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Agentic Behaviour in LLMs

• In traditional LLM applications, the 
model follows a predetermined 
control flow — a fixed sequence of 
steps before and after LLM calls. 
• For example, a Retrieval-Augmented 

Generation (RAG) system retrieves 
relevant documents in response to a 
question and passes them to the LLM to 
ground its response. While effective, this 
approach limits the model to a static 
workflow, potentially restricting its 
problem-solving capabilities.
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Agentic Behaviour in LLMs

• Agentic behavior refers to empowering 
an LLM to decide its own control flow to 
solve more complex problems. In other 
words, the model becomes an “agent” 
that can make decisions about which 
steps to take, which tools to use and 
when to terminate a process. This 
flexibility allows for more sophisticated 
applications, enabling the LLM to handle 
tasks that require dynamic decision-
making and adaptability.
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Why agentic concepts matter

• Introducing agentic behavior into LLM workflows has lots of 
advantages:
• Enhanced Problem-Solving: Agents can tackle more complex tasks by 

choosing the most appropriate actions.
• Dynamic Control Flow: Agents are not limited to a fixed sequence of steps, 

allowing for more flexible and efficient processes.
• Improved Efficiency: By deciding when enough information has been 

gathered, agents can reduce unnecessary computations.
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LLM Chains

• An LLM Chain is a series of prompts and operations that guide an LLM 
through a sequence of tasks, enabling more complex and nuanced AI 
interactions. 
• Think of it as a recipe for AI: just as a chef follows a series of steps to create a 

gourmet dish, an LLM Chain provides a structured workflow for an AI to 
accomplish sophisticated tasks.
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LLM Chains

• For example, a simple LLM Chain for summarizing a long article 
might involve the following steps:

1.Prompt the LLM to read the article

2.Ask it to identify key points

3.Request a concise summary based on those points

4.Refine the summary for clarity and coherence
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Sequential chain

• In general, such example is a sequential chain

• Sequential chains, in their simplest form, consist of steps where 
each step takes one input and produces one output. The output 
from one step becomes the input for the next.
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Sequential chain

• This straightforward approach is effective when dealing with sub-
chains designed for singular inputs and outputs. It ensures a 
smooth and continuous flow of information, with each step 
seamlessly passing its output to the subsequent step.
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Tree Chain

• Not all of the sequential chains operate with a single string input 
and output. In more intricate setups, these chains handle multiple 
inputs and generate multiple final outputs. 
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Router Chain

• The Router Chain is used for complicated tasks. If we have multiple 
subchains, each of which is specialized for a particular type of 
input, we could have a router chain that decides which subchain to 
pass the input to.

• It consists of:
• Router Chain: It is responsible for selecting the next chain to call.

• Destination Chains: Chains that the router chain can route to.

• Default chain: Used when the router can’t decide which subchain to use.
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Router Chain

• Therouter chain acts as a decision-maker, determining which specialized 
subchain to send the input to. Essentially, it enables the seamless routing of 
inputs to the appropriate subchains, ensuring efficient and precise processing 
based on the input’s specific characteristics.
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From chains to agents

• An agentic AI system is capable of setting its own goals, planning 
actions to achieve those goals, and making independent decisions 
based on its understanding of the environment and task at hand. 
Unlike reactive AI, which simply responds to inputs, agentic AI can take 
initiative, adapt to changing circumstances, and even learn from its 
experiences.

• LLM Chains serve as the building blocks for agentic behavior, allowing 
AI to break down complex tasks, reason through multi-step problems, 
and interact with its environment in more nuanced ways.
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From chains to agents

• To illustrate the difference, consider a virtual assistant:
• A reactive AI assistant might respond to the query "What's the weather like?" 

with a current weather report.

• An agentic AI assistant, upon hearing the same query, might not only provide 
the weather report but also suggest appropriate clothing for the day, 
recommend indoor or outdoor activities based on the forecast, and even offer 
to set reminders for weather-dependent tasks.
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From chains to agents
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From chains to agents
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Agentic Architecture
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Agent

The Agent is the central 
decision-making entity that 
orchestrates the use of tools, 
memory, and planning. It 
determines how to tackle a 
given task by selecting the 
most suitable tool or 
planning strategy based on 
the problem's complexity. 
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Agentic Architecture
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Tools

