
Large

Language

Models

Riccardo Coppola

Evaluating Results

[Large Language Models]

How to evaluate the results of LLMSE

[Evaluating Results]

• The evaluation of the results of an agent-based architecture depends:
• On the type of deliverable that is created by the LLM (e.g., free text,

structured text or tables, code, test cases…);

• On the phase of Software Engineering that is addressed;

• On the availability of a ground-truth to which the results can be compared.

[Large Language Models]

Evaluating Requirements Extraction

[Evaluating Results]

[Large Language Models]

Precision and Recall

[Evaluating Results]

[Large Language Models]

Precision and Recall

• Precision and Recall are key metrics used to evaluate the quality of
extracted requirements in requirements engineering tasks, especially
when using LLMs to automatically generate or extract functional
requirements from raw text.

Step 1: Manually or automatically review the extracted requirements

Step 2: Compare extracted requirements to the ground truth (actual reqs)

Step 3: Calculate precision, recall, and F1 score

Step 4: use the metrics to iterate on LLM model improvements

[Evaluating Results]

[Large Language Models]

Precision and Recall

• Precision measures how many of the extracted requirements are
actually correct (i.e., relevant and accurate).

• High precision means that the system generates fewer irrelevant or
incorrect requirements.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)

[Evaluating Results]

[Large Language Models]

Precision and Recall

• Recall measures how many of the total relevant requirements were
correctly extracted.

• High recall means that the system successfully identifies most of the
relevant requirements, but may also include some irrelevant ones.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example

• Scenario: Extracting requirements for the role of a Visitor in a hiking
platform.

• Ground truth:
• Requirements: "Visitors can browse trails, view descriptions, and record

fitness data.“

• Extracted by LLM:
• View trail descriptions.
• Record fitness data.
• Send push notifications to users.

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example

• Scenario: Extracting requirements for the role of a Visitor in a hiking
platform.

• Ground truth:
• Requirements: "Visitors can browse trails, view descriptions, and record

fitness data.“

• Extracted by LLM:
• View trail descriptions.
• Record fitness data.
• Send push notifications to users.

True Positives (TP) = 2

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example

• Scenario: Extracting requirements for the role of a Visitor in a hiking
platform.

• Ground truth:
• Requirements: "Visitors can browse trails, view descriptions, and record

fitness data.“

• Extracted by LLM:
• View trail descriptions.
• Record fitness data.
• Send push notifications to users.

False Positives (FP) = 1

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example

• Scenario: Extracting requirements for the role of a Visitor in a hiking
platform.

• Ground truth:
• Requirements: "Visitors can browse trails, view descriptions, and record

fitness data.“

• Extracted by LLM:
• View trail descriptions.
• Record fitness data.
• Send push notifications to users.

False Negatives (FN) = 1

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example

• Calculation:

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
=

2

2+1
= 0.67

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
=

2

2+1
= 0.67

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example

• There is often a trade-off between precision and recall. Increasing
one may reduce the other.

• F1 Score: Combines precision and recall into a single metric,
providing a balance.

• A high F1 score indicates a good balance between precision and
recall.

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example

• Calculation:

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
=

2

2+1
= 0.67

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
=

2

2+1
= 0.67

• 𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
= 2𝑥

0.67 𝑥 0.67

0.67+0.67
= 0.67

[Evaluating Results]

[Large Language Models]

Precision and Recall: The challenge of
variation
• Issue: Different phrasing, synonyms, and contextual differences in

how requirements are written make automatic evaluation difficult.
• Example: "View trail descriptions" vs. "Browse hiking trails" vs. "See details of

available trails."

[Evaluating Results]

[Large Language Models]

Precision and Recall: The challenge of
variation
• Solutions:

• Predefined synonym list: Create a list of synonyms specific to your domain
(e.g., "browse" = "view", "details" = "descriptions"). Use this list to map
different words to the same concept.

• Word Embeddings: These models represent words as vectors in a high-
dimensional space, where semantically similar words are closer together. You
can use these embeddings to detect words with similar meanings
automatically, even if they are not exactly the same.

• Sentence Embeddings (BERT, SBERT): These models can capture the
contextual meaning of sentences and can compare if two different phrases
express the same idea.

[Evaluating Results]

[Large Language Models]

Precision and Recall: The challenge of
variation
• Solutions:

• Text Preprocessing: These techniques reduce words to their base form,
which can help standardize the vocabulary.

