASCIl Removal vergence Sc J /
_ Category ¥
_ Adverti t || o= 5
et ey C. Deriving Editable GUI Screens\
Language

/ Text Extraction [

=k —_— =

achvny-qa@e ——a
_text(hint) | ==

~ resource-ids

o ? 1. Original 2. Marked 3.Cropped GUI 4. Partly
_ s GUI Screen- GUI Comps. Comps. and Editable T
’ = shot Style Property  GUI 1.GUI  2.GUIPrototyping ,
Extraction Screens g type

k- L - \ / \Seard\ Editor s “/




Eng

Development: Code generation

* Research has demonstrated empirically that LLMs like GPT-4, BERT series, Codex, CodeGen,
can play a key role in code generation.

* The models, since they are pre-trained on large scale text-data, learn rich linguistic
knowledge and semantic representations that enable them to understand the meaning and

structure of natural language.

* The models generate program code from natural language descriptions, enhancing code-
writing efficiency and accuracy.



%l
'iitdﬁ Boliteenico SOftEng— Large Language Models ] [LLM4SE]

W,
W, 2
gt

Development: Code generation

Requirement:

# Return True is list elements are monotonically increasing or
decreasing.

ChatGPT:
def monotonic(l: list):
if all(1[i] <= 1[i+1] for i in range(len(1)-1)) or all(1l[il]
>= 1[i+1] for i in range(len(1)-1)):
return True

else:
return False

TiP (Code sketch & Source Code):

Input: 1: list def monotonic(l: list):
Output: True or False increasing = False

1: for i from 1 to len(1)-1: decreasing = False

2: if 1[i] > 1[i-1] then for i in range(1, len(1)):
3: 1 increases if 1[i] = 1[i-1]:

4: if 1[i] < 1[i-1] then increasing = True
5: 1 descreases if 1[i] < 1[i-1]:

6: 1f both increase and decrease decreasing = True
then if increasing and decreasing:
7: return False return False

8: else else:

9: return True return True




%l
{8t s SOftEng—— [ Large Language Models ) [L1M4SE]

Ly &
.\_,._-.

Development: Code generation

* Scoreis anintegerranging from 0to 2 (bad, average, good)

Approach Correctness  Code quality  Maintainability
GPT-2 0.077 0.332 0.291
CodeParrot 0.121 0.739 0.885
PyCodeGPT 0.205 1.137 1.255
InCoder 0.372 1.302 1.395
LLaMA 0.369 1.207 1.344
CodeGeeX 0.433 1.459 1.316
CodeGen 0.579 1.559 1.421
Codex 0.814 1.622 1.479
ChatGPT 1.119 1.653 1.552

TIiP 1.342 1.839 1.803



Eng

Development: Code completion

* An assistive feature provided by many integrated development environments
(IDEs) and code editors.

* The purpose is to automatically display possible code suggestions or options
as the developers write code.

* Prominent models are Copilot and CodeGPT, pre-trained on extensive code
datasets.



s Bl
s &

'}i‘w&} Politecnico SOftEng [ Large Language Models ] [LLM4SE]

W, mse

Development: Code completion

JS test.js o

JS test.js > O calculateDaysBetweenDates

1 Function calculateDaysBetweenDates(begin, end) {I




AN

we di Torino

A% Politecnico SOftEng—[ Large Language Models ] [LLMA4SE]

Development: Code completion

GitHub Copilot Tabnine Kite IntelliCode

Current word completion v v v v
Word v v v v

Generating a program continuation: Line v v v

Section of source code v
APl exploration v v v
APl proposal v v v v
Naming variables v
Source code generation based on natural language v v
Leamning the model on your own source code (for enterprises) v v v v




g
Sa S

Ay LAY Politecnico Eng—[ Large Language Models ] [LLM4SE]

Zu di Torino
Ly
i

Development: Code completion

* Evaluation metrics (human judgement):

* SUS: System Usability Scale [0, 100] to evaluate the usability of the system.

* User Experience measurement (UEQ) [-3, 3] to evaluate the pragmatic espects of the user experience.
A questionnaire with 8 standardized questions.

* Net Promoter Score (NPS) [0,10] to gauge the likelihood of participants recommending the intelligent
assistant

Mean Standard Deviation
SuUS 65.9 16.0
UEQ 1.1 1.37
NPS 6.81 2.57



Eng

Development: Code summarization

* Code summarization is the task of understanding the code and automatically
generate descriptions directly from the source code — an extended form of
documentation.

* Successful code summarization facilitates the maintenance of source code,
but can also be used to improve the performance of code search utilizing
natural language queries.

