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[ Large Language Models ]

How to evaluate the results of LLMSE

[Evaluating Results]

• The evaluation of the results of an agent-based architecture depends:
• On the type of deliverable that is created by the LLM (e.g., free text, 

structured text or tables, code, test cases…);

• On the phase of Software Engineering that is addressed;

• On the availability of a ground-truth to which the results can be compared.
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Evaluating Requirements Extraction
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Precision and Recall
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Precision and Recall

• Precision and Recall are key metrics used to evaluate the quality of 
extracted requirements in requirements engineering tasks, especially 
when using LLMs to automatically generate or extract functional 
requirements from raw text.

Step 1: Manually or automatically review the extracted requirements

Step 2: Compare extracted requirements to the ground truth (actual reqs)

Step 3: Calculate precision, recall, and F1 score

Step 4: use the metrics to iterate on LLM model improvements

[Evaluating Results]



[ Large Language Models ]

Precision and Recall

• Precision measures how many of the extracted requirements are 
actually correct (i.e., relevant and accurate).

• High precision means that the system generates fewer irrelevant or 
incorrect requirements.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
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Precision and Recall

• Recall measures how many of the total relevant requirements were 
correctly extracted.

• High recall means that the system successfully identifies most of the 
relevant requirements, but may also include some irrelevant ones.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
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Precision and Recall: Example

• Scenario: Extracting requirements for the role of a Visitor in a hiking 
platform.

• Ground truth: 
• Requirements: "Visitors can browse trails, view descriptions, and record 

fitness data.“

• Extracted by LLM:
• View trail descriptions.
• Record fitness data.
• Send push notifications to users.
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Precision and Recall: Example

• Scenario: Extracting requirements for the role of a Visitor in a hiking 
platform.

• Ground truth: 
• Requirements: "Visitors can browse trails, view descriptions, and record 

fitness data.“

• Extracted by LLM:
• View trail descriptions.
• Record fitness data.
• Send push notifications to users.

True Positives (TP) = 2

[Evaluating Results]



[ Large Language Models ]

Precision and Recall: Example

• Scenario: Extracting requirements for the role of a Visitor in a hiking 
platform.

• Ground truth: 
• Requirements: "Visitors can browse trails, view descriptions, and record 

fitness data.“

• Extracted by LLM:
• View trail descriptions.
• Record fitness data.
• Send push notifications to users.

False Positives (FP) = 1
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Precision and Recall: Example

• Scenario: Extracting requirements for the role of a Visitor in a hiking 
platform.

• Ground truth: 
• Requirements: "Visitors can browse trails, view descriptions, and record 

fitness data.“

• Extracted by LLM:
• View trail descriptions.
• Record fitness data.
• Send push notifications to users.

False Negatives (FN) = 1
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Precision and Recall: Example

• Calculation:

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
=

2

2+1
= 0.67

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
=

2

2+1
= 0.67
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Precision and Recall: Example

• There is often a trade-off between precision and recall. Increasing 
one may reduce the other.

• F1 Score: Combines precision and recall into a single metric, 
providing a balance.

• A high F1 score indicates a good balance between precision and 
recall.

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

[Evaluating Results]



[ Large Language Models ]

Precision and Recall: Example

• Calculation:

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
=

2

2+1
= 0.67

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑇𝑃 +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
=

2

2+1
= 0.67

• 𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
= 2𝑥

0.67 𝑥 0.67

0.67+0.67
= 0.67
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Precision and Recall: The challenge of 
variation
• Issue: Different phrasing, synonyms, and contextual differences in 

how requirements are written make automatic evaluation difficult.
• Example: "View trail descriptions" vs. "Browse hiking trails" vs. "See details of 

available trails."

[Evaluating Results]
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Precision and Recall: The challenge of 
variation
• Solutions:

• Predefined synonym list: Create a list of synonyms specific to your domain 
(e.g., "browse" = "view", "details" = "descriptions"). Use this list to map 
different words to the same concept.

• Word Embeddings: These models represent words as vectors in a high-
dimensional space, where semantically similar words are closer together. You 
can use these embeddings to detect words with similar meanings 
automatically, even if they are not exactly the same.

• Sentence Embeddings (BERT, SBERT): These models can capture the 
contextual meaning of sentences and can compare if two different phrases 
express the same idea.
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Precision and Recall: The challenge of 
variation
• Solutions:

• Text Preprocessing: These techniques reduce words to their base form, 
which can help standardize the vocabulary.