The Tools are specialized 
extensions that expand the 
agent's capabilities. Examples 
include the Calendar, which 
helps schedule events or track 
deadlines; the Calculator, used 
for precise mathematical 
operations; the CodeInterpreter, 
enabling coding or data analysis 
tasks; and the Search tool, which 
fetches real-time information 
from external sources like the 
internet. For example, if tasked 
with planning a project timeline, 
the agent might use the 
Calendar to allocate dates and 
the Calculator to optimize 
resource allocation.
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Agentic Architecture
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Memory

Memory is divided into short-
term memory and long-term 
memory. Short-term memory 
retains temporary information, 
such as recent instructions or 
intermediate results, while long-
term memory stores persistent 
knowledge for future reference. 
For instance, the agent might 
use short-term memory to 
temporarily store search results 
or a conversation context and 
long-term memory to store a 
user’s preferences, allowing for 
personalized assistance over 
time.
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Agentic Architecture
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Planning

The Planning module allows the 
agent to devise strategies to 
solve problems. This involves 
several the use or combination 
of several different strategies.
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Agentic Architecture
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Reflection

Reflection is a meta-cognitive 
process that allows the agent to 
evaluate its past decisions and 
actions to identify areas for 
improvement. This capability 
ensures that the agent learns 
from its successes and failures. 
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Agentic Architecture
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Self-critics

Self-critics enables the agent to 
analyze its own performance 
critically and suggest 
refinements. It operates as an 
internal feedback mechanism, 
helping the agent improve its 
reasoning and outputs. 
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Agentic Architecture
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Chain-of-Thoughts

Chain of thoughts involves 
sequential reasoning to tackle 
complex, multi-step problems. 
The agent progresses logically, 
step by step, ensuring clarity and 
coherence in problem-solving. 
This approach minimizes errors 
and makes the problem-solving 
process transparent, facilitating 
debugging and iterative 
refinement.
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Agentic Architecture
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Subgoal decomposition

Subgoal decomposition is the 
process of breaking down a 
large, complex problem into 
smaller, more manageable tasks 
or milestones. This strategy 
enables the agent to approach 
challenges in an organized 
manner, ensuring steady 
progress toward the overall 
objective. This modular 
approach ensures focus, reduces 
overwhelm, and enables flexible 
adjustments if issues arise in 
individual subgoals.
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Agentic Architecture: an example
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"Plan a two-day workshop for 50 
participants on AI and robotics. 
Include scheduling, budgeting, 
booking venues, and preparing 
materials. Ensure efficiency and 
avoid repeating past mistakes."

At this stage, the Agent 
determines the big picture: 
which tools to use, whether 
memory or planning is required, 
and how to approach the task. It 
breaks down the goal into 
smaller components.
This will be a prompt for the 
Planning.
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Agentic Architecture: an example
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"Break the workshop task into 
smaller subgoals, such as finding 
a venue, creating a schedule, 
estimating the budget, and 
sending invitations."

Output Example:
•Subgoal 1: Search for and book a 
venue.
•Subgoal 2: Draft a schedule with 
time slots for presentations, 
breaks, and networking.
•Subgoal 3: Calculate the budget, 
including food, venue, and 
materials.
•Subgoal 4: Prepare and 
distribute invitations.
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Agentic Architecture: an example
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"For subgoal 1 (finding a venue), 
reason step-by-step. Start by 
searching venues, shortlist based 
on capacity and location, and 
then compare costs before 
finalizing."

Output Example:
•Step 1: Search for venues that 
accommodate 50 participants in 
City X.
•Step 2: Filter results by budget 
and accessibility.
•Step 3: Contact top 3 venues for 
availability.
•Step 4: Select the most cost-
effective option and book.
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Agentic Architecture: an example
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Once a subgoal is completed…

"Now that the venue is booked, 
reflect on this decision. Was it 
cost-effective? Did it meet all 
requirements? If not, what could 
have been improved?"

Output Example:
"The venue meets capacity and 
location requirements but costs 
slightly more than budgeted. In 
the future, I will consider 
contacting venues earlier for 
better deals."
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Agentic Architecture: an example
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After every subgoal is completed

"Critique the current progress. 
Are there errors or inefficiencies 
in the subgoals? Should any 
priorities or strategies be 
adjusted?"

Output Example:
"The scheduling plan allocated 
too much time for lectures, 
leaving little room for interaction. 
I recommend reducing lecture 
times by 15 minutes and adding a 
Q&A session after each 
presentation."
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Agentic Architecture: an example
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Throughout the process, the 
Agent dynamically uses tools to 
achieve specific tasks.

Tools may or may not be LLM 
applications.