 LLMs such as Codex, CodeBERT and T5 comprehend the functionality and
logic of the code, producing easily understandable language descriptions.



Quality Assurance: Bug Localization

* Bug localization refers to the process of identifying the specific source code
files, functions, or lines of code that are responsible for a reported bug or
software defect.

* [ttypically involves analyzing bug reports or issue descriptions provided by
users or testers and correlating them with the relevant portions of the source
code.



} peimeenico GOftEng—— [ Large Language Models ] [LLM4SE]

Quality Assurance: Bug Localization

Stage 1 Explanation Generation S LW FL Prediction
oL P
Algorithm
Bug Bug Query
Information Explanation Location -
Language O
Model Function _uptoN
Interaction times System Under Test
-

M get_class_covered |=

N get_method_covered |+

M get_code_snippet |=

f

M get_comments

Based on the available information, provide the signatures of the most likely culprit methods for
+ the bug. Your answer will be processed automatically, so make sure to only answer with the
accurate signatures of the most likely culprit (in “ClassName.MethodName(ArgTypel,
» ArgType2, ...)" format), without commentary (one per line).




AT
{M;is;’#;ﬁf:‘;“ SOftEng—[ Large Language Models ] [LLM4SE]

T e
\ 2
Rt

Quality Assurance: Bug Localization

FL Performance Comparison (Java)

D4J v1.0
—— AutoFL-GPT4 (x2)
—— AutoFL-GPT3.5 (x5)
—»— Test-GPT3.5 (x5)
-+ DStar
== Qchiai
—x— Metallaxis

D4J v1.0 w/o Closure
—#— AutoFL-GPT3.5 (x5)
—— SmartFL




A4 Politecnico

Quality Assurance: Test Generation

* Test generation involves automating the process of creating test cases, to
evaluate the correctness and functionality of software applications

* [t encompasses different levels of testing (more on this later...)

* LLM applications in test generation offer several advantages, I.e.
automatically generating diverse test cases, improve coverage, identifying
defects.



di Torino

A% Politecnico SOftEng—[ Large Language Models ] [LLM4SE]

Quality Assurance: Test Generation

API

prompt prompt LLM candidate test tests
generator tests validator

documentation
miner




=
{%‘&ﬁf» Poltecnico SOftEng—[ Large Language Models ] [LLM4SE]

Lm=T Ew e di Torino

Quality Assurance: Test Generation

Project Loading Coverage TesTPILOT

Stmt Cov  Branch Cov  Total Tests Passing Tests (%) 5Stmt Cov  Branch Cov  Uniquely Contr. (%)
glob 70% 0.4% 68 18 (26.5%) 71.3% 66.3% 4(22.2%)
fs-extra 16.8% 0.9% 471 277 (38.87%) 58.8% 38.9% 17 (6.1%)
graceful-fs 28.6% 9.8% 345 177 (51.4%) 49.3% 33.3% 1 (0L6%)
jeonfile 19.1% 0.0% 13 6 (45.0%) 3B.3% 29.4% 0 (0.0%)
bluebird 23.7% 7.B8% 370 204 [55.2%) Bb8.0% 50.0% 26 (12.5%)
q 22.4% 9.1% 323 186 (57.6%) T0.4% 23.7% 20 (10.5%)
rsvp 16.4% 12.6% 109 70 (64.2%) T0.1% 55.3% B (7.9%)
memfs 29.3% 7.2% 1037 471 (45.4%) f1L.1% 58.9% 40 (8.5%)
node-dir 59% 0.0% 40 19 (45.1%) 64.3% 50.8% 4(21.1%)
gip-a-folder 16.0% 0.0% 1 B (54.5%) B4.0% 50.0% 0 (0.0%%)
ja-sdsl 79% 3.7% 409 46 (11.3%) 33.9% 24.3% 1B (39.1%)
quill-delta B.1% lL.a% 152 33 (21.7%) 73.0% B64.3% B (24.2%)
complex.js B.4% 4.6% 209 121 (38.07%) 70.2% 46.5% 10 {8.3%)
pull-stream 18.1% 0.0% B3 H(41.0%) 69.1% 52.8% 1T (32.4%)
countries-and-timezones 4.9% 0.0% 28 13 (46.4%) 93.1% 69.1% 2 (15.4%)
simple-statistics 2.6% 0.0% 353 250 (70.97%) 87.8% 71.3% 14 (5.4%)
plural 53.8% 0.0% 13 B (61.5%) 73.8% 59.1% 1{12.5%)
dirty 47% 0.0% 70 32 (45.3%) 74.5% 65.4% 2 (6.3%)
geo-point 12.2% 0.0% 76 50 (65.8%) B7.8% 70.6% 1(2.0%)
uneval 9.4% 0.0% 7 2 (25.6%) BB.8% 5H.3% 0 (0.0%%)
image-downloader 24.2% 0.0% 5 4 (B0.0%) 63.6% 50.0% 0 (0.0%)
crawler-url-parser 7.2% 1.3% 14 2 (14.3%) 51.4% 35.0% 2 (100.0%:)
gitlab-js 26.9% 0.6% 141 14 (9.9%) 51.7% 16.5% 7 (46.4%)
core 16.1% 0.0% B5 13 (15.3%) 78.3% 50.0% 5 (38.5%)
omnitool 19.2% 0.6% 1033 330 (31.97%) 74.2% 55.2% a0 (27.2%)