• Stemming: "Viewing" → "View", "Browsed" → "Browse“

• Lemmatization: "View" → "View", "Views" → "View“
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Precision and Recall: Example with 
cosine similarity
• We obtain all the word embeddings of the generated requirements

and we compute the cosine similarity with all the expected
requirements

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐴, 𝐵 =
𝐴 ∙ 𝐵

𝐴 𝐵
=

σ𝑖=1
𝑛 𝑎𝑖𝑏𝑖

σ𝑖=1
𝑛 𝑎𝑖

2 σ𝑖=1
𝑛 𝑏𝑖

2
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Precision and Recall: Example with 
cosine similarity
• We compare the cosine similarity with a threshold T

• From the point of view of the extracted requirements
• If cs(A,B) > T for a single actual requirement: the extracted requirement A correctly

maps the actual requirement B -> true positive
• If cs(A,B) > T for multiple actual requirements: we take as a true positive the one for 

which we have the highest cosine similarity
• If cs(A,B) > T for no actual requirements: the extracted requirement is not in the 

actual requirements -> false positive

• From the point of view of the actual requirements
• If cs(A,B) > T for no extracted requirements: we failed to capture the actual

requirement -> false negative
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Precision and Recall: Example with 
cosine similarity

Browse trails View descriptions Record fitness data

View trail
descriptions

0.80 0.92 0.45

Record fitness data 0.33 0.45 1.0

Send push
notifications to 
users

0.21 0.32 0.18
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Precision and Recall: Example with 
cosine similarity

Browse trails View descriptions Record fitness data

View trail
descriptions

0.80 0.92 0.45

Record fitness data 0.33 0.45 1.0

Send push
notifications to 
users

0.21 0.32 0.18

T=0.9

TP = 2
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Precision and Recall: Example with 
cosine similarity

Browse trails View descriptions Record fitness data

View trail
descriptions

0.80 0.92 0.45

Record fitness data 0.33 0.45 1.0

Send push
notifications to 
users

0.21 0.32 0.18

T=0.9

TP = 2; FP = 1
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Precision and Recall: Example with 
cosine similarity

Browse trails View descriptions Record fitness data

View trail
descriptions

0.80 0.92 0.45

Record fitness data 0.33 0.45 1.0

Send push
notifications to 
users

0.21 0.32 0.18

T=0.9

TP = 2; FP = 1; FN = 1
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Precision and Recall: Example with 
cosine similarity
• Warning: even if the cosine similarity is above a threshold, it is still 

possible that the result might be a false positive. This is because 
cosine similarity primarily measures the angle between two vectors, 
indicating their directional similarity. However, it does not account for 
factors like the context or semantic meaning of the words or phrases 
involved.
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Precision and Recall: Example with 
cosine similarity
• I can study what happens at different thresholds by studying the ROC 

curve, which plots the following measures:
• True Positive Rate (TPR), is the proportion of actual positives that are 

correctly identified. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(= 𝑅𝑒𝑐𝑎𝑙𝑙)

• False Positive Rate (FPR) is the proportion of actual negatives that are 
incorrectly identified as positives.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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Precision and Recall: Example with 
cosine similarity
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Precision and Recall: Example with 
cosine similarity
• While cosine similarity can be automated, it cannot perfectly 

understand nuanced differences or context. In such cases:
• Manual review of the results may still be necessary, especially for critical 

requirements or when precision is paramount. This might involve human 
reviewers checking the top-ranked results.

• Crowdsourcing or using a group of domain experts to validate matches can 
help in reducing false positives.
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Evaluation of the quality of 
requirements
• In addition of Precision and Recall, it might be important to evaluate 

the quality of requirements.

• Typically this is done through questionnaires by having humans in the 
loop (or, you can simulate the human reader with another LLM 
agent…)

[Evaluating Results]



[ Large Language Models ]

Example: INVEST

• INVEST: administer a questionnaire to ask whether each generated 
requirement (or user story) is:
• Independent: Check if the requirement stands alone.

• Negotiable: Ensure the requirement is open to change and discussion.

• Valuable: Ensure the requirement adds tangible value to users or 
stakeholders.

• Estimable: Check if the requirement is clear enough for estimation.

• Small: Verify that the requirement is small and actionable.

• Testable: Ensure the requirement can be tested and validated.

