Regression

Data Base and Data Mining Group of Politecnico di Torino

Flavio Giobergia Politecnico di Torino

Introduction to regression

Objective: Predict a *continuous outcome* variable based on one or more predictor variables

- i.e., learn a function $f : \mathcal{X} \to \mathbb{R}$
- We refer to the outcome as the *dependent variable*, and to the predictors as the *independent variables*

n Useful for:

- **n** Making predictions
- **I** Understanding relationships between variables
- **I** Identifying significant predictors

Linear regression

Linear regression

- Used to model linear relationships between predictors and outcome
- Assumption:
	- \blacksquare There is a linear relation between the independent (x) and dependent (y) variables
	- **g** $y = \theta_0 + \theta_1 x + \varepsilon$ (observation)
	- ϵ represents a stochasticity that we cannot model
- **n** Simple linear regression:
	- Goal: estimate θ_0 , θ_1 so that we can build our own model!
	- $\bullet \quad \widehat{y} = \widehat{\theta}_0 + \widehat{\theta}_1 x \text{ (prediction)}$
- ϵ : residual (difference between predictions and observations)

NG

Residuals

Residuals are expected to be:

- **Normally distributed**
- **Homoskedastic**

Residuals, error

- **Notamark** We can compute the squared error for x_i
	- $(y_i \hat{y}_i)^2 = \varepsilon_i^2$
- **n** Properties of squared errors:
	- **Quantify quality of prediction**
		- The smaller the better!
	- \blacksquare Always positive
	- **No "Stretches" error:**
		- (Large error)² = even larger error
		- (Small error)² = smaller error
- **E** Frror over the entire dataset: mean squared error (MSE)

$$
= \text{MSE} = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2
$$

Residuals, error

• The MSE, $\frac{1}{n} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$, is a quadratic function of the parameters θ \blacksquare So, it has a single minimum, which are the "best" values for θ

Error minimization

•
$$
MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2
$$

- **n** "Cost function" to be minimized
- We want to find θ_0 , θ_1 that minimize the **MSE**
- **NSE** is a quadratic function of θ_0 , θ_1

Minimum for
$$
\frac{\partial MSE}{\partial \theta_0} = 0
$$
, $\frac{\partial MSE}{\partial \theta_1} = 0$

Example 2 Linear regression chooses the parameters θ_0 , θ_1 that minimize the SSE

$$
\bullet \ \theta_0 = \bar{y} - \theta_1 \bar{x}
$$

$$
\bullet \quad \theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}
$$

Multivariate case

- Similarly, we can define a problem with n independent variables
- $x = (x_1, x_2, ..., x_n)$
- **Nultiple linear regression:**
	- $\hat{y} = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$
	- $\hat{v} = \theta^T x$

as a scalar product of $x = (1, x_1, x_2, ..., x_n)$ and $\theta = (\theta_0, \theta_1, ..., \theta_n)$

n Solution:

 $\theta = (X^T X)^{-1} X^T Y$

- \blacksquare The coefficients help understand the relationship between the independent and dependent variables
	- **E.g.** θ_1 indicates the change in the predicted y for a one-unit increase in x_1 , all else being equal

Non-linear relationships

- We may want to model non-linear relationships
- We can *add new features*, non-linear transformations of the original one(s)
	- $E.g.,$ if we expect an inverse quadratic relationships between x and y , we introduce a new feature, $\frac{1}{\sqrt{2}}$ x^2
- **n** Then, we use a "classic" linear regression
	- The model learns a separate coefficient for each feature

$$
\bullet \ y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \leftrightarrow \theta_0 + \theta_1 x + \theta_2 \frac{1}{x^2}
$$

Polynomial regression

- We can introduce more
flexibility in representing relationships with a polynomial regression
	- i.e., add new polynomial features up to degree n
	- **n** Increases model capacity
	- **u** Univariate: $\hat{y} = \theta_0 + \theta_1 x + \theta_2 x^2 ... + \theta_n x^n$
- **For multivariate problems, we can add either powers,** or interactions (or both!)
	- **•** Powers $(x_1^2, x_2^2, x_1^3 ...)$
	- Interactions $(x_1x_2, x_1x_2^2, ...)$, capturing relations between variables at different polynomial degrees
	- E.g., $x_1, x_2, x_3, n = 2 \rightarrow x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3$
	- ⁿ ❗The total number of features increases combinatorially!

Evaluation

n Mean squared error (MSE)

•
$$
MSE = \frac{1}{n} \sum_i (y_i - \hat{y}_i)^2
$$

- **Sometimes not normalized by # points**
	- **SSE (Sum of SE)**
- **RMSE (root MSE)**
	- $RMSE = \sqrt{MSE}$
	- **Same unit of measurement as the dependent var.**
- Mean absolute error (MAE)

•
$$
MAE = \frac{1}{n} \sum_i |y_i - \hat{y}_i|
$$

Penalizes more «small» errors (w.r.t. MSE)

 \blacksquare R²: proportion of the variance in the dependent variable that is explained by the independent variables

$$
R^2 = 1 - \frac{MSE}{\sigma^2}
$$

- Edge cases:
	- **n** Model predicts everything perfectly
		- $MSE = 0$, $R^2 = 1$ (upper bound)
	- **n** Model is no better than predicting mean value of y

 $MSE = \sigma^2$, $R^2 = 0$

- **n** Model is worse than predicting mean value
	- $MSE < \sigma^2$, $R^2 < 0$

Residual plots

- **Residual plots:** visual assessment of the goodness of fit of a regression model
	- **Expecting** residuals to be random scattered around zero, with constant variance, and no patterns

Regularization

Data Base and Data Mining Group of Politecnico di Torino

Overfitting and underfitting

- *Overfitting*: the model is too complex and fits the training data too closely (high variance)
	- **Poor performance on test data**
- **n** Underfitting: the model is too simple and does not capture the underlying relationships (high bias)
	- **Poor performance on training and test data**

High bias vs high variance

Underfitting (High bias)

Overfitting (High variance)

Preventing overfitting

Ne can generally prevent overfitting by:

- **Reducing model capacity**
	- ⁿ (e.g., reduce the polynomial degree used)
- **Example 11 Increasing the dataset size.**
- **n** Introducing regularization techniques

Regularization techniques

- Allow model to use high capacity, but penalize it if used unnecessarily
- \blacksquare Penalty term in the cost function
- **L1** (Lasso) penalizes all non-zero weights linearly
	- \bullet Cost = MSE + $\lambda ||\boldsymbol{\theta}||_1$
	- **Bring** θ **values to 0 if not** strictly needed
- L2 (Ridge) penalizes \approx 0 values less than \approx 0 values

 \bullet Cost = MSE + $\lambda ||\boldsymbol{\theta}||_2$

■ Allows θ values to be \approx 0 for small contributions

Other regressors

Tree-based regression

No can build decision trees for regression

- **Real values used as targets instead of classes**
- **Node impurity computed as variance**
- **Each leaf assigns average value of points in it**

Other techniques

- Random forests can be obtained by aggregating the output of decision tree regressors (e.g., by averaging them)
- \blacksquare In KNN, we can produce the predicted outcome as the (possibly weighted) average of the neighbors' "votes"
- **n** Neural networks natively produce continuous outputs