Median 15.1% 0.4% 480 T0.2% 52.8% 10.5%




Eng

Maintenance: Code Reviews

 Code review is a critical quality assurance practice used to inspect, assess and
validate the quality and consinstency of software code.

* Code review aims to identify potential errors, vulnerabilities and code quality issues,
while also improving code maintainability, readability and scalability.

 LLMs like BERT, ChatGPT, and T5, trained on massive code repositories, possess the
ability to understand and learn the semantics, structures, and contextual
information of code.

* Inthe code review process, LLMs assist reviewers in comprehensively
understanding code intent and implementation details, enabling more accurate
detection of potential issues and errors.



AT
{%ﬁu“ SOftEng—— [ Large Language Models ] [LLM4SE]
W

Maintenance: Code Reviews

! I

e -¢-e

Check Review Necessity (P,) Comment on Code (P,) Refine the Code (P,)

This cycle repeats until the reviewer(s) and the
committer(s) reach an agreement.

Lu, Junyi, et al. "LLaMA-Reviewer: Advancing code review automation with large language models through
parameter-efficient fine-tuning." 2023 IEEE 34th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2023.



Sr;%f Politecnico SOftEng— Large Language Models ] [LLM4SE]

.ﬂu- a m di Torino

Lty &
..-,._-.

Maintenance: Code Reviews

Q@

Review Necessity Prediction (RNP)

Base Model Instruction Tuning

ldI? PEFT Fluglns.:$: Freeze (§ Fine-tune <)

)

Review Comment Generation (RCG)

Code Refinement (CR)



'gﬂ f Politecnico

"‘d- &3

._u.

i di Torino

SOftEng— Large Language Models ]

[LLM4SE]

Maintenance: Code Reviews

TABLE V
RESULTS OF REVIEW COMMENT GENERATION.

Vol L okl Trmbe St BLEU

' ' Crer. Tuf.
Transformer-s 12 ~60M ~60M 231M - 6947
Transformer-b 24 ~220M ~220M A50M 4.76 -
Tufano et al. 12 ~H0M ~60M 231M 439  7.39°
CodeT3 24 ~220M ~220M A50M 4.83 —
CodeReviewer 24 ~220M ~220M A50M 5.32 —
CommentFinder —~ —~ - ~l00M 3827 419
AUGER 24 ~220M ~220M 250M - 3.03"
Ours (Prefix) 32 ~6.78 ~1.2M 2.4M 5.16 4.66
Ours (LoRA) 32 ~6.78 ~~8.4M 16M 5.70 5.04




Challenges and opportunities



Applicabllity

* Model size and deployment: the size of LLMs has seen a marked increase
over time (even if limited in novel approaches). Significant computational
costs are associated with training LLMs.

 Data dependency: the quality, diversity, and quantity of data directly affect
the performance and generalizability of the models. LLMs often require large
amounts of data to capture nuances, but obtaining such data can be
challenging.

* Ambiguity in code generation: when code intentis unclear, LLMs may
struggle to produce accurate and contextually appropriate code. This can
lead to syntactically correct but functionally incorrect code.



A

A Politecnico

Eng

Generalizability

* Generalizability is the ability of a model to consistently and accurately
perform tasks in different situations.

* The generalizability challenge is particularly evident in the SE domain, since
context and semantics of code or documents vary greatly across projects,
languages, or domains.



A

A Politecnico

Eng

Evaluation

* Several key evaluation metrics are used in SE tasks.

* The metrics, while useful in some cases, may not fully capture all the effects
and impacts of a model in a given SE task.



Eng

interpretabillity, Trustworthiness, and

Ethical usage

* [tis often difficult to understand the decision-making process of the models,
due to their black-box nature.