• Stemming: "Viewing" → "View", "Browsed" → "Browse“

• Lemmatization: "View" → "View", "Views" → "View“

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity
• We obtain all the word embeddings of the generated requirements

and we compute the cosine similarity with all the expected
requirements

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐴, 𝐵 =
𝐴 ∙ 𝐵

𝐴 𝐵
=

σ𝑖=1
𝑛 𝑎𝑖𝑏𝑖

σ𝑖=1
𝑛 𝑎𝑖

2 σ𝑖=1
𝑛 𝑏𝑖

2

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity
• We compare the cosine similarity with a threshold T

• From the point of view of the extracted requirements
• If cs(A,B) > T for a single actual requirement: the extracted requirement A correctly

maps the actual requirement B -> true positive
• If cs(A,B) > T for multiple actual requirements: we take as a true positive the one for

which we have the highest cosine similarity
• If cs(A,B) > T for no actual requirements: the extracted requirement is not in the

actual requirements -> false positive

• From the point of view of the actual requirements
• If cs(A,B) > T for no extracted requirements: we failed to capture the actual

requirement -> false negative

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity

Browse trails View descriptions Record fitness data

View trail
descriptions

0.80 0.92 0.45

Record fitness data 0.33 0.45 1.0

Send push
notifications to
users

0.21 0.32 0.18

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity

Browse trails View descriptions Record fitness data

View trail
descriptions

0.80 0.92 0.45

Record fitness data 0.33 0.45 1.0

Send push
notifications to
users

0.21 0.32 0.18

T=0.9

TP = 2

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity

Browse trails View descriptions Record fitness data

View trail
descriptions

0.80 0.92 0.45

Record fitness data 0.33 0.45 1.0

Send push
notifications to
users

0.21 0.32 0.18

T=0.9

TP = 2; FP = 1

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity

Browse trails View descriptions Record fitness data

View trail
descriptions

0.80 0.92 0.45

Record fitness data 0.33 0.45 1.0

Send push
notifications to
users

0.21 0.32 0.18

T=0.9

TP = 2; FP = 1; FN = 1

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity
• Warning: even if the cosine similarity is above a threshold, it is still

possible that the result might be a false positive. This is because
cosine similarity primarily measures the angle between two vectors,
indicating their directional similarity. However, it does not account for
factors like the context or semantic meaning of the words or phrases
involved.

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity
• I can study what happens at different thresholds by studying the ROC

curve, which plots the following measures:
• True Positive Rate (TPR), is the proportion of actual positives that are

correctly identified.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(= 𝑅𝑒𝑐𝑎𝑙𝑙)

• False Positive Rate (FPR) is the proportion of actual negatives that are
incorrectly identified as positives.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity

[Evaluating Results]

[Large Language Models]

Precision and Recall: Example with
cosine similarity
• While cosine similarity can be automated, it cannot perfectly

understand nuanced differences or context. In such cases:
• Manual review of the results may still be necessary, especially for critical

requirements or when precision is paramount. This might involve human
reviewers checking the top-ranked results.

• Crowdsourcing or using a group of domain experts to validate matches can
help in reducing false positives.

[Evaluating Results]

[Large Language Models]

Evaluation of the quality of
requirements
• In addition of Precision and Recall, it might be important to evaluate

the quality of requirements.

• Typically this is done through questionnaires by having humans in the
loop (or, you can simulate the human reader with another LLM
agent…)

[Evaluating Results]

[Large Language Models]

Example: INVEST

• INVEST: administer a questionnaire to ask whether each generated
requirement (or user story) is:
• Independent: Check if the requirement stands alone.

• Negotiable: Ensure the requirement is open to change and discussion.

• Valuable: Ensure the requirement adds tangible value to users or
stakeholders.

• Estimable: Check if the requirement is clear enough for estimation.

• Small: Verify that the requirement is small and actionable.

• Testable: Ensure the requirement can be tested and validated.

[Evaluating Results]

[Large Language Models]

Example: INVEST

I N V E S T Score

As a visitor, I want to filter hiking trails
based on difficulty so I can find trails
that match my fitness level.

2 2 2 2 2 2 14/14

As a local guide, I want to add new
trails to the platform so visitors can
explore more hiking options.

2 1 2 1 1 2 9/14

As a platform manager, I want to
broadcast weather alerts for trails so
that hikers can stay informed about
potential dangers.

2 1 2 2 2 2 13/14

[Evaluating Results]

[Large Language Models]

Example: SRS quality measures

• Per-requirement grading:
• Unambiguous: A requirement is unambiguous if and only if it has only one

possible interpretation.

• Understandable: A requirement is understandable if all classes of SRS readers
can easily comprehend its meaning with a minimum of explanation.

• Correct: A requirement is deemed correct when it accurately represents a
required feature or function the system must possess.

• Verifiable: A requirement is verifiable if finite, costeffective techniques exist
for verifying that it is satisfied by the system as built.

[Evaluating Results]

[Large Language Models]

Example: SRS quality measures

• Document-wide grading:
• Internal Consistency: An SRS is internally consistent if and only if no subsets of

individual requirements conflict.

• Non-redundancy: An SRS is not redundant if no requirement is restated more
than once.

• Completeness: An SRS is complete if it details all functions, describes all
responses, provides organizational clarity, and avoids placeholder text.

• Conciseness: An SRS is concise when it delivers all necessary information
briefly without sacrificing its quality.

[Evaluating Results]

[Large Language Models]

Example: SRS quality measures

Unambiguous Understandable Correct Verifiable Score

As a visitor, I want to filter hiking
trails based on difficulty so I can find
trails that match my fitness level.

2 5 5 4 16/20

As a local guide, I want to add new
trails to the platform so visitors can
explore more hiking options.

4 5 5 3 17/20

As a platform manager, I want to
broadcast weather alerts for trails so
that hikers can stay informed about
potential dangers.

