
Large

Language

Models

Riccardo Coppola

Agent

Architectures

[Large Language Models]

Agentic Behaviour in LLMs

• In traditional LLM applications, the
model follows a predetermined
control flow — a fixed sequence of
steps before and after LLM calls.
• For example, a Retrieval-Augmented

Generation (RAG) system retrieves
relevant documents in response to a
question and passes them to the LLM to
ground its response. While effective, this
approach limits the model to a static
workflow, potentially restricting its
problem-solving capabilities.

[Agent

Architectures]

[Large Language Models]

Agentic Behaviour in LLMs

• Agentic behavior refers to empowering
an LLM to decide its own control flow to
solve more complex problems. In other
words, the model becomes an “agent”
that can make decisions about which
steps to take, which tools to use and
when to terminate a process. This
flexibility allows for more sophisticated
applications, enabling the LLM to handle
tasks that require dynamic decision-
making and adaptability.

[Agent

Architectures]

[Large Language Models]

Why agentic concepts matter

• Introducing agentic behavior into LLM workflows has lots of
advantages:
• Enhanced Problem-Solving: Agents can tackle more complex tasks by

choosing the most appropriate actions.
• Dynamic Control Flow: Agents are not limited to a fixed sequence of steps,

allowing for more flexible and efficient processes.
• Improved Efficiency: By deciding when enough information has been

gathered, agents can reduce unnecessary computations.

[Agent

Architectures]

[Large Language Models]

LLM Chains

• An LLM Chain is a series of prompts and operations that guide an LLM
through a sequence of tasks, enabling more complex and nuanced AI
interactions.
• Think of it as a recipe for AI: just as a chef follows a series of steps to create a

gourmet dish, an LLM Chain provides a structured workflow for an AI to
accomplish sophisticated tasks.

[Agent

Architectures]

[Large Language Models]

LLM Chains

• For example, a simple LLM Chain for summarizing a long article
might involve the following steps:

1.Prompt the LLM to read the article

2.Ask it to identify key points

3.Request a concise summary based on those points

4.Refine the summary for clarity and coherence

[Agent

Architectures]

[Large Language Models]

Sequential chain

• In general, such example is a sequential chain

• Sequential chains, in their simplest form, consist of steps where
each step takes one input and produces one output. The output
from one step becomes the input for the next.

[Agent

Architectures]

[Large Language Models]

Sequential chain

• This straightforward approach is effective when dealing with sub-
chains designed for singular inputs and outputs. It ensures a
smooth and continuous flow of information, with each step
seamlessly passing its output to the subsequent step.

[Agent

Architectures]

[Large Language Models]

Tree Chain

• Not all of the sequential chains operate with a single string input
and output. In more intricate setups, these chains handle multiple
inputs and generate multiple final outputs.

[Agent

Architectures]

[Large Language Models]

Router Chain

• The Router Chain is used for complicated tasks. If we have multiple
subchains, each of which is specialized for a particular type of
input, we could have a router chain that decides which subchain to
pass the input to.

• It consists of:
• Router Chain: It is responsible for selecting the next chain to call.

• Destination Chains: Chains that the router chain can route to.

• Default chain: Used when the router can’t decide which subchain to use.

[Agent

Architectures]

[Large Language Models]

Router Chain

• Therouter chain acts as a decision-maker, determining which specialized
subchain to send the input to. Essentially, it enables the seamless routing of
inputs to the appropriate subchains, ensuring efficient and precise processing
based on the input’s specific characteristics.

[Agent

Architectures]

[Large Language Models]

From chains to agents

• An agentic AI system is capable of setting its own goals, planning
actions to achieve those goals, and making independent decisions
based on its understanding of the environment and task at hand.
Unlike reactive AI, which simply responds to inputs, agentic AI can take
initiative, adapt to changing circumstances, and even learn from its
experiences.

• LLM Chains serve as the building blocks for agentic behavior, allowing
AI to break down complex tasks, reason through multi-step problems,
and interact with its environment in more nuanced ways.

[Agent

Architectures]

[Large Language Models]

From chains to agents

• To illustrate the difference, consider a virtual assistant:
• A reactive AI assistant might respond to the query "What's the weather like?"

with a current weather report.

