
Data Base and Data Mining Group of Politecnico di Torino

DB
MG

Regression

Flavio Giobergia
Politecnico di Torino

2DBMG

Introduction to regression
n Objective: Predict a continuous outcome

variable based on one or more predictor
variables
n i.e., learn a function 𝑓 ∶ 𝒳 → ℝ
n We refer to the outcome as the dependent variable,

and to the predictors as the independent variables

n Useful for:
n Making predictions
n Understanding relationships between variables
n Identifying significant predictors

Data Base and Data Mining Group of Politecnico di Torino

DB
MG

Linear regression

4DBMG

Linear regression
n Used to model linear relationships

between predictors and outcome

n Assumption:
n There is a linear relation between

the independent (x) and dependent (y) variables
n 𝑦 = 𝜃! + 𝜃"𝑥 + 𝜀 (observation)
n 𝜀 represents a stochasticity that we cannot model

n Simple linear regression:
n Goal: estimate 𝜃!,𝜃" so that we can build our own model!
n !𝑦 = $𝜃! + $𝜃"𝑥 (prediction)

n ε: residual (difference between predictions and observations)

5DBMG

Residuals
n Residuals are expected to be:

n Normally distributed
n Homoskedastic

6DBMG

Residuals, error
n We can compute the squared error for xi

n (𝑦# − !𝑦#)$= 𝜀#$

n Properties of squared errors:
n Quantify quality of prediction

n The smaller the better!
n Always positive
n “Stretches” error:

n (Large error)2 = even larger error
n (Small error)2 = smaller error

n Error over the entire dataset: mean squared
error (MSE)
n M𝑆𝐸 = "

%
∑#(𝑦# − !𝑦#)$

7DBMG

Residuals, error
n The MSE, !

"
∑#(𝑦# − 𝜃$ − 𝜃!𝑥#)% , is a

quadratic function of the parameters 𝜃
n So, it has a single minimum, which are the

“best” values for 𝜃

8DBMG

Error minimization
n 𝑀𝑆𝐸 𝜃', 𝜃(= (

)
∑*(𝑦* − 𝜃' − 𝜃(𝑥*)+

n “Cost function” to be minimized
n We want to find 𝜃', 𝜃(that minimize the

MSE
n MSE is a quadratic function of 𝜃', 𝜃(

n Minimum for !"#$!%!
= 0 , !&#$!%"

= 0
n Linear regression chooses the parameters
𝜃', 𝜃(that minimize the SSE
n 𝜃' = $𝑦 − 𝜃(�̅�

n 𝜃(=
∑(+#,+̅)(/#,0/)

∑ +#,+̅ !

9DBMG

Multivariate case
n Similarly, we can define a problem with n independent

variables
n 𝑥 = (𝑥", 𝑥$, … 𝑥&)
n Multiple linear regression:

n &𝑦 = 𝜃! + 𝜃"𝑥" + …+ 𝜃# 𝑥#
n &𝑦 = 𝜽$𝒙

n as a scalar product of 𝒙 = (1, 𝑥", x! … x#) and 𝜽 = 𝜃$, 𝜃" …𝜃#
n Solution:

n 𝜽 = 𝑋𝑇𝑋 ⁻1𝑋𝑇𝑌
n The coefficients help understand the relationship between

the independent and dependent variables
n E.g. 𝜃" indicates the change in the predicted y for a one-unit

increase in x1, all else being equal

10DBMG

Non-linear relationships
n We may want to model non-linear relationships
n We can add new features, non-linear

transformations of the original one(s)
n E.g., if we expect an inverse quadratic

relationships between 𝑥 and 𝑦, we
introduce a new feature, (

+$

n Then, we use a “classic” linear regression
n The model learns a separate coefficient

for each feature
n 𝑦 = 𝜃' + 𝜃(𝑥(+ 𝜃1𝑥1 ↔ 𝜃' + 𝜃(𝑥 + 𝜃1

(
+$

𝒙
0.4
0.3
0.2

𝒙𝟏 = 𝒙 𝒙𝟐 =
𝟏
𝒙𝟐

0.4 2.5
0.5 2
0.2 5

𝒚
105
84
210

11DBMG

Polynomial regression

n We can introduce more
flexibility in representing
relationships with a polynomial regression
n i.e., add new polynomial features up to degree n
n Increases model capacity
n Univariate: !𝑦 = 𝜃! + 𝜃"𝑥 + 𝜃$ 𝑥$…+ 𝜃%𝑥%