•Calendar: "Schedule sessions for 
two days, ensuring balanced 
timing for presentations, 
networking, and breaks."
•Calculator: "Estimate the budget 
for 50 participants, including 
venue, catering, and materials."
•Search: "Find AI experts to invite 
as speakers."



[ Large Language Models ]

Agentic Architecture: an example
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"Store the current workshop 
schedule in memory for future 
reference. Retrieve feedback from 
last year’s workshop on the event 
timing and use it to refine this 
plan."

Use Memory to track progress or 
retrieve past knowledge.
•Short-term memory: Stores 
temporary information, like 
shortlisted venues or 
intermediate calculations.
•Long-term memory: Retrieves 
lessons learned from previous 
workshops, such as participant 
feedback about food quality or 
session timing.
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Agentic Architecture: an example
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"Book the venue, send 
invitations, confirm the schedule, 
and prepare workshop materials 
as per the finalized plan."

Once everything is planned, the 
Agent executes the final Action 
based on the refined plan.
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The memory model
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The memory model
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Memory retrieval. Memory retrieval aims to enhance decision-making accuracy by extracting valuable information 
pertinent to the current situation from an agent’s memory. This information encompasses various elements such as 
environmental perception, records of historical interactions, experiential data, and external knowledge.

In scenarios involving short-term memory, the retrieval module typically extracts the entire body of information as 
content. However, when dealing with long-term memory, the retrieval module generally employs filtering 
mechanisms to discern and present only the most relevant memories to the agent.
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The memory model
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Memory reflection. Memory Refection is the process through which agents engage in self-improvement based on the 
perceived information and learned experience from historical interactions stored in memory. process emulates the 
human practice of summarizing, refining, and reflecting upon existing knowledge, with the objective of enhancing the 
agent’s adaptability to new environments and tasks.

The memory refection process typically occurs automatically, with agents independently updating their memory 
based on newly acquired knowledge, thereby achieving self-recognition updates. In a multiagent environment, a 
central LLM-based agent exerts control over the memory refection of individual agents.
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The memory model
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Memory storage. The storage is typically realized through the 
use of natural language formed text, although it also 
encompasses multi-modal information such as visual and audio 
data. The storage format is determined by the specific nature 
of the task and the attributes of the data modality. By tailoring 
the storage format to the modality and task requirements, 
agents can more effectively utilize stored information, thereby 
enhancing their performance in diverse and complex 
environments.

Memory Modifcation. When considering the similarity 
between new information and existing memories, it is crucial 
to determine the appropriate method of incorporation: 
whether to add new information, merge it with existing data, 
or substitute erroneous existing information.
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Utilization of Knowledge
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• Knowledge utilization. Knowledge utilization focuses on integrating 
external knowledge (excluding memory information) into LLM based 
planning. 

• By leveraging up-to-date textual, visual, and audio data, LLMs 
enhance their ability to perform complex tasks accurately and 
contextually. Techniques such as retrieval-augmented generation and 
real-time web scraping allow these models to combine internal 
capabilities with external information, thereby improving planning 
and decision-making processes.  
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Utilization of Knowledge
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Utilization of Knowledge
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Textual knowledge is the backbone of LLMs, given their 
training on extensive text corpora. knowledge is vital for tasks 
such as natural language understanding, text generation, 
translation, and more. The formats of textual knowledge 
include natural language, embeddings, tokens, and tree 
structures. Natural language is the primary input and output 
format.
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Utilization of Knowledge
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Visual knowledge is primarily represented through continuous 
embeddings generated by visual encoders, which are then 
integrated with textual information to facilitate multi-modal 
data understanding and reasoning. The representation of visual 
knowledge typically includes latent vector representations of 
images (e.g., visual Transformer encodings), object-centric 
encodings, and other forms, all processed alongside language 
information through standard self-attention mechanisms. LLM 
agents leverage these visual embeddings to achieve strong 
performance across various tasks, such as VQA, image 
captioning, and embodied reasoning. 
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Utilization of Knowledge
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Audio knowledge encompasses speech and audio events, 
which can be represented through forms such as speech 
encoders and spectrogram images. When processing speech, 
LLM agents can discretize speech input via connection modules 
and embed it into a vector space shared with text.
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Utilization of Knowledge
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Other Knowledge. Beyond text, visual, and audio data, LLMs 
often need to utilize specialized knowledge from specific 
domains such as scientific research, medical information, or 
technical specifications. This enhances their ability to handle 
tasks that require deep domain expere.
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Utilization of Knowledge
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Database and Knowledge Base Queries. Database and knowledge base queries involve accessing 
structured data from repositories like Google Knowledge Graph, PubMed, and other domain-specific 
databases. These sources offer reliable and organized information that can be integrated with LLM outputs 
to enhance the accuracy and relevance of generated responses. A notable example of integrating external 
databases is the ChatDB system, which uses SQL queries to fetch relevant data logically, making it easier 
for agents to operate
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Utilization of Knowledge
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Web Scraping and API Calls. Web scraping and API calls allow LLM-based agents to collect real-time 
information from the internet. method is particularly useful for tasks requiring up-to-date data, such as 
news summarization or market analysis. Web scraping involves using automated tools to extract data from 
web pages, providing large amounts of data from diverse sources. API calls, on the other hand, involve 
querying APIs to fetch specific information, such as news articles, weather updates, or financial data
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Utilization of Knowledge
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Retrieval-Augmented Generation (RAG). RAG models combine retrieval mechanisms with generative 
models to produce context-rich responses. approach is effective for open-domain question answering and 
conversational agents. The primary retrieval source is textual data, but it can be extended to 
semistructured data (e.g., PDFs), structured data, and content generated by LLMs themselves.
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Utilization of Knowledge
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One of the primary challenges for LLM agents in 
knowledge extraction is ensuring the timeliness and 
accuracy of information. Therefore, developing efficient 
methods to incorporate new knowledge into existing LLMs 
to keep them up-to-date becomes paramount.