• An agentic AI assistant, upon hearing the same query, might not only provide
the weather report but also suggest appropriate clothing for the day,
recommend indoor or outdoor activities based on the forecast, and even offer
to set reminders for weather-dependent tasks.

[Agent

Architectures]

[Large Language Models]

From chains to agents

[Agent

Architectures]

[Large Language Models]

From chains to agents

[Agent

Architectures]

[Large Language Models]

Agentic Architecture

[Agent

Architectures]

Agent

The Agent is the central
decision-making entity that
orchestrates the use of tools,
memory, and planning. It
determines how to tackle a
given task by selecting the
most suitable tool or
planning strategy based on
the problem's complexity.

[Large Language Models]

Agentic Architecture

[Agent

Architectures]

Tools

The Tools are specialized
extensions that expand the
agent's capabilities. Examples
include the Calendar, which
helps schedule events or track
deadlines; the Calculator, used
for precise mathematical
operations; the CodeInterpreter,
enabling coding or data analysis
tasks; and the Search tool, which
fetches real-time information
from external sources like the
internet. For example, if tasked
with planning a project timeline,
the agent might use the
Calendar to allocate dates and
the Calculator to optimize
resource allocation.

[Large Language Models]

Agentic Architecture

[Agent

Architectures]

Memory

Memory is divided into short-
term memory and long-term
memory. Short-term memory
retains temporary information,
such as recent instructions or
intermediate results, while long-
term memory stores persistent
knowledge for future reference.
For instance, the agent might
use short-term memory to
temporarily store search results
or a conversation context and
long-term memory to store a
user’s preferences, allowing for
personalized assistance over
time.

[Large Language Models]

Agentic Architecture

[Agent

Architectures]

Planning

The Planning module allows the
agent to devise strategies to
solve problems. This involves
several the use or combination
of several different strategies.

[Large Language Models]

Agentic Architecture

[Agent

Architectures]

Reflection

Reflection is a meta-cognitive
process that allows the agent to
evaluate its past decisions and
actions to identify areas for
improvement. This capability
ensures that the agent learns
from its successes and failures.

[Large Language Models]

Agentic Architecture

[Agent

Architectures]

Self-critics

Self-critics enables the agent to
analyze its own performance
critically and suggest
refinements. It operates as an
internal feedback mechanism,
helping the agent improve its
reasoning and outputs.

[Large Language Models]

Agentic Architecture

[Agent

Architectures]

Chain-of-Thoughts

Chain of thoughts involves
sequential reasoning to tackle
complex, multi-step problems.
The agent progresses logically,
step by step, ensuring clarity and
coherence in problem-solving.
This approach minimizes errors
and makes the problem-solving
process transparent, facilitating
debugging and iterative
refinement.

[Large Language Models]

Agentic Architecture

[Agent

Architectures]

Subgoal decomposition

Subgoal decomposition is the
process of breaking down a
large, complex problem into
smaller, more manageable tasks
or milestones. This strategy
enables the agent to approach
challenges in an organized
manner, ensuring steady
progress toward the overall
objective. This modular
approach ensures focus, reduces
overwhelm, and enables flexible
adjustments if issues arise in
individual subgoals.

[Large Language Models]

Agentic Architecture: an example

[Agent

Architectures]

"Plan a two-day workshop for 50
participants on AI and robotics.
Include scheduling, budgeting,
booking venues, and preparing
materials. Ensure efficiency and
avoid repeating past mistakes."

At this stage, the Agent
determines the big picture:
which tools to use, whether
memory or planning is required,
and how to approach the task. It
breaks down the goal into
smaller components.
This will be a prompt for the
Planning.

[Large Language Models]

Agentic Architecture: an example

[Agent

Architectures]

"Break the workshop task into
smaller subgoals, such as finding
a venue, creating a schedule,
estimating the budget, and
sending invitations."

Output Example:
•Subgoal 1: Search for and book a
venue.
•Subgoal 2: Draft a schedule with
time slots for presentations,
breaks, and networking.
•Subgoal 3: Calculate the budget,
including food, venue, and
materials.
•Subgoal 4: Prepare and
distribute invitations.