3 4 5 2 14/20

[Evaluating Results]

[Large Language Models]

Example: SRS quality measures

SRS

As a visitor, I want to filter hiking
trails based on difficulty so I can find
trails that match my fitness level.

As a local guide, I want to add new
trails to the platform so visitors can
explore more hiking options.

As a platform manager, I want to
broadcast weather alerts for trails so
that hikers can stay informed about
potential dangers.

…

Parameter Score

Internal consinstency 4

Non-redundancy 5

Completeness 1

Conciseness 4

Overall score 14/20

[Evaluating Results]

[Large Language Models]

Evaluating Design

[Evaluating Results]

[Large Language Models]

Evaluating Design

[Evaluating Results]

[Large Language Models]

How are LLMs used in design

• Class Diagrams: Represent the structure of the system by showing
classes, attributes, methods, and relationships.

[Evaluating Results]

[Large Language Models]

How are LLMs used in design

• Sequence Diagrams: Show the flow of messages or interactions
between system components over time.

[Evaluating Results]

[Large Language Models]

How are LLMs used in design

• Use Case Diagrams: Highlight user interactions with the system,
showcasing actors and their use cases.

[Evaluating Results]

[Large Language Models]

Structural metrics

• Structural metrics refer to measurements that focus on the design and
architecture of a system, specifically how different components, modules,
or classes are organized and interact.

• These metrics help identify design flaws early in the development process,
ensuring a scalable and maintainable system.

• Missing Dependencies: A design violation occurs when a component is dependent
on another component, but that dependency is not properly established or is
omitted in the system's design.
• Missing Dependency Count = Total Expected Dependencies - Total Established Dependencies

• Other Violations: Misplaced dependencies, circular dependencies, incorrect
inheritance, or incorrect interface implementation.

[Evaluating Results]

[Large Language Models]

Structural metrics: Example

• Trail Manager depends on Hut Manager to get information about
nearby huts.

• Hut Manager is expected to retrieve data from User Profiles to
understand visitor preferences.

[Evaluating Results]

[Large Language Models]

Structural metrics: Example

[Evaluating Results]

[Large Language Models]

Structural metrics: Example

[Evaluating Results]

[Large Language Models]

Structural metrics: Example

[Evaluating Results]

[Large Language Models]

Precision and Recall

• In the same way we did with the requirements

• Collect all constructs generated by the LLM (it depends on the type of
diagram) and compare them with a ground truth
• (possibly implying similarity and thresholds…)

[Evaluating Results]

[Large Language Models]

Quality issues with design (Bolloju et
al.)

[Evaluating Results]

[Large Language Models]

Evaluating Code generation

[Evaluating Results]

[Large Language Models]

Evaluating Code Generation

[Evaluating Results]

[Large Language Models]

Functional correctness

• Objective: Assess the accuracy of code generated by LLMs by
determining how many test cases it successfully passes. This provides
an empirical measure of functional correctness.

• Warning: I need a dependable test suite beforehand!

[Evaluating Results]

[Large Language Models]

Functional correctness: Metrics

• For the whole test suite: pass rate

𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒 =
𝑃𝑎𝑠𝑠𝑒𝑑 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠
𝑥 100

[Evaluating Results]

[Large Language Models]

Functional correctness: Example

• I want a function that computes a factorial of a number.

n!5 120

[Evaluating Results]

[Large Language Models]

Functional correctness: Example

• Prepare a set of test cases

• Ensure tests cover a wide range of scenarios, including:
• Positive cases: Valid inputs where the function should succeed.
• Edge cases: Inputs that are extreme or boundary values.
• Negative cases: Invalid inputs or cases expected to produce errors.

• Example Test Cases:
• Input: 5 → Expected Output: 120
• Input: 0 → Expected Output: 1
• Input: -1 → Expected Output: Error

[Evaluating Results]

[Large Language Models]

Functional correctness: Example

[Evaluating Results]

[Large Language Models]

Functional correctness: Example

• Prepare a set of test cases

• Ensure tests cover a wide range of scenarios, including:
• Positive cases: Valid inputs where the function should succeed.
• Edge cases: Inputs that are extreme or boundary values.
• Negative cases: Invalid inputs or cases expected to produce errors.

• Example Test Cases:
• Input: 5 → Expected Output: 120
• Input: 0 → Expected Output: 1
• Input: -1 → Expected Output: Error

[Evaluating Results]

[Large Language Models]

Functional correctness: Example

• Now I generate my code

[Evaluating Results]

[Large Language Models]

Functional correctness: Example

• Test execution results:

Test case Input Expected
Output

Actual output Test result

TC1 5 120 120 Pass

TC2 0 1 1 Pass

TC3 -1 Error 1 Fail

Pass rate = 66.66%

[Evaluating Results]

[Large Language Models]

Static Code Quality Metrics

• Static code quality metrics are tools and techniques used to evaluate
the quality of source code without executing it. They focus on
analyzing the structure, complexity, and maintainability of code to
identify potential issues early in the development lifecycle.

• For code generated by LLMs, static code quality metrics can provide
an objective assessment of whether the generated code meets
industry standards for readability, scalability, and reliability.