* LLM of code trained based on low-quality datasets can have vulnerabilities
(e.g., insecure code)

* Many LLMs are not open and it is unclear what data they have been trained
on, both quality and representativeness-wise.



	Diapositiva 1
	Diapositiva 2: Definitions
	Diapositiva 3: Definitions
	Diapositiva 4: Definitions
	Diapositiva 5: Definitions
	Diapositiva 6: LLM4SE
	Diapositiva 7: A Word Cloud
	Diapositiva 8: Current state of the art
	Diapositiva 9: Current state of the art
	Diapositiva 10: Some Examples
	Diapositiva 11: Criteria for LLM selection 
	Diapositiva 12: Task-specific fine tuning
	Diapositiva 13: Types of Datasets
	Diapositiva 14: Sources for datasets
	Diapositiva 15: Sources for datasets
	Diapositiva 16: Sources for datasets
	Diapositiva 17: Types of data utilized in training LLM4SE
	Diapositiva 18: Types of data utilized in training LLM4SE
	Diapositiva 19: Types of data utilized in training LLM4SE
	Diapositiva 20: Types of data utilized in training LLM4SE
	Diapositiva 21: Types of data utilized in training LLM4SE
	Diapositiva 22: Data-preprocessing
	Diapositiva 23: Used tuning techniques
	Diapositiva 24: Used tuning techniques
	Diapositiva 25: Types of data utilized in training LLM4SE
	Diapositiva 26: Text-based datasets: MBPP
	Diapositiva 27: Text-based datasets: MBPP
	Diapositiva 28: Text-based datasets: Bug Reports and Changesets
	Diapositiva 29: Text-based datasets: Bug Reports and Changesets
	Diapositiva 30: Text-based datasets: Post2Vec (Stack Overflow posts)
	Diapositiva 31: Text-based datasets: Post2Vec (Stack Overflow posts)
	Diapositiva 32: Code-based datasets: CodeSearchNet
	Diapositiva 33: Code-based datasets: CodeSearchNet
	Diapositiva 34: Software repository-based datasets: DeHallucinator
	Diapositiva 35: Software repository-based datasets: DeHallucinator
	Diapositiva 36: Graph-based datasets: the RICO dataset 
	Diapositiva 37: Graph-based datasets: the RICO dataset 
	Diapositiva 38: Graph-based datasets: the RICO dataset 
	Diapositiva 39: Prompt Engineering
	Diapositiva 40: Prompt Engineering
	Diapositiva 41: Evaluation Metrics to assess LLM4SE
	Diapositiva 42: Evaluation Metrics to assess LLM4SE
	Diapositiva 43: SE Tasks
	Diapositiva 44: Let's consider the V-model
	Diapositiva 45: Distribution of LLM usages in SE Activities
	Diapositiva 46: Problem classification
	Diapositiva 47: Distribution of LLM usages in SE Activities
	Diapositiva 48: Requirements: Requirements elicitation
	Diapositiva 49: Requirements: Requirements elicitation
	Diapositiva 50: Requirements: Requirements elicitation
	Diapositiva 51: Requirements: Requirements classification
	Diapositiva 52: Requirements: Requirements classification
	Diapositiva 53: Design: GUI retrieval
	Diapositiva 54: Design: GUI retrieval
	Diapositiva 55: Development: Code generation
	Diapositiva 56: Development: Code generation
	Diapositiva 57: Development: Code generation
	Diapositiva 58: Development: Code completion
	Diapositiva 59: Development: Code completion
	Diapositiva 60: Development: Code completion
	Diapositiva 61: Development: Code completion
	Diapositiva 62: Development: Code summarization
	Diapositiva 63: Quality Assurance: Bug Localization
	Diapositiva 64: Quality Assurance: Bug Localization
	Diapositiva 65: Quality Assurance: Bug Localization
	Diapositiva 66: Quality Assurance: Test Generation
	Diapositiva 67: Quality Assurance: Test Generation
	Diapositiva 68: Quality Assurance: Test Generation
	Diapositiva 69: Maintenance: Code Reviews
	Diapositiva 70: Maintenance: Code Reviews
	Diapositiva 71: Maintenance: Code Reviews
	Diapositiva 72: Maintenance: Code Reviews
	Diapositiva 73: Challenges and opportunities
	Diapositiva 74: Applicability
	Diapositiva 75: Generalizability
	Diapositiva 76: Evaluation
	Diapositiva 77: Interpretability, Trustworthiness, and Ethical usage