[Large Language Models]

Agentic Architecture: an example

[Agent

Architectures]

"For subgoal 1 (finding a venue),
reason step-by-step. Start by
searching venues, shortlist based
on capacity and location, and
then compare costs before
finalizing."

Output Example:
•Step 1: Search for venues that
accommodate 50 participants in
City X.
•Step 2: Filter results by budget
and accessibility.
•Step 3: Contact top 3 venues for
availability.
•Step 4: Select the most cost-
effective option and book.

[Large Language Models]

Agentic Architecture: an example

[Agent

Architectures]

Once a subgoal is completed…

"Now that the venue is booked,
reflect on this decision. Was it
cost-effective? Did it meet all
requirements? If not, what could
have been improved?"

Output Example:
"The venue meets capacity and
location requirements but costs
slightly more than budgeted. In
the future, I will consider
contacting venues earlier for
better deals."

[Large Language Models]

Agentic Architecture: an example

[Agent

Architectures]

After every subgoal is completed

"Critique the current progress.
Are there errors or inefficiencies
in the subgoals? Should any
priorities or strategies be
adjusted?"

Output Example:
"The scheduling plan allocated
too much time for lectures,
leaving little room for interaction.
I recommend reducing lecture
times by 15 minutes and adding a
Q&A session after each
presentation."

[Large Language Models]

Agentic Architecture: an example

[Agent

Architectures]

Throughout the process, the
Agent dynamically uses tools to
achieve specific tasks.

Tools may or may not be LLM
applications.

•Calendar: "Schedule sessions for
two days, ensuring balanced
timing for presentations,
networking, and breaks."
•Calculator: "Estimate the budget
for 50 participants, including
venue, catering, and materials."
•Search: "Find AI experts to invite
as speakers."

[Large Language Models]

Agentic Architecture: an example

[Agent

Architectures]

"Store the current workshop
schedule in memory for future
reference. Retrieve feedback from
last year’s workshop on the event
timing and use it to refine this
plan."

Use Memory to track progress or
retrieve past knowledge.
•Short-term memory: Stores
temporary information, like
shortlisted venues or
intermediate calculations.
•Long-term memory: Retrieves
lessons learned from previous
workshops, such as participant
feedback about food quality or
session timing.

[Large Language Models]

Agentic Architecture: an example

[Agent

Architectures]

"Book the venue, send
invitations, confirm the schedule,
and prepare workshop materials
as per the finalized plan."

Once everything is planned, the
Agent executes the final Action
based on the refined plan.

[Large Language Models]

The memory model

[Agent

Architectures]

[Large Language Models]

The memory model

[Agent

Architectures]

Memory retrieval. Memory retrieval aims to enhance decision-making accuracy by extracting valuable information
pertinent to the current situation from an agent’s memory. This information encompasses various elements such as
environmental perception, records of historical interactions, experiential data, and external knowledge.

In scenarios involving short-term memory, the retrieval module typically extracts the entire body of information as
content. However, when dealing with long-term memory, the retrieval module generally employs filtering
mechanisms to discern and present only the most relevant memories to the agent.

[Large Language Models]

The memory model

[Agent

Architectures]

Memory reflection. Memory Refection is the process through which agents engage in self-improvement based on the
perceived information and learned experience from historical interactions stored in memory. process emulates the
human practice of summarizing, refining, and reflecting upon existing knowledge, with the objective of enhancing the
agent’s adaptability to new environments and tasks.

The memory refection process typically occurs automatically, with agents independently updating their memory
based on newly acquired knowledge, thereby achieving self-recognition updates. In a multiagent environment, a
central LLM-based agent exerts control over the memory refection of individual agents.

[Large Language Models]

The memory model

[Agent

Architectures]

Memory storage. The storage is typically realized through the
use of natural language formed text, although it also
encompasses multi-modal information such as visual and audio
data. The storage format is determined by the specific nature
of the task and the attributes of the data modality. By tailoring
the storage format to the modality and task requirements,
agents can more effectively utilize stored information, thereby
enhancing their performance in diverse and complex
environments.

Memory Modifcation. When considering the similarity
between new information and existing memories, it is crucial
to determine the appropriate method of incorporation:
whether to add new information, merge it with existing data,
or substitute erroneous existing information.

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

• Knowledge utilization. Knowledge utilization focuses on integrating
external knowledge (excluding memory information) into LLM based
planning.