[Evaluating Results]
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Example: INVEST

I N V E S T Score

As a visitor, I want to filter hiking trails 
based on difficulty so I can find trails 
that match my fitness level.

2 2 2 2 2 2 14/14

As a local guide, I want to add new 
trails to the platform so visitors can 
explore more hiking options.

2 1 2 1 1 2 9/14

As a platform manager, I want to 
broadcast weather alerts for trails so 
that hikers can stay informed about 
potential dangers.

2 1 2 2 2 2 13/14
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Example: SRS quality measures

• Per-requirement grading:
• Unambiguous: A requirement is unambiguous if and only if it has only one 

possible interpretation.

• Understandable: A requirement is understandable if all classes of SRS readers 
can easily comprehend its meaning with a minimum of explanation.

• Correct: A requirement is deemed correct when it accurately represents a 
required feature or function the system must possess.

• Verifiable: A requirement is verifiable if finite, costeffective techniques exist 
for verifying that it is satisfied by the system as built.
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Example: SRS quality measures

• Document-wide grading:
• Internal Consistency: An SRS is internally consistent if and only if no subsets of 

individual requirements conflict.

• Non-redundancy: An SRS is not redundant if no requirement is restated more 
than once.

• Completeness: An SRS is complete if it details all functions, describes all 
responses, provides organizational clarity, and avoids placeholder text.

• Conciseness: An SRS is concise when it delivers all necessary information 
briefly without sacrificing its quality.
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Example: SRS quality measures

Unambiguous Understandable Correct Verifiable Score

As a visitor, I want to filter hiking 
trails based on difficulty so I can find 
trails that match my fitness level.

2 5 5 4 16/20

As a local guide, I want to add new 
trails to the platform so visitors can 
explore more hiking options.

4 5 5 3 17/20

As a platform manager, I want to 
broadcast weather alerts for trails so 
that hikers can stay informed about 
potential dangers.

3 4 5 2 14/20
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Example: SRS quality measures

SRS

As a visitor, I want to filter hiking 
trails based on difficulty so I can find 
trails that match my fitness level.

As a local guide, I want to add new 
trails to the platform so visitors can 
explore more hiking options.

As a platform manager, I want to 
broadcast weather alerts for trails so 
that hikers can stay informed about 
potential dangers.

…

Parameter Score

Internal consinstency 4

Non-redundancy 5

Completeness 1

Conciseness 4

Overall score 14/20
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Evaluating Design
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Evaluating Design

[Evaluating Results]



[ Large Language Models ]

How are LLMs used in design

• Class Diagrams: Represent the structure of the system by showing 
classes, attributes, methods, and relationships.
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How are LLMs used in design

• Sequence Diagrams: Show the flow of messages or interactions 
between system components over time.
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How are LLMs used in design

• Use Case Diagrams: Highlight user interactions with the system, 
showcasing actors and their use cases.
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Structural metrics

• Structural metrics refer to measurements that focus on the design and 
architecture of a system, specifically how different components, modules, 
or classes are organized and interact.

• These metrics help identify design flaws early in the development process, 
ensuring a scalable and maintainable system.

• Missing Dependencies: A design violation occurs when a component is dependent 
on another component, but that dependency is not properly established or is 
omitted in the system's design.
• Missing Dependency Count = Total Expected Dependencies - Total Established Dependencies

• Other Violations: Misplaced dependencies, circular dependencies, incorrect 
inheritance, or incorrect interface implementation.
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Structural metrics: Example

• Trail Manager depends on Hut Manager to get information about 
nearby huts.

• Hut Manager is expected to retrieve data from User Profiles to 
understand visitor preferences.
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Structural metrics: Example
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Structural metrics: Example
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Structural metrics: Example
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Precision and Recall

• In the same way we did with the requirements

• Collect all constructs generated by the LLM (it depends on the type of 
diagram) and compare them with a ground truth
• (possibly implying similarity and thresholds…)
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Quality issues with design (Bolloju et 
al.)
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Evaluating Code generation
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Evaluating Code Generation
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Functional correctness

• Objective: Assess the accuracy of code generated by LLMs by 
determining how many test cases it successfully passes. This provides 
an empirical measure of functional correctness.