[Evaluating Results]

[Large Language Models]

Cyclomatic Complexity

• Cyclomatic Complexity (CC) measures the complexity of a program by
counting the number of linearly independent paths through its source
code.

• It provides an estimate of how difficult it is to understand, test, and
maintain the code.

[Evaluating Results]

[Large Language Models]

Cyclomatic Complexity

• CC= E − N + 2P
• E: Number of edges in the flow graph.

• N: Number of nodes in the flow graph.

• P: Number of connected components (typically, P = 1 for a single program).

• Alternatively, for a single function, it can be simplified to counting
decision points (such as if, while, for, etc.) and using:
• CC=E−N+2

[Evaluating Results]

[Large Language Models]

Cyclomatic Complexity

• How to interpret CC:
• 1-10: Simple code, easy to maintain.

• 11-20: Moderate complexity, requires careful review and testing.

• 21-50: High complexity, needs refactoring to improve maintainability.

• 50+: Very complex, refactor or reconsider the design.

[Evaluating Results]

[Large Language Models]

Cyclomatic Complexity: Example

def calculate_total_price(quantity, price):

 if quantity > 10:

 discount = 0.1

 else:

 discount = 0.05

 total = quantity * price * (1 - discount)

 return total

CC = 2 (due to the if condition)

[Evaluating Results]

[Large Language Models]

Maintainability Index

• Maintainability Index (MI) is a metric used to assess the ease with
which a software system can be maintained.

• It provides an estimate of how difficult it is to understand, test, and
maintain the code.

• It combines several factors (e.g., cyclomatic complexity, lines of code,
and Halstead metrics) into a single score that reflects how easy it is to
maintain and improve the code over time.

[Evaluating Results]

[Large Language Models]

Maintainability Index

Interpretation:

• between 0 and 20: Very hard to maintain. The code is complex, hard to read, and
may require frequent changes and fixes.

• between 20 and 40: Hard to maintain. Code may be overly complex, and
developers may face difficulties when working on it.

• between 40 and 60: Maintainable with some effort. It's still understandable, but
it may require some effort to make changes or expand functionality.

• between 60 and 80: Good maintainability. Code is understandable and
maintainable, but might require occasional clean-up.

• between 80 and 100: Excellent maintainability. The code is clean, easy to
maintain, and highly readable.

• above 100: Exceptional maintainability. Code is extremely simple, easy to modify,
and well-structured.

[Evaluating Results]

[Large Language Models]

Halstead Volume

𝐻𝑉 = 𝑁1 + 𝑁2 𝑥 log2(𝑁1 + 𝑁2)

• N₁: The number of distinct operators in the code.

• N₂: The number of distinct operands in the code.

• Higher Volume indicates more complexity and larger code, requiring
more effort to understand and maintain.

• Lower Volume suggests simpler, more concise code.

[Evaluating Results]

[Large Language Models]

Maintainability Index: Example

def calculate_total_price(quantity, price):

 if quantity > 10:

 discount = 0.1

 else:

 discount = 0.05

 total = quantity * price * (1 - discount)

 return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 𝐶𝐶 − 0.23 𝑥 𝐿𝑂𝐶 − 16.2 𝑥 ln(𝐻𝑉)

[Evaluating Results]

[Large Language Models]

Maintainability Index: Example

def calculate_total_price(quantity, price):

 if quantity > 10:

 discount = 0.1

 else:

 discount = 0.05

 total = quantity * price * (1 - discount)

 return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 𝐿𝑂𝐶 − 16.2 𝑥 ln(𝐻𝑉)

[Evaluating Results]

[Large Language Models]

Maintainability Index: Example

def calculate_total_price(quantity, price):

if quantity > 10:

discount = 0.1

else:

discount = 0.05

total = quantity * price * (1 - discount)

return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(𝐻𝑉)

[Evaluating Results]

[Large Language Models]

Maintainability Index: Example

def calculate_total_price(quantity, price):

 if quantity > 10:

 discount = 0.1

 else:

 discount = 0.05

 total = quantity * price * (1 - discount)

 return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(𝐻𝑉)

HV = (N1 + N2) * log(N1 + N2)

[Evaluating Results]

[Large Language Models]

Maintainability Index: Example

def calculate_total_price(quantity, price):

 if quantity > 10:

 discount = 0.1

 else:

 discount = 0.05

 total = quantity * price * (1 - discount)

return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(𝐻𝑉)

HV = (5 + N2) * log(5 + N2)

[Evaluating Results]

[Large Language Models]

Maintainability Index: Example

def calculate_total_price(quantity, price):

 if quantity > 10:

discount = 0.1

 else:

 discount = 0.05

total = quantity * price * (1 - discount)

 return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(𝐻𝑉)

HV = (5 + 7) * log(5 + 7)

[Evaluating Results]

[Large Language Models]

Maintainability Index: Example

def calculate_total_price(quantity, price):

 if quantity > 10:

 discount = 0.1

 else:

 discount = 0.05

 total = quantity * price * (1 - discount)

 return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(12.95) = 124.56

HV = (5 + 7) * log(5 + 7)

[Evaluating Results]

[Large Language Models]

Computing CC and MI

[Evaluating Results]

[Large Language Models]

Other metrics computed by Radon

• Lines of Code (LOC): Total number of lines of code, excluding comments and blank lines.

