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Introduction to regression
n Objective: Predict a continuous outcome 

variable based on one or more predictor 
variables
n i.e., learn a function 𝑓 ∶ 𝒳 → ℝ
n We refer to the outcome as the dependent variable, 

and to the predictors as the independent variables

n Useful for:
n Making predictions
n Understanding relationships between variables
n Identifying significant predictors
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Linear regression
n Used to model linear relationships

between predictors and outcome

n Assumption:
n There is a linear relation between

the independent (x) and dependent (y) variables
n 𝑦 = 𝜃! + 𝜃"𝑥 + 𝜀 (observation)
n 𝜀 represents a stochasticity that we cannot model

n Simple linear regression:
n Goal: estimate 𝜃!,𝜃" so that we can build our own model!
n !𝑦 = $𝜃! + $𝜃"𝑥 (prediction) 

n ε: residual (difference between predictions and observations)
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Residuals
n Residuals are expected to be:

n Normally distributed
n Homoskedastic
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Residuals, error
n We can compute the squared error for xi

n (𝑦# − !𝑦#)$= 𝜀#$

n Properties of squared errors:
n Quantify quality of prediction

n The smaller the better!
n Always positive
n “Stretches” error:

n (Large error)2 = even larger error
n (Small error)2 = smaller error 

n Error over the entire dataset: mean squared 
error (MSE)
n M𝑆𝐸 = "

%
∑#(𝑦# − !𝑦#)$
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Residuals, error
n The MSE, !

"
∑#(𝑦# − 𝜃$ − 𝜃!𝑥#)% , is a 

quadratic function of the parameters 𝜃
n So, it has a single minimum, which are the 

“best” values for 𝜃
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Error minimization
n 𝑀𝑆𝐸 𝜃', 𝜃( = (

)
∑*(𝑦* − 𝜃' − 𝜃(𝑥*)+

n “Cost function” to be minimized
n We want to find 𝜃', 𝜃( that minimize the 

MSE
n MSE is a quadratic function of 𝜃', 𝜃(

n Minimum for !"#$!%!
= 0 , !&#$!%"

= 0
n Linear regression chooses the parameters 
𝜃', 𝜃( that minimize the SSE
n 𝜃' = $𝑦 − 𝜃(�̅�

n 𝜃( =
∑(+#,+̅)(/#,0/)

∑ +#,+̅ !
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Multivariate case
n Similarly, we can define a problem with n independent

variables
n 𝑥 = (𝑥", 𝑥$ , … 𝑥& )
n Multiple linear regression:

n &𝑦 = 𝜃! + 𝜃"𝑥" + …+ 𝜃# 𝑥#
n &𝑦 = 𝜽$𝒙

n as a scalar product of 𝒙 = (1, 𝑥", x! … x# ) and 𝜽 = 𝜃$, 𝜃" …𝜃#
n Solution:

n 𝜽 = 𝑋𝑇𝑋 ⁻1𝑋𝑇𝑌
n The coefficients help understand the relationship between

the independent and dependent variables
n E.g. 𝜃" indicates the change in the predicted y for a one-unit

increase in x1, all else being equal
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Non-linear relationships
n We may want to model non-linear relationships
n We can add new features, non-linear 

transformations of the original one(s)
n E.g., if we expect an inverse quadratic

relationships between 𝑥 and 𝑦, we
introduce a new feature, (

+$

n Then, we use a “classic” linear regression
n The model learns a separate coefficient

for each feature
n 𝑦 = 𝜃' + 𝜃(𝑥( + 𝜃1𝑥1 ↔ 𝜃' + 𝜃(𝑥 + 𝜃1

(
+$
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Polynomial regression

n We can introduce more
flexibility in representing
relationships with a polynomial regression
n i.e., add new polynomial features up to degree n
n Increases model capacity
n Univariate: !𝑦 = 𝜃! + 𝜃"𝑥 + 𝜃$ 𝑥$…+ 𝜃%𝑥%

n For multivariate problems, we can add either powers, 
or interactions (or both!)
n Powers (𝑥"$, 𝑥$$, 𝑥"' …) 
n Interactions (𝑥"𝑥$, 𝑥"𝑥$$, … ), capturing relations between 

variables at different polynomial degrees
n E.g., 𝑥", 𝑥$, 𝑥', 𝑛 = 2 → 𝑥"$, 𝑥$$, 𝑥'$, 𝑥"𝑥$, 𝑥"𝑥', 𝑥$𝑥'
n ❗The total number of features increases combinatorially!
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MSE, RMSE, MAE
n Mean squared error (MSE)

n 𝑀𝑆𝐸 = (
6
∑7(𝑦7 − 0𝑦7)1

n Sometimes not normalized by # points
n SSE (Sum of SE)

n RMSE (root MSE)
n 𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸
n Same unit of measurement as the dependent var. 

n Mean absolute error (MAE)
n 𝑀𝐴𝐸 = (

6
∑7 | 𝑦7 − 0𝑦7 |

n Penalizes more «small» errors (w.r.t. MSE)
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R-squared (R2)
n R2: proportion of the variance in the dependent

variable that is explained by the independent
variables

𝑅1 = 1 −
𝑀𝑆𝐸
𝜎1

n Edge cases:
n Model predicts everything perfectly

n 𝑀𝑆𝐸 = 0, 𝑅# = 1 (upper bound)
n Model is no better than predicting mean value of y

n 𝑀𝑆𝐸 = 𝜎#, 𝑅# = 0

n Model is worse than predicting mean value
n 𝑀𝑆𝐸 < 𝜎#, 𝑅# < 0



15DBMG

Residual plots
n Residual plots: 

visual assessment
of the goodness
of fit of a 
regression model
n Expecting

residuals to be 
random scattered
around zero, with 
constant variance, 
and no patterns
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Overfitting and underfitting
n Overfitting: the model is too complex and fits the 

training data too closely (high variance)
n Poor performance on test data 

n Underfitting: the model is too simple and does not
capture the underlying relationships (high bias)
n Poor performance on training and test data
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High bias vs high variance
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Preventing overfitting
n We can generally prevent overfitting by:

n Reducing model capacity
n (e.g., reduce the polynomial degree used)

n Increasing the dataset size
n Introducing regularization techniques
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Regularization techniques
n Allow model to use high capacity, but penalize it if 

used unnecessarily
n Penalty term in the cost function
n L1 (Lasso) penalizes all

non-zero weights linearly
n 𝐶𝑜𝑠𝑡 = 𝑀𝑆𝐸 + 𝜆| 𝜽 |1
n Bring 𝜃 values to 0 if not

strictly needed
n L2 (Ridge) penalizes ≈ 0

values less than ≈ 0 values
n 𝐶𝑜𝑠𝑡 = 𝑀𝑆𝐸 + 𝜆| 𝜽 |2
n Allows 𝜃 values to be ≈ 0 for small contributions
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Tree-based regression
n We can build decision trees for regression

n Real values used as targets instead of classes
n Node impurity computed as variance
n Each leaf assigns average value of points in it
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Other techniques
n Random forests can be obtained by aggregating 

the output of decision tree regressors (e.g., by 
averaging them)

n In KNN, we can produce the predicted outcome as 
the (possibly weighted) average of the neighbors’ 
“votes”

n Neural networks natively produce continuous 
outputs