• By leveraging up-to-date textual, visual, and audio data, LLMs
enhance their ability to perform complex tasks accurately and
contextually. Techniques such as retrieval-augmented generation and
real-time web scraping allow these models to combine internal
capabilities with external information, thereby improving planning
and decision-making processes.

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

Textual knowledge is the backbone of LLMs, given their
training on extensive text corpora. knowledge is vital for tasks
such as natural language understanding, text generation,
translation, and more. The formats of textual knowledge
include natural language, embeddings, tokens, and tree
structures. Natural language is the primary input and output
format.

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

Visual knowledge is primarily represented through continuous
embeddings generated by visual encoders, which are then
integrated with textual information to facilitate multi-modal
data understanding and reasoning. The representation of visual
knowledge typically includes latent vector representations of
images (e.g., visual Transformer encodings), object-centric
encodings, and other forms, all processed alongside language
information through standard self-attention mechanisms. LLM
agents leverage these visual embeddings to achieve strong
performance across various tasks, such as VQA, image
captioning, and embodied reasoning.

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

Audio knowledge encompasses speech and audio events,
which can be represented through forms such as speech
encoders and spectrogram images. When processing speech,
LLM agents can discretize speech input via connection modules
and embed it into a vector space shared with text.

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

Other Knowledge. Beyond text, visual, and audio data, LLMs
often need to utilize specialized knowledge from specific
domains such as scientific research, medical information, or
technical specifications. This enhances their ability to handle
tasks that require deep domain expere.

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

Database and Knowledge Base Queries. Database and knowledge base queries involve accessing
structured data from repositories like Google Knowledge Graph, PubMed, and other domain-specific
databases. These sources offer reliable and organized information that can be integrated with LLM outputs
to enhance the accuracy and relevance of generated responses. A notable example of integrating external
databases is the ChatDB system, which uses SQL queries to fetch relevant data logically, making it easier
for agents to operate

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

Web Scraping and API Calls. Web scraping and API calls allow LLM-based agents to collect real-time
information from the internet. method is particularly useful for tasks requiring up-to-date data, such as
news summarization or market analysis. Web scraping involves using automated tools to extract data from
web pages, providing large amounts of data from diverse sources. API calls, on the other hand, involve
querying APIs to fetch specific information, such as news articles, weather updates, or financial data

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

Retrieval-Augmented Generation (RAG). RAG models combine retrieval mechanisms with generative
models to produce context-rich responses. approach is effective for open-domain question answering and
conversational agents. The primary retrieval source is textual data, but it can be extended to
semistructured data (e.g., PDFs), structured data, and content generated by LLMs themselves.

[Large Language Models]

Utilization of Knowledge

[Agent

Architectures]

One of the primary challenges for LLM agents in
knowledge extraction is ensuring the timeliness and
accuracy of information. Therefore, developing efficient
methods to incorporate new knowledge into existing LLMs
to keep them up-to-date becomes paramount.

Hallucination refers to the phenomenon where LLM
agents generate text that deviates from reality. One
approach to reduce hallucinations is to integrate external
knowledge bases and fact-checking systems to verify the
accuracy of generated content (e.g., with RAGs).

To reduce biases, class imbalance, and compromissions
caused by the training data, researchers propose
rebalancing datasets, employing advanced sampling
techniques, and developing new evaluation metrics to
enhance model fairness and robustness

[Large Language Models]

Reasoning and planning

[Agent

Architectures]

One-Step Method. In this strategy, agents
decompose a complex task into several sub-tasks
through a single reasoning & planning process
based on the current task directives. These sub-
tasks are sequentially ordered, with each sub-task
logically following the preceding one. LLM-based
agents adhere to these steps to achieve the final
objective.

[Large Language Models]

Reasoning and planning

[Agent

Architectures]

Multi-step method. Unlike one-step reasoning,
multep reasoning requires iterative invocation of
LLMs for multiple reasoning cycles, where each
cycle generates one or several incremental steps
based on the current context while maintaining
consistency with the overall objective.

[Large Language Models]

Agent interaction Schemes

[Agent

Architectures]

Cooperative. In cooperative interaction
scenarios, agents work together to achieve a
common goal. The basic process of cooperative
MAS includes goal setting, task decomposition,
information sharing, collaborative decision-
making, and execution feedback.