• Warning: I need a dependable test suite beforehand!
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Functional correctness: Metrics

• For the whole test suite: pass rate

𝑃𝑎𝑠𝑠𝑅𝑎𝑡𝑒 =
𝑃𝑎𝑠𝑠𝑒𝑑 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠
𝑥 100

[Evaluating Results]



[ Large Language Models ]

Functional correctness: Example

• I want a function that computes a factorial of a number. 

n!5 120
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Functional correctness: Example

• Prepare a set of test cases

• Ensure tests cover a wide range of scenarios, including:
• Positive cases: Valid inputs where the function should succeed.
• Edge cases: Inputs that are extreme or boundary values.
• Negative cases: Invalid inputs or cases expected to produce errors.

• Example Test Cases:
• Input: 5 → Expected Output: 120
• Input: 0 → Expected Output: 1
• Input: -1 → Expected Output: Error
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Functional correctness: Example
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Functional correctness: Example

• Prepare a set of test cases

• Ensure tests cover a wide range of scenarios, including:
• Positive cases: Valid inputs where the function should succeed.
• Edge cases: Inputs that are extreme or boundary values.
• Negative cases: Invalid inputs or cases expected to produce errors.

• Example Test Cases:
• Input: 5 → Expected Output: 120
• Input: 0 → Expected Output: 1
• Input: -1 → Expected Output: Error
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Functional correctness: Example

• Now I generate my code
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Functional correctness: Example

• Test execution results:

Test case Input Expected
Output

Actual output Test result

TC1 5 120 120 Pass

TC2 0 1 1 Pass

TC3 -1 Error 1 Fail

Pass rate = 66.66%
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Static Code Quality Metrics

• Static code quality metrics are tools and techniques used to evaluate 
the quality of source code without executing it. They focus on 
analyzing the structure, complexity, and maintainability of code to 
identify potential issues early in the development lifecycle. 

• For code generated by LLMs, static code quality metrics can provide 
an objective assessment of whether the generated code meets 
industry standards for readability, scalability, and reliability.
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Cyclomatic Complexity

• Cyclomatic Complexity (CC) measures the complexity of a program by 
counting the number of linearly independent paths through its source 
code.

• It provides an estimate of how difficult it is to understand, test, and 
maintain the code.
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Cyclomatic Complexity

• CC= E − N + 2P
• E: Number of edges in the flow graph.

• N: Number of nodes in the flow graph.

• P: Number of connected components (typically, P = 1 for a single program).

• Alternatively, for a single function, it can be simplified to counting 
decision points (such as if, while, for, etc.) and using:
• CC=E−N+2
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Cyclomatic Complexity

• How to interpret CC:
• 1-10: Simple code, easy to maintain.

• 11-20: Moderate complexity, requires careful review and testing.

• 21-50: High complexity, needs refactoring to improve maintainability.

• 50+: Very complex, refactor or reconsider the design.
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Cyclomatic Complexity: Example

def calculate_total_price(quantity, price):

    if quantity > 10:

        discount = 0.1

    else:

        discount = 0.05

    total = quantity * price * (1 - discount)

    return total

CC = 2 (due to the if condition)
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Maintainability Index

• Maintainability Index (MI) is a metric used to assess the ease with 
which a software system can be maintained.

• It provides an estimate of how difficult it is to understand, test, and 
maintain the code.

• It combines several factors (e.g., cyclomatic complexity, lines of code, 
and Halstead metrics) into a single score that reflects how easy it is to 
maintain and improve the code over time.
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Maintainability Index

Interpretation:

• between 0 and 20: Very hard to maintain. The code is complex, hard to read, and 
may require frequent changes and fixes.

• between 20 and 40: Hard to maintain. Code may be overly complex, and 
developers may face difficulties when working on it.

• between 40 and 60: Maintainable with some effort. It's still understandable, but 
it may require some effort to make changes or expand functionality.

• between 60 and 80: Good maintainability. Code is understandable and 
maintainable, but might require occasional clean-up.

• between 80 and 100: Excellent maintainability. The code is clean, easy to 
maintain, and highly readable.

• above 100: Exceptional maintainability. Code is extremely simple, easy to modify, 
and well-structured.
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Halstead Volume

𝐻𝑉 = 𝑁1 + 𝑁2 𝑥 log2(𝑁1 + 𝑁2)

• N₁: The number of distinct operators in the code.

• N₂: The number of distinct operands in the code.

• Higher Volume indicates more complexity and larger code, requiring 
more effort to understand and maintain.