• Halstead Metrics: Includes Volume, Difficulty, and Effort; assesses the size and
complexity of the code based on operators and operands.

• Code Smells: Flags potential code quality issues such as long methods or classes,
excessive nesting, and duplication.

• Halstead Volume (V): Size of the code in terms of information needed to understand it,
based on distinct operators and operands.

• Code Duplication: Detects repeated blocks of code across the codebase, indicating
potential need for refactoring.

• Comment Density: Percentage of code that is commented, indicating the clarity and
documentation level of the code.

• Indentation Level: Measures the depth of indentation, helping to detect deeply nested
or overly complex code.

[Evaluating Results]

[Large Language Models]

Runtime performance quality metrics

• Several key metrics can be used to assess the efficiency, scalability,
and responsiveness of the generated code. These metrics focus on
how the code performs during execution, providing insight into its
efficiency and identifying potential performance bottlenecks.

[Evaluating Results]

[Large Language Models]

Runtime performance quality metrics

• Execution time: Measures the time taken for the code to complete execution for a
specific input or task. This is one of the most common and essential performance
metrics.

• Throughput: Measures the number of operations or tasks the program can perform in a
given period. It is often used in systems where tasks are processed in bulk, such as batch
processing or web servers.

• Memory consumption: Tracks how much memory the code consumes during execution.
High memory usage can indicate inefficient code or the need for optimization.

• CPU time used: Measures how much CPU time is consumed by the code during its
execution. This can help identify code that is CPU-intensive or inefficient in terms of
processor utilization.

• Error rate: Measures the frequency of errors or exceptions during code execution. A high
error rate can indicate that the code is not handling edge cases or is failing under load.

[Evaluating Results]

[Large Language Models]

Runtime performance quality metrics

• Execution Time (ET) Evaluation of LLMs on EffiBench Over Release Time

[Evaluating Results]

[Large Language Models]

Runtime performance quality metrics

• Memory Usage (MU) Evaluation of LLMs on EffiBench Over Release Time

[Evaluating Results]

[Large Language Models]

Code-Specific Similarity Metrics

• The regular BLEU is not sufficient to perform the evaluation of code
synthesis without considering the characteristics of the programming
language.

• Code is artificially designed to produce various kinds of output, unlike
the natural language that has evolved naturally among humans.

[Evaluating Results]

[Large Language Models]

Code-Specific Similarity Metrics

• Main differences between programming and natural languages:
• Limited keywords vs. million of words

• Tree structure vs. sequential structure

• Unique instructions vs. ambiguous semantics

[Evaluating Results]

[Large Language Models]

Code-Specific Similarity Metrics

• CodeBLEU (Ren et al., 2021) consider different aspects in addition to
the traditional bleu:

• Weighted N-Gram match: As in the traditional BLEU.

• Syntactic AST Match: syntactic information to consider the tree structure of
code.

• Semantic Data-flow match: the ordering of variables and flows in the code.

[Evaluating Results]

[Large Language Models]

Code-Specific Similarity Metrics

[Evaluating Results]

[Large Language Models]

Feedback-based evaluation

• Feedback-based evaluation methods are essential for
comprehensively assessing the quality of generated code, as they
incorporate human judgment and expertise to evaluate various
aspects of code quality.

[Evaluating Results]

[Large Language Models]

Feedback-based evaluation

• Blind peer review is a common and effective method for evaluating
code quality comprehensively. In this method, reviewers assess code
snippets generated by different models without knowing the identity
of the models, selecting the superior code based on predetermined
criteria. This approach eliminates potential biases, making the
evaluation results more objective and fair.

[Evaluating Results]

[Large Language Models]

Feedback-based evaluations

• Real-world evaluation: deploy the generated code in actual
application environments and assess its performance in real-world
tasks. This method fully evaluates the practicality and reliability of the
code, reflecting its real-world effectiveness. Generated code is
applied to real programming tasks, with metrics such as error rate,
debugging time, and maintenance cost recorded. This approach
provides valuable feedback on the code’s functionality, stability, and
adaptability.

• For example, generated code might perform excellently in a
controlled environment but face performance bottlenecks or
compatibility issues in practical applications.

[Evaluating Results]

[Large Language Models]

Feedback-based evaluations

• Readability evaluation: The readability of code is crucial for
understanding and maintaining it. Human evaluation methods focus
on assessing the functionality, clarity, and maintainability of the code.
Reviewers consider naming conventions, comments, and code logic to
determine clarity and conciseness. Clear and concise code improves
development efficiency and long-term sustainability.

• For example, reviewers check if variable and function names are
descriptive, if appropriate comments explain the code logic, and if the
code structure is easy to understand.

[Evaluating Results]

[Large Language Models]

Feedback-based evaluations

• Maintainability evaluation: Reviewers evaluate whether the code is
reasonably divided into such modules. Additionally, they check for
comprehensive documentation and comments, such as descriptions
of functions and classes, parameters, and return values.