Agents first set common goals based on task
requirements, then decompose complex tasks
into multiple subtasks assigned to different
agents. The agents share information and
jointly make decisions through communication
and negotiation to reach a consensus.

During task execution, agents perform tasks
based on their respective roles and provide
feedback to adjust strategies and optimize the
execution process.

[Large Language Models]

Agent interaction Schemes

[Agent

Architectures]

Adversarial. In adversarial interaction
scenarios, agents are in a competitive
relationship, each pursuing the maximization of
their own interests. The basic process includes
goal setting, strategy formulation, interaction
games, and result evaluation. Agents frst set
goals to maximize their own interests and then
formulate competitive strategies based on the
behavior of their opponents. In the interaction
game stage, agents implement strategies
through interactions to strive for maximum
benefts. Finally, agents evaluate the game
results and adjust strategies to cope with future
competition.

Example: ChatEval

[Large Language Models]

Agent interaction Schemes

[Agent

Architectures]

Mixed. interaction scenarios combine features of
both cooperative and adversarial interactions,
requiring agents to fnd a balance between
cooperation and competition. type of interaction
can be further subdivided into parallel and
hierarchical forms.

Parallel: In parallel interactions, agents collaborate
independently on separate tasks, sharing some
information without interfering with each other.
Then a form of competition is applied.

Hierarchical: the relationships among agents
typically manifest as a tree structure. The parent
node agents set global goals, decompose tasks, and
assign them to child node agents. The child node
agents execute specific tasks and provide feedback
on the execution.

[Large Language Models]

Application of LLM multi agent
systems

[Agent

Architectures]

	Diapositiva 1
	Diapositiva 2: Agentic Behaviour in LLMs
	Diapositiva 3: Agentic Behaviour in LLMs
	Diapositiva 4: Why agentic concepts matter
	Diapositiva 5: LLM Chains
	Diapositiva 6: LLM Chains
	Diapositiva 7: Sequential chain
	Diapositiva 8: Sequential chain
	Diapositiva 9: Tree Chain
	Diapositiva 10: Router Chain
	Diapositiva 11: Router Chain
	Diapositiva 12: From chains to agents
	Diapositiva 13: From chains to agents
	Diapositiva 14: From chains to agents
	Diapositiva 15: From chains to agents
	Diapositiva 16: Agentic Architecture
	Diapositiva 17: Agentic Architecture
	Diapositiva 18: Agentic Architecture
	Diapositiva 19: Agentic Architecture
	Diapositiva 20: Agentic Architecture
	Diapositiva 21: Agentic Architecture
	Diapositiva 22: Agentic Architecture
	Diapositiva 23: Agentic Architecture
	Diapositiva 24: Agentic Architecture: an example
	Diapositiva 25: Agentic Architecture: an example
	Diapositiva 26: Agentic Architecture: an example
	Diapositiva 27: Agentic Architecture: an example
	Diapositiva 28: Agentic Architecture: an example
	Diapositiva 29: Agentic Architecture: an example
	Diapositiva 30: Agentic Architecture: an example
	Diapositiva 31: Agentic Architecture: an example
	Diapositiva 32: The memory model
	Diapositiva 33: The memory model
	Diapositiva 34: The memory model
	Diapositiva 35: The memory model
	Diapositiva 36: Utilization of Knowledge
	Diapositiva 37: Utilization of Knowledge
	Diapositiva 38: Utilization of Knowledge
	Diapositiva 39: Utilization of Knowledge
	Diapositiva 40: Utilization of Knowledge
	Diapositiva 41: Utilization of Knowledge
	Diapositiva 42: Utilization of Knowledge
	Diapositiva 43: Utilization of Knowledge
	Diapositiva 44: Utilization of Knowledge
	Diapositiva 45: Utilization of Knowledge
	Diapositiva 46: Reasoning and planning
	Diapositiva 47: Reasoning and planning
	Diapositiva 48: Agent interaction Schemes
	Diapositiva 49: Agent interaction Schemes
	Diapositiva 50: Agent interaction Schemes
	Diapositiva 51: Application of LLM multi agent systems