• Lower Volume suggests simpler, more concise code.
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Maintainability Index: Example

def calculate_total_price(quantity, price):

    if quantity > 10:

        discount = 0.1

    else:

        discount = 0.05

    total = quantity * price * (1 - discount)

    return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 𝐶𝐶 − 0.23 𝑥 𝐿𝑂𝐶 − 16.2 𝑥 ln(𝐻𝑉)
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Maintainability Index: Example

def calculate_total_price(quantity, price):

    if quantity > 10:

        discount = 0.1

    else:

        discount = 0.05

    total = quantity * price * (1 - discount)

    return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 𝐿𝑂𝐶 − 16.2 𝑥 ln(𝐻𝑉)

[Evaluating Results]



[ Large Language Models ]

Maintainability Index: Example

def calculate_total_price(quantity, price):

if quantity > 10:

discount = 0.1

else:

discount = 0.05

total = quantity * price * (1 - discount)

return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(𝐻𝑉)

[Evaluating Results]



[ Large Language Models ]

Maintainability Index: Example

def calculate_total_price(quantity, price):

    if quantity > 10:

        discount = 0.1

    else:

        discount = 0.05

    total = quantity * price * (1 - discount)

    return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(𝐻𝑉)

HV = (N1 + N2) * log(N1 + N2) 

[Evaluating Results]



[ Large Language Models ]

Maintainability Index: Example

def calculate_total_price(quantity, price):

    if quantity > 10:

        discount = 0.1

    else:

        discount = 0.05

    total = quantity * price * (1 - discount)

return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(𝐻𝑉)

HV = (5 + N2) * log(5 + N2) 

[Evaluating Results]



[ Large Language Models ]

Maintainability Index: Example

def calculate_total_price(quantity, price):

    if quantity > 10:

discount = 0.1

    else:

        discount = 0.05

total = quantity * price * (1 - discount)

    return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(𝐻𝑉)

HV = (5 + 7) * log(5 + 7) 

[Evaluating Results]



[ Large Language Models ]

Maintainability Index: Example

def calculate_total_price(quantity, price):

    if quantity > 10:

        discount = 0.1

    else:

        discount = 0.05

    total = quantity * price * (1 - discount)

    return total

𝑀𝐼 = 171 − 5.2 𝑥 ln 2 − 0.23 𝑥 6 − 16.2 𝑥 ln(12.95) = 124.56

HV = (5 + 7) * log(5 + 7) 

[Evaluating Results]



[ Large Language Models ]

Computing CC and MI

[Evaluating Results]



[ Large Language Models ]

Other metrics computed by Radon

• Lines of Code (LOC): Total number of lines of code, excluding comments and blank lines.

• Halstead Metrics: Includes Volume, Difficulty, and Effort; assesses the size and 
complexity of the code based on operators and operands.

• Code Smells: Flags potential code quality issues such as long methods or classes, 
excessive nesting, and duplication.

• Halstead Volume (V): Size of the code in terms of information needed to understand it, 
based on distinct operators and operands.

• Code Duplication: Detects repeated blocks of code across the codebase, indicating 
potential need for refactoring.

• Comment Density: Percentage of code that is commented, indicating the clarity and 
documentation level of the code.

• Indentation Level: Measures the depth of indentation, helping to detect deeply nested 
or overly complex code.

[Evaluating Results]



[ Large Language Models ]

Runtime performance quality metrics

• Several key metrics can be used to assess the efficiency, scalability, 
and responsiveness of the generated code. These metrics focus on 
how the code performs during execution, providing insight into its 
efficiency and identifying potential performance bottlenecks.

[Evaluating Results]



[ Large Language Models ]

Runtime performance quality metrics

• Execution time: Measures the time taken for the code to complete execution for a 
specific input or task. This is one of the most common and essential performance 
metrics.

• Throughput: Measures the number of operations or tasks the program can perform in a 
given period. It is often used in systems where tasks are processed in bulk, such as batch 
processing or web servers.

• Memory consumption: Tracks how much memory the code consumes during execution. 
High memory usage can indicate inefficient code or the need for optimization.

• CPU time used: Measures how much CPU time is consumed by the code during its 
execution. This can help identify code that is CPU-intensive or inefficient in terms of 
processor utilization.

• Error rate: Measures the frequency of errors or exceptions during code execution. A high 
error rate can indicate that the code is not handling edge cases or is failing under load.