• For instance, each function should have detailed comments
explaining its functionality, input parameters, and return values. Good
documentation and comments help current and future developers
understand and maintain the code

[Evaluating Results]

[Large Language Models]

Evaluating Test Case generation

[Evaluating Results]

[Large Language Models]

Evaluating Test Case Generation

[Evaluating Results]

[Large Language Models]

Test Coverage

• Coverage refers to the extent to which the codebase is exercised by a
set of test cases.

• High coverage increases confidence in code correctness and reduces
the risk of hidden bugs.

[Evaluating Results]

[Large Language Models]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

 if n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

 return 1

 result = 1

 for i in range(1, n + 1):

 result *= i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

[Evaluating Results]

[Large Language Models]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

 if n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

 return 1

result = 1

for i in range(1, n + 1):

result *= i

return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

[Evaluating Results]

[Large Language Models]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

 if n < 0:

 raise ValueError("Factorial undefined.")

if n == 0:

return 1

result = 1

for i in range(1, n + 1):

result *= i

return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

[Evaluating Results]

[Large Language Models]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

if n < 0:

raise ValueError("Factorial undefined.")

if n == 0:

return 1

result = 1

for i in range(1, n + 1):

result *= i

return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

[Evaluating Results]

[Large Language Models]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

if n < 0:

raise ValueError("Factorial undefined.")

if n == 0:

return 1

result = 1

for i in range(1, n + 1):

result *= i

return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial
undefined."

[Evaluating Results]

[Large Language Models]

Types of Coverage

• Line Coverage: Measures the percentage of lines of code executed
during testing.

• Branch Coverage: Measures whether all possible branches of decision
points (e.g., if statements) are tested.

• Function Coverage: Measures whether all functions or methods in
the code have been called during testing.

• Path Coverage: Measures all potential execution paths through the
code. More exhaustive but computationally expensive.

[Evaluating Results]

[Large Language Models]

Types of Coverage

[Evaluating Results]

[Large Language Models]

Execution success rate

• Execution success rate measures the proportion of test cases that
pass when applied to the generated or existing code. This metric
helps evaluate the quality of test cases generated by LLMs and their
alignment with the expected behavior of the code.

• A wrong test case occurs when the test case itself has an incorrect or
unrealistic expected output, leading to test failures that aren't the
fault of the code.

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑠𝑠𝑖𝑛𝑔 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠
𝑥 100

[Evaluating Results]

[Large Language Models]

Execution success rate

• In this case we start from the perspective that the reference code is
correct.

• Typical when we create test cases with the purpose of regression
testing
• Regression testing is a software testing practice that ensures recent changes

to the codebase, such as bug fixes, feature updates, or refactoring, do not
introduce new defects into previously tested and functioning areas of the
software.

[Evaluating Results]

[Large Language Models]

Execution success rate

• Common Causes for Wrong Test Cases:
• Misinterpretation of the function's logic during test case generation.

• Mistakes in mathematical or logical reasoning by the LLM.

[Evaluating Results]

[Large Language Models]

Execution Success Rate: Example

• Consider the Factorial function

def factorial(n):

 if n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

 return 1

 result = 1

 for i in range(1, n + 1):

 result *= i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2’
assert factorial(0) == 0
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

[Evaluating Results]

[Large Language Models]

Execution Success Rate: Example

• Consider the Factorial function

def factorial(n):

 if n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

return 1

 result = 1

 for i in range(1, n + 1):

 result *= i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2’
assert factorial(0) == 0
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == " Factorial
undefined."

[Evaluating Results]

[Large Language Models]

Execution Success Rate: Example

• Consider the Factorial function

def factorial(n):

 if n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

return 1

 result = 1

 for i in range(1, n + 1):

 result *= i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2’
assert factorial(0) == 0
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == " Factorial
undefined."

In this case, the code is correct,
but T2’ is wrong -> the
expected result is not the right
one.

Success Rate = 66.6%

[Evaluating Results]

[Large Language Models]

Mutation Analysis

• Mutation Analysis is a software testing technique that evaluates the
effectiveness of a test suite by introducing small changes (mutations)
to the code and checking if the existing test cases can detect these
changes.

• Mutants represent potential faults in the code, and the goal is to
determine whether the test suite can "kill" these mutants by failing
when encountering them.

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 𝐾𝑖𝑙𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
𝑥 100

[Evaluating Results]

[Large Language Models]

Mutation Analysis

• Mutant Generation:
• Small changes (mutations) are introduced into the original code.
• Mutants simulate defects by altering operators, conditions, or statements in the

code.

• Test Execution:
• The test suite is executed against the original code and its mutants.
• A test "kills" a mutant if the test case detects the mutated fault (i.e., the test fails).

• Surviving Mutants:
• If the test suite does not detect a mutant (i.e., the test passes despite the mutation),

the mutant is said to "survive."