Hallucination refers to the phenomenon where LLM 
agents generate text that deviates from reality. One 
approach to reduce hallucinations is to integrate external 
knowledge bases and fact-checking systems to verify the 
accuracy of generated content (e.g., with RAGs).

To reduce biases, class imbalance, and compromissions 
caused by the training data, researchers propose 
rebalancing datasets, employing advanced sampling 
techniques, and developing new evaluation metrics to 
enhance model fairness and robustness
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Reasoning and planning
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One-Step Method. In this strategy, agents 
decompose a complex task into several sub-tasks 
through a single reasoning & planning process 
based on the current task directives. These sub-
tasks are sequentially ordered, with each sub-task 
logically following the preceding one. LLM-based 
agents adhere to these steps to achieve the final 
objective.



[ Large Language Models ]

Reasoning and planning
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Multi-step method. Unlike one-step reasoning, 
multep reasoning requires iterative invocation of 
LLMs for multiple reasoning cycles, where each 
cycle generates one or several incremental steps 
based on the current context while maintaining 
consistency with the overall objective.
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Agent interaction Schemes
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Cooperative. In cooperative interaction 
scenarios, agents work together to achieve a 
common goal. The basic process of cooperative 
MAS includes goal setting, task decomposition, 
information sharing, collaborative decision-
making, and execution feedback. 

Agents first set common goals based on task 
requirements, then decompose complex tasks 
into multiple subtasks assigned to different 
agents. The agents share information and 
jointly make decisions through communication 
and negotiation to reach a consensus. 

During task execution, agents perform tasks 
based on their respective roles and provide 
feedback to adjust strategies and optimize the 
execution process.



[ Large Language Models ]

Agent interaction Schemes
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Adversarial. In adversarial interaction 
scenarios, agents are in a competitive 
relationship, each pursuing the maximization of 
their own interests. The basic process includes 
goal setting, strategy formulation, interaction 
games, and result evaluation. Agents frst set 
goals to maximize their own interests and then 
formulate competitive strategies based on the 
behavior of their opponents. In the interaction 
game stage, agents implement strategies 
through interactions to strive for maximum 
benefts. Finally, agents evaluate the game 
results and adjust strategies to cope with future 
competition. 

Example: ChatEval
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Agent interaction Schemes
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Mixed. interaction scenarios combine features of 
both cooperative and adversarial interactions, 
requiring agents to fnd a balance between 
cooperation and competition. type of interaction 
can be further subdivided into parallel and 
hierarchical forms. 

Parallel: In parallel interactions, agents collaborate 
independently on separate tasks, sharing some 
information without interfering with each other. 
Then a form of competition is applied.

Hierarchical: the relationships among agents 
typically manifest as a tree structure. The parent 
node agents set global goals, decompose tasks, and 
assign them to child node agents. The child node 
agents execute specific tasks and provide feedback 
on the execution. 
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Application of LLM multi agent 
systems
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