[Evaluating Results]



[ Large Language Models ]

Runtime performance quality metrics

• Execution Time (ET) Evaluation of LLMs on EffiBench Over Release Time

[Evaluating Results]



[ Large Language Models ]

Runtime performance quality metrics

• Memory Usage (MU) Evaluation of LLMs on EffiBench Over Release Time

[Evaluating Results]



[ Large Language Models ]

Code-Specific Similarity Metrics

• The regular BLEU is not sufficient to perform the evaluation of code 
synthesis without considering the characteristics of the programming 
language.

• Code is artificially designed to produce various kinds of output, unlike 
the natural language that has evolved naturally among humans.

[Evaluating Results]



[ Large Language Models ]

Code-Specific Similarity Metrics

• Main differences between programming and natural languages:
• Limited keywords vs. million of words

• Tree structure vs. sequential structure

• Unique instructions vs. ambiguous semantics

[Evaluating Results]



[ Large Language Models ]

Code-Specific Similarity Metrics

• CodeBLEU (Ren et al., 2021) consider different aspects in addition to 
the traditional bleu:

• Weighted N-Gram match: As in the traditional BLEU. 

• Syntactic AST Match: syntactic information to consider the tree structure of 
code.

• Semantic Data-flow match: the ordering of variables and flows in the code.

[Evaluating Results]



[ Large Language Models ]

Code-Specific Similarity Metrics

[Evaluating Results]



[ Large Language Models ]

Feedback-based evaluation

• Feedback-based evaluation methods are essential for 
comprehensively assessing the quality of generated code, as they 
incorporate human judgment and expertise to evaluate various 
aspects of code quality.

[Evaluating Results]



[ Large Language Models ]

Feedback-based evaluation

• Blind peer review is a common and effective method for evaluating 
code quality comprehensively. In this method, reviewers assess code 
snippets generated by different models without knowing the identity 
of the models, selecting the superior code based on predetermined 
criteria. This approach eliminates potential biases, making the 
evaluation results more objective and fair. 

[Evaluating Results]



[ Large Language Models ]

Feedback-based evaluations

• Real-world evaluation: deploy the generated code in actual 
application environments and assess its performance in real-world 
tasks. This method fully evaluates the practicality and reliability of the 
code, reflecting its real-world effectiveness. Generated code is 
applied to real programming tasks, with metrics such as error rate, 
debugging time, and maintenance cost recorded. This approach 
provides valuable feedback on the code’s functionality, stability, and 
adaptability. 

• For example, generated code might perform excellently in a 
controlled environment but face performance bottlenecks or 
compatibility issues in practical applications. 

[Evaluating Results]



[ Large Language Models ]

Feedback-based evaluations

• Readability evaluation: The readability of code is crucial for 
understanding and maintaining it. Human evaluation methods focus 
on assessing the functionality, clarity, and maintainability of the code. 
Reviewers consider naming conventions, comments, and code logic to 
determine clarity and conciseness. Clear and concise code improves 
development efficiency and long-term sustainability.

• For example, reviewers check if variable and function names are 
descriptive, if appropriate comments explain the code logic, and if the 
code structure is easy to understand.

[Evaluating Results]



[ Large Language Models ]

Feedback-based evaluations

• Maintainability evaluation: Reviewers evaluate whether the code is 
reasonably divided into such modules. Additionally, they check for 
comprehensive documentation and comments, such as descriptions 
of functions and classes, parameters, and return values. 

• For instance, each function should have detailed comments 
explaining its functionality, input parameters, and return values. Good 
documentation and comments help current and future developers 
understand and maintain the code

[Evaluating Results]



[ Large Language Models ]

Evaluating Test Case generation

[Evaluating Results]



[ Large Language Models ]

Evaluating Test Case Generation

[Evaluating Results]



[ Large Language Models ]

Test Coverage

• Coverage refers to the extent to which the codebase is exercised by a 
set of test cases.

• High coverage increases confidence in code correctness and reduces 
the risk of hidden bugs.

[Evaluating Results]



[ Large Language Models ]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

    if n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

        return 1

    result = 1

    for i in range(1, n + 1):

        result *= i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1  
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

[Evaluating Results]



[ Large Language Models ]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

    if n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

        return 1

result = 1

for i in range(1, n + 1):

result *= i

return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1  
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

[Evaluating Results]



[ Large Language Models ]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

    if n < 0:

        raise ValueError("Factorial undefined.")

if n == 0:

return 1

result = 1

for i in range(1, n + 1):

result *= i

return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1  
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

[Evaluating Results]



[ Large Language Models ]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

if n < 0:

raise ValueError("Factorial undefined.")

if n == 0:

return 1

result = 1

for i in range(1, n + 1):

result *= i

return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1  
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

[Evaluating Results]



[ Large Language Models ]

Test coverage: Example

• Consider the Factorial function

def factorial(n):

if n < 0:

raise ValueError("Factorial undefined.")

if n == 0:

return 1

result = 1

for i in range(1, n + 1):

result *= i

return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1  
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial 
undefined."