[Evaluating Results]

[Large Language Models]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

 if n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

 return 1

 result = 1

 for i in range(1, n + 1):

 result *= i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2’
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

[Evaluating Results]

[Large Language Models]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

return 0

 result = 1

 for i in range(1, n + 1):

result += i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

[Evaluating Results]

[Large Language Models]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

return 0

 result = 1

 for i in range(1, n + 1):

result += i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

KILLED

[Evaluating Results]

[Large Language Models]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

return 0

 result = 1

 for i in range(1, n + 1):

result += i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

KILLED

KILLED

[Evaluating Results]

[Large Language Models]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

return 0

 result = 1

 for i in range(1, n + 1):

result += i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

KILLED

KILLED

SURVIVED

[Evaluating Results]

[Large Language Models]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

 raise ValueError("Factorial undefined.")

 if n == 0:

return 0

 result = 1

 for i in range(1, n + 1):

result += i

 return result

T1
assert factorial(5) == 120
Tests iterative multiplication logic.

T2
assert factorial(0) == 1
Tests base case for zero

T3
try:
 factorial(-1)
except ValueError as e:
 assert str(e) == "Factorial is not
defined for negative numbers."

KILLED

KILLED

SURVIVED

In this case, T3 passes, but it
does not capture the error
(mutant) introduced in the
code.

Mutation Score = 66.6%

[Evaluating Results]

[Large Language Models]

Test Flakiness

• Flaky Test Cases are tests that sometimes pass and sometimes fail,
even when there is no change in the code or environment. These
tests are unpredictable and unreliable, often leading to confusion and
inefficiencies in the testing process.

[Evaluating Results]

[Large Language Models]

Test Flakiness

• Intermittent Failures: A test case fails occasionally but not
consistently, even if the code hasn't changed.

• Inconsistent Behavior: The same test may pass on one run and fail on
another, making it difficult to trust the results.

• False Positives/Negatives: Flaky tests can falsely indicate that code is
faulty (false positive) or that the code is working when it isn't (false
negative).

[Evaluating Results]

[Large Language Models]

Test Flakiness

• Causes of flakiness:
• External Dependencies: Tests that rely on external systems (e.g., APIs,

databases, or network services) may fail if those systems are down or
unstable.

• Timing and Concurrency Issues: Asynchronous code, race conditions, or
timing-related problems can cause tests to fail unpredictably.

• Environment-Related Issues: Variations in the test environment (e.g.,
operating system, hardware, or configurations) can lead to test
inconsistencies.

• Shared State: Tests that modify shared state or rely on global variables can
impact the reliability of subsequent tests.

• Resource Limitations: Limited system resources, like memory or CPU, may
cause tests to behave erratically.

[Evaluating Results]

[Large Language Models]

Test Flakiness

• How to identify Flaky tests:
• Run Tests Multiple Times: Repeatedly run the same tests to identify those

that exhibit inconsistent results.
• Analyze Test Logs: Investigate logs to spot patterns of failure, such as specific

environments, dependencies, or conditions that trigger the flakiness.

𝐹𝑙𝑎𝑘𝑖𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡 𝑅𝑢𝑛𝑠
𝑥 100

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 1 − 𝐹𝑙𝑎𝑘𝑖𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑒

[Evaluating Results]

[Large Language Models]

Test Flakiness

• Threshold for flakiness: there is no universal threshold for what
counts as a flaky test, but generally:
• A test is flaky if it has a flakiness rate above a certain threshold (for example,

20%).

• A stable test is one where the pass rate is high (say above 80-90%).

• It depends on the context!

[Evaluating Results]

[Large Language Models]

(Developer) Feedback

• When using LLMs (Large Language Models) to generate test cases,
developer feedback is a critical part of evaluating the quality and
relevance of the generated tests. Developers’ feedback helps refine
the test cases by ensuring they align with the actual functionality of
the code and by identifying edge cases or missing scenarios.

• Checklist can be employed for this purpose.

[Evaluating Results]

[Large Language Models]

(Developer) Feedback: Example

Question Answer

Is the test case ID unique and easy to identify?

Is the test case easily readable?

Is the traceability of the test case with the relevant requirements checked?

Is the test case prioritized according to the requirements?

Is the test case type classified properly?

Are the test case steps clearly defined and easy to understand?

Does the test case duplicates another test case or is it redundant?

Is the test data for the test case available with the source of data?

Does the test case cover both positive and negative scenario?

Are the language, spelling, and grammatical mistakes in the test case verified?

[Evaluating Results]