n For multivariate problems, we can add either powers,
or interactions (or both!)
n Powers (𝑥"$, 𝑥$$, 𝑥"' …)
n Interactions (𝑥"𝑥$, 𝑥"𝑥$$, …), capturing relations between

variables at different polynomial degrees
n E.g., 𝑥", 𝑥$, 𝑥', 𝑛 = 2 → 𝑥"$, 𝑥$$, 𝑥'$, 𝑥"𝑥$, 𝑥"𝑥', 𝑥$𝑥'
n ❗The total number of features increases combinatorially!

Data Base and Data Mining Group of Politecnico di Torino

DB
MG

Evaluation

13DBMG

MSE, RMSE, MAE
n Mean squared error (MSE)

n 𝑀𝑆𝐸 = (
6
∑7(𝑦7 − 0𝑦7)1

n Sometimes not normalized by # points
n SSE (Sum of SE)

n RMSE (root MSE)
n 𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸
n Same unit of measurement as the dependent var.

n Mean absolute error (MAE)
n 𝑀𝐴𝐸 = (

6
∑7 | 𝑦7 − 0𝑦7 |

n Penalizes more «small» errors (w.r.t. MSE)

14DBMG

R-squared (R2)
n R2: proportion of the variance in the dependent

variable that is explained by the independent
variables

𝑅1 = 1 −
𝑀𝑆𝐸
𝜎1

n Edge cases:
n Model predicts everything perfectly

n 𝑀𝑆𝐸 = 0, 𝑅# = 1 (upper bound)
n Model is no better than predicting mean value of y

n 𝑀𝑆𝐸 = 𝜎#, 𝑅# = 0

n Model is worse than predicting mean value
n 𝑀𝑆𝐸 < 𝜎#, 𝑅# < 0

15DBMG

Residual plots
n Residual plots:

visual assessment
of the goodness
of fit of a
regression model
n Expecting

residuals to be
random scattered
around zero, with
constant variance,
and no patterns

Data Base and Data Mining Group of Politecnico di Torino

DB
MG

Regularization

17DBMG

Overfitting and underfitting
n Overfitting: the model is too complex and fits the

training data too closely (high variance)
n Poor performance on test data

n Underfitting: the model is too simple and does not
capture the underlying relationships (high bias)
n Poor performance on training and test data

18DBMG

High bias vs high variance

19DBMG

Preventing overfitting
n We can generally prevent overfitting by:

n Reducing model capacity
n (e.g., reduce the polynomial degree used)

n Increasing the dataset size
n Introducing regularization techniques

20DBMG

Regularization techniques
n Allow model to use high capacity, but penalize it if

used unnecessarily
n Penalty term in the cost function
n L1 (Lasso) penalizes all

non-zero weights linearly
n 𝐶𝑜𝑠𝑡 = 𝑀𝑆𝐸 + 𝜆| 𝜽 |1
n Bring 𝜃 values to 0 if not

strictly needed
n L2 (Ridge) penalizes ≈ 0

values less than ≈ 0 values
n 𝐶𝑜𝑠𝑡 = 𝑀𝑆𝐸 + 𝜆| 𝜽 |2
n Allows 𝜃 values to be ≈ 0 for small contributions

Data Base and Data Mining Group of Politecnico di Torino

DB
MG

Other regressors

22DBMG

Tree-based regression
n We can build decision trees for regression

n Real values used as targets instead of classes
n Node impurity computed as variance
n Each leaf assigns average value of points in it

23DBMG

Other techniques
n Random forests can be obtained by aggregating

the output of decision tree regressors (e.g., by
averaging them)

n In KNN, we can produce the predicted outcome as
the (possibly weighted) average of the neighbors’
“votes”

n Neural networks natively produce continuous
outputs