[Evaluating Results]



[ Large Language Models ]

Types of Coverage

• Line Coverage: Measures the percentage of lines of code executed 
during testing. 

• Branch Coverage: Measures whether all possible branches of decision 
points (e.g., if statements) are tested.

• Function Coverage: Measures whether all functions or methods in 
the code have been called during testing.

• Path Coverage: Measures all potential execution paths through the 
code. More exhaustive but computationally expensive.

[Evaluating Results]



[ Large Language Models ]

Types of Coverage

[Evaluating Results]



[ Large Language Models ]

Execution success rate

• Execution success rate measures the proportion of test cases that 
pass when applied to the generated or existing code. This metric 
helps evaluate the quality of test cases generated by LLMs and their 
alignment with the expected behavior of the code.

• A wrong test case occurs when the test case itself has an incorrect or 
unrealistic expected output, leading to test failures that aren't the 
fault of the code.

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑠𝑠𝑖𝑛𝑔 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠
𝑥 100

[Evaluating Results]



[ Large Language Models ]

Execution success rate

• In this case we start from the perspective that the reference code is
correct.

• Typical when we create test cases with the purpose of regression
testing
• Regression testing is a software testing practice that ensures recent changes 

to the codebase, such as bug fixes, feature updates, or refactoring, do not 
introduce new defects into previously tested and functioning areas of the 
software.

[Evaluating Results]



[ Large Language Models ]

Execution success rate

• Common Causes for Wrong Test Cases:
• Misinterpretation of the function's logic during test case generation.

• Mistakes in mathematical or logical reasoning by the LLM.

[Evaluating Results]



[ Large Language Models ]

Execution Success Rate: Example

• Consider the Factorial function

def factorial(n):

    if n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

        return 1

    result = 1

    for i in range(1, n + 1):

        result *= i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2’
assert factorial(0) == 0 
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

[Evaluating Results]



[ Large Language Models ]

Execution Success Rate: Example

• Consider the Factorial function

def factorial(n):

    if n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

return 1

    result = 1

    for i in range(1, n + 1):

        result *= i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2’
assert factorial(0) == 0 
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == " Factorial 
undefined."

[Evaluating Results]



[ Large Language Models ]

Execution Success Rate: Example

• Consider the Factorial function

def factorial(n):

    if n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

return 1

    result = 1

    for i in range(1, n + 1):

        result *= i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2’
assert factorial(0) == 0 
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == " Factorial 
undefined."

In this case, the code is correct, 
but T2’ is wrong -> the 
expected result is not the right
one.

Success Rate = 66.6%

[Evaluating Results]



[ Large Language Models ]

Mutation Analysis

• Mutation Analysis is a software testing technique that evaluates the 
effectiveness of a test suite by introducing small changes (mutations) 
to the code and checking if the existing test cases can detect these 
changes.

• Mutants represent potential faults in the code, and the goal is to 
determine whether the test suite can "kill" these mutants by failing 
when encountering them.

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡𝑠 𝐾𝑖𝑙𝑙𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡𝑠
𝑥 100

[Evaluating Results]



[ Large Language Models ]

Mutation Analysis

• Mutant Generation:
• Small changes (mutations) are introduced into the original code.
• Mutants simulate defects by altering operators, conditions, or statements in the 

code.

• Test Execution:
• The test suite is executed against the original code and its mutants.
• A test "kills" a mutant if the test case detects the mutated fault (i.e., the test fails).

• Surviving Mutants:
• If the test suite does not detect a mutant (i.e., the test passes despite the mutation), 

the mutant is said to "survive."