	Diapositiva 1
	Diapositiva 2: How to evaluate the results of LLMSE
	Diapositiva 3: Evaluating Requirements Extraction
	Diapositiva 4: Precision and Recall
	Diapositiva 5: Precision and Recall
	Diapositiva 6: Precision and Recall
	Diapositiva 7: Precision and Recall
	Diapositiva 8: Precision and Recall: Example
	Diapositiva 9: Precision and Recall: Example
	Diapositiva 10: Precision and Recall: Example
	Diapositiva 11: Precision and Recall: Example
	Diapositiva 12: Precision and Recall: Example
	Diapositiva 13: Precision and Recall: Example
	Diapositiva 14: Precision and Recall: Example
	Diapositiva 15: Precision and Recall: The challenge of variation
	Diapositiva 16: Precision and Recall: The challenge of variation
	Diapositiva 17: Precision and Recall: The challenge of variation
	Diapositiva 18: Precision and Recall: Example with cosine similarity
	Diapositiva 19: Precision and Recall: Example with cosine similarity
	Diapositiva 20: Precision and Recall: Example with cosine similarity
	Diapositiva 21: Precision and Recall: Example with cosine similarity
	Diapositiva 22: Precision and Recall: Example with cosine similarity
	Diapositiva 23: Precision and Recall: Example with cosine similarity
	Diapositiva 24: Precision and Recall: Example with cosine similarity
	Diapositiva 25: Precision and Recall: Example with cosine similarity
	Diapositiva 26: Precision and Recall: Example with cosine similarity
	Diapositiva 27: Precision and Recall: Example with cosine similarity
	Diapositiva 28: Evaluation of the quality of requirements
	Diapositiva 29: Example: INVEST
	Diapositiva 30: Example: INVEST
	Diapositiva 31: Example: SRS quality measures
	Diapositiva 32: Example: SRS quality measures
	Diapositiva 33: Example: SRS quality measures
	Diapositiva 34: Example: SRS quality measures
	Diapositiva 35: Evaluating Design
	Diapositiva 36: Evaluating Design
	Diapositiva 37: How are LLMs used in design
	Diapositiva 38: How are LLMs used in design
	Diapositiva 39: How are LLMs used in design
	Diapositiva 40: Structural metrics
	Diapositiva 41: Structural metrics: Example
	Diapositiva 42: Structural metrics: Example
	Diapositiva 43: Structural metrics: Example
	Diapositiva 44: Structural metrics: Example
	Diapositiva 45: Precision and Recall
	Diapositiva 46: Quality issues with design (Bolloju et al.)
	Diapositiva 47: Evaluating Code generation
	Diapositiva 48: Evaluating Code Generation
	Diapositiva 49: Functional correctness
	Diapositiva 50: Functional correctness: Metrics
	Diapositiva 51: Functional correctness: Example
	Diapositiva 52: Functional correctness: Example
	Diapositiva 53: Functional correctness: Example
	Diapositiva 54: Functional correctness: Example
	Diapositiva 55: Functional correctness: Example
	Diapositiva 56: Functional correctness: Example
	Diapositiva 57: Static Code Quality Metrics
	Diapositiva 58: Cyclomatic Complexity
	Diapositiva 59: Cyclomatic Complexity
	Diapositiva 60: Cyclomatic Complexity
	Diapositiva 61: Cyclomatic Complexity: Example
	Diapositiva 62: Maintainability Index
	Diapositiva 63: Maintainability Index
	Diapositiva 64: Halstead Volume
	Diapositiva 65: Maintainability Index: Example
	Diapositiva 66: Maintainability Index: Example
	Diapositiva 67: Maintainability Index: Example
	Diapositiva 68: Maintainability Index: Example
	Diapositiva 69: Maintainability Index: Example
	Diapositiva 70: Maintainability Index: Example
	Diapositiva 71: Maintainability Index: Example
	Diapositiva 72: Computing CC and MI
	Diapositiva 73: Other metrics computed by Radon
	Diapositiva 74: Runtime performance quality metrics
	Diapositiva 75: Runtime performance quality metrics
	Diapositiva 76: Runtime performance quality metrics
	Diapositiva 77: Runtime performance quality metrics
	Diapositiva 78: Code-Specific Similarity Metrics
	Diapositiva 79: Code-Specific Similarity Metrics
	Diapositiva 80: Code-Specific Similarity Metrics
	Diapositiva 81: Code-Specific Similarity Metrics
	Diapositiva 82: Feedback-based evaluation
	Diapositiva 83: Feedback-based evaluation
	Diapositiva 84: Feedback-based evaluations
	Diapositiva 85: Feedback-based evaluations
	Diapositiva 86: Feedback-based evaluations
	Diapositiva 87: Evaluating Test Case generation
	Diapositiva 88: Evaluating Test Case Generation
	Diapositiva 89: Test Coverage
	Diapositiva 90: Test coverage: Example
	Diapositiva 91: Test coverage: Example
	Diapositiva 92: Test coverage: Example
	Diapositiva 93: Test coverage: Example
	Diapositiva 94: Test coverage: Example
	Diapositiva 95: Types of Coverage
	Diapositiva 96: Types of Coverage
	Diapositiva 97: Execution success rate
	Diapositiva 98: Execution success rate
	Diapositiva 99: Execution success rate
	Diapositiva 100: Execution Success Rate: Example
	Diapositiva 101: Execution Success Rate: Example
	Diapositiva 102: Execution Success Rate: Example
	Diapositiva 103: Mutation Analysis
	Diapositiva 104: Mutation Analysis
	Diapositiva 105: Mutation Analysis: Example
	Diapositiva 106: Mutation Analysis: Example
	Diapositiva 107: Mutation Analysis: Example
	Diapositiva 108: Mutation Analysis: Example
	Diapositiva 109: Mutation Analysis: Example
	Diapositiva 110: Mutation Analysis: Example
	Diapositiva 111: Test Flakiness
	Diapositiva 112: Test Flakiness
	Diapositiva 113: Test Flakiness
	Diapositiva 114: Test Flakiness
	Diapositiva 115: Test Flakiness
	Diapositiva 116: (Developer) Feedback
	Diapositiva 117: (Developer) Feedback: Example

