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“2: Introduction to regression

= Objective: Predict a continuous outcome
variable based on one or more predictor
variables

= i.e., learn a function f : X - R

= We refer to the outcome as the dependent variable,
and to the predictors as the /ndependent variables

= Useful for:
= Making predictions
« Understanding relationships between variables
» Identifying significant predictors
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= Used to model linear relationships =~ °| =
between predictors and outcome ol
= Assumption: L

= There is a linear relation between
the independent (x) and dependent (y) variables

Yy = + X + & (observation)
= & represents a stochasticity that we cannot model

= Simple linear regression:
= Goal: estimate so that we can build our own modell!
= }7 — + X (prediction)

= & residual (difference between predictions and observations)
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= We can compute the squared error for x;

" (yl o yl)2= giz 30 1 ===- residual € ° :./4/
= Properties of squared errors: Shoprvstion o
= Quantify quality of prediction . AU L LR
= The smaller the better! o I
= Always positive =
A\ ” 01 Ve
= Stretches” error:
= (Large error)? = even larger error o 2 4 6 &8 B
= (Small error)? = smaller error
= Error over the entire dataset: mean squared
error (MSE)
1 "
= MSE =-¥,(yi —3)°




] The MSE, %Zl(yl T HO T Hlxi)z ) |S d
quadratic function of the parameters 6

= 50, it has a single minimum, which are the
“best” values for 6

MSE = 1> (y — y)?
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s MSE( )=52i(yl' — 0 — 61x;)?
= Cost function” to be minimized

= We want to find that minimize the
MSE

= MSE is a quadratic function of
OMSE OMSE — 0

=0
d )
= Linear regression chooses the parameters
that minimize the SSE
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= Minimum for
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= Similarly, we can define a problem with nindependent
variables

m o= (X, %0, . Xy)
= Multiple linear regression:

] 5; = ~+ X1 + ...+ Xn
] 57 = Tx
= as a scalar product of x = (1, x,, %, ... x,,) and
= Solution:
u = (XTX)"1XTYy

= The coefficients help understand the relationship between
the independent and dependent variables

= E.g. ¢, indicates the change in the predicted y for a one-unit
increase in X, all else being equal
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= We may want to model non-linear relationships
= We can add new features, non-linear

transformations of the original one(s)
« E.g., if we expect an inverse quadratic 04 105
relationships between and V, We 03 84
introduce a new feature, — 02 210

= Then, we use a C|aSSIC" Imear regression @

= The model learns a separate coefficient
for each feature
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= We can introduce more

Polynomial regression P

flexibility in representing

relationships with a polynomial regression

= i.e., add new polynomial features up to degree n
« Increases model capacity

= Univariate: § =0, + 0, x+ 0, x? ...+ 0, x"

= For multivariate problems, we can add either powers,
or interactions (or both!)
» Powers (x%, x%, x; ...)

= Interactions (x,x,, x,x5, ...), capturing relations between

variables at different polynomial degrees

_ 2 2 .2
s E.Q., x1,x5,x3,n =2 = x{, x5, %5,X1X5, X1X3, Xp X3

= ! The total number of features increases combinatorially!
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= Mean squared error (MSE)
= MSE = %Zi(yi - 9)°

= Sometimes not normalized by # points
= SSE (Sum of SE)

= RMSE (root MSE)

= RMSE = VMSE
= Same unit of measurement as the dependent var.

= Mean absolute error (MAE)
- MAE = -%,;|y; — 9|

= Penalizes more «small» errors (w.r.t. MSE)
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= R2: proportion of the variance in the dependent
variable that is explained by the independent
variables

MSE

o2

RZ=1

= Edge cases:

= Model predicts everything perfectly
=« MSE =0, R?> = 1 (upper bound)

= Model is no better than predicting mean value of y
« MSE =0%,R>=0

= Model is worse than predicting mean value
« MSE <0?, R*<0
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: Residual plots

= Residual plots: -

visual assessment = - A

of the goodness <~

of fit of a 20 ,../-r" 2: "';':s»’s.é"""" i

regression model BN

= Expecting N
residuals to be ’ _

sidua

random scattered ;. ool ed L e e
around zero, with =~ 7| | cr ettt sl e e
constant variance, '

and no patterns
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n Over . the model is too complex and fits the
training data too closely ( )
= Poor performance on test data
o : the model is too simple and does not
capture the underlying relationships ( )
= Poor performance on training and test data
Underfitting "Correct" fitting Overfitting
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"Correct" fitting Overfitting (High variance)

Underfitting (High bias)
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= We can generally prevent overfitting by:

= Reducing model capacity
= (e.g., reduce the polynomial degree used)

= Increasing the dataset size
= Introducing regularization techniques
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(=21 Regularization techniques

= Allow model to use high capacity, but penalize it if
used unnecessarily

= Penalty term in the cost function

= L1 (Lasso) penalizes all

. . 1.50 { =/ Linear /./
non-zero weights linearly L 5] = Quadratic
= Cost = MSE + A||0]|, 100"
= Bring 6 values to 0 if not govs-
strictly needed 0.50
= L2 (Ridge) penalizes = 0 0251
values less than = 0 values P — —
= Cost = MSE + 1/|0]], Magnitude

= Allows @ values to be = 0 for small contributions
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~4: Tree-based regression

= We can build decision trees for regression
» Real values used as targets instead of classes
= Node impurity computed as variance
» Each leaf assigns average value of points in it

X[2] <= 2.45
squared_error = 0.577
samples = 150

value =

1.199

e

X[0] <= 4.95
squared_error = 0.011
samples = 50

value =

0.246

/

N\

N\

X[2] <= 4.75
squared_error = 0.179
samples = 100
value = 1.676

/

\

squared_error = 0.003
samples = 20
value = 0.195

squared_error = 0.013
samples = 30
value = 0.28

squared_error = 0.034
samples = 45
value=13

squared_error = 0.087
samples = 55
value = 1.984
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= Random forests can be obtained by aggregating

the output of decision tree regressors (e.qg., by
averaging them)

= In KNN, we can produce the predicted outcome as
the (possibly weighted) average of the neighbors’
“votes”

= Neural networks natively produce continuous
outputs
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