[Evaluating Results]



[ Large Language Models ]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

    if n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

        return 1

    result = 1

    for i in range(1, n + 1):

        result *= i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2’
assert factorial(0) == 1
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

[Evaluating Results]



[ Large Language Models ]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

return 0

    result = 1

    for i in range(1, n + 1):

result += i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

[Evaluating Results]



[ Large Language Models ]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

return 0

    result = 1

    for i in range(1, n + 1):

result += i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

KILLED

[Evaluating Results]



[ Large Language Models ]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

return 0

    result = 1

    for i in range(1, n + 1):

result += i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

KILLED

KILLED

[Evaluating Results]



[ Large Language Models ]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

return 0

    result = 1

    for i in range(1, n + 1):

result += i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

KILLED

KILLED

SURVIVED

[Evaluating Results]



[ Large Language Models ]

Mutation Analysis: Example

• Consider the Factorial function

def factorial(n):

if -10 < n < 0:

        raise ValueError("Factorial undefined.")

    if n == 0:

return 0

    result = 1

    for i in range(1, n + 1):

result += i

    return result

T1
assert factorial(5) == 120  
# Tests iterative multiplication logic.

T2
assert factorial(0) == 1
# Tests base case for zero

T3
try:
    factorial(-1)
except ValueError as e:
    assert str(e) == "Factorial is not 
defined for negative numbers."

KILLED

KILLED

SURVIVED

In this case, T3 passes, but it
does not capture the error
(mutant) introduced in the 
code.

Mutation Score = 66.6%

[Evaluating Results]



[ Large Language Models ]

Test Flakiness

• Flaky Test Cases are tests that sometimes pass and sometimes fail, 
even when there is no change in the code or environment. These 
tests are unpredictable and unreliable, often leading to confusion and 
inefficiencies in the testing process.

[Evaluating Results]



[ Large Language Models ]

Test Flakiness

• Intermittent Failures: A test case fails occasionally but not 
consistently, even if the code hasn't changed.

• Inconsistent Behavior: The same test may pass on one run and fail on 
another, making it difficult to trust the results.

• False Positives/Negatives: Flaky tests can falsely indicate that code is 
faulty (false positive) or that the code is working when it isn't (false 
negative).

[Evaluating Results]



[ Large Language Models ]

Test Flakiness

• Causes of flakiness:
• External Dependencies: Tests that rely on external systems (e.g., APIs, 

databases, or network services) may fail if those systems are down or 
unstable.

• Timing and Concurrency Issues: Asynchronous code, race conditions, or 
timing-related problems can cause tests to fail unpredictably.

• Environment-Related Issues: Variations in the test environment (e.g., 
operating system, hardware, or configurations) can lead to test 
inconsistencies.

• Shared State: Tests that modify shared state or rely on global variables can 
impact the reliability of subsequent tests.

• Resource Limitations: Limited system resources, like memory or CPU, may 
cause tests to behave erratically.

[Evaluating Results]



[ Large Language Models ]

Test Flakiness

• How to identify Flaky tests:
• Run Tests Multiple Times: Repeatedly run the same tests to identify those 

that exhibit inconsistent results.
• Analyze Test Logs: Investigate logs to spot patterns of failure, such as specific 

environments, dependencies, or conditions that trigger the flakiness.

𝐹𝑙𝑎𝑘𝑖𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡 𝑅𝑢𝑛𝑠
𝑥 100

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 1 − 𝐹𝑙𝑎𝑘𝑖𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑒

[Evaluating Results]



[ Large Language Models ]

Test Flakiness

• Threshold for flakiness: there is no universal threshold for what 
counts as a flaky test, but generally:
• A test is flaky if it has a flakiness rate above a certain threshold (for example, 

20%).

• A stable test is one where the pass rate is high (say above 80-90%).

• It depends on the context!

[Evaluating Results]



[ Large Language Models ]

(Developer) Feedback

• When using LLMs (Large Language Models) to generate test cases, 
developer feedback is a critical part of evaluating the quality and 
relevance of the generated tests. Developers’ feedback helps refine 
the test cases by ensuring they align with the actual functionality of 
the code and by identifying edge cases or missing scenarios.

• Checklist can be employed for this purpose.

[Evaluating Results]



[ Large Language Models ]

(Developer) Feedback: Example

Question Answer

Is the test case ID unique and easy to identify?

Is the test case easily readable?

Is the traceability of the test case with the relevant requirements checked?

Is the test case prioritized according to the requirements?

Is the test case type classified properly?

Are the test case steps clearly defined and easy to understand?

Does the test case duplicates another test case or is it redundant?

Is the test data for the test case available with the source of data?

Does the test case cover both positive and negative scenario? 

Are the language, spelling, and grammatical mistakes in the test case verified?

[Evaluating Results]
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