Regression

Data Base and Data Mining Group of Politecnico di Torino

Flavio Giobergia Politecnico di Torino

Introduction to regression

Objective: Predict a continuous outcome variable based on one or more predictor variables

- i.e., learn a function $f : \mathcal{X} \to \mathbb{R}$
- We refer to the outcome as the *dependent variable*, and to the predictors as the *independent variables*

Useful for:

- Making predictions
- Understanding relationships between variables
- Identifying significant predictors

Linear regression

Linear regression

- Used to model linear relationships between predictors and outcome
- Assumption:
 - There is a linear relation between the independent (x) and dependent (y) variables
 - $y = \theta_0 + \theta_1 x + \varepsilon$ (observation)
 - ε represents a stochasticity that we cannot model
- Simple linear regression:
 - Goal: estimate θ_0, θ_1 so that we can build our own model!
 - $\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 x$ (prediction)
- ε: residual (difference between predictions and observations)

Residuals

Residuals are expected to be:

- Normally distributed
- Homoskedastic

- We can compute the squared error for x_i
 - $(y_i \hat{y}_i)^2 = \varepsilon_i^2$
- Properties of squared errors:
 - Quantify quality of prediction
 - The smaller the better!
 - Always positive
 - "Stretches" error:
 - (Large error)² = even larger error
 - (Small error)² = smaller error
- Error over the entire dataset: mean squared error (MSE)

•
$$MSE = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$

6

Residuals, error

The MSE, ¹/_n∑_i(y_i − θ₀ − θ₁x_i)², is a quadratic function of the parameters θ So, it has a single minimum, which are the "best" values for θ

Error minimization

•
$$MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_i (y_i - \theta_0 - \theta_1 x_i)^2$$

- "Cost function" to be minimized
- We want to find θ_0, θ_1 that minimize the MSE
- MSE is a quadratic function of θ_0, θ_1

• Minimum for
$$\frac{\partial MSE}{\partial \theta_0} = 0$$
 , $\frac{\partial MSE}{\partial \theta_1} = 0$

• Linear regression chooses the parameters θ_0, θ_1 that minimize the SSE

$$\bullet \ \theta_0 = \ \bar{y} - \theta_1 \bar{x}$$

$$\boldsymbol{\theta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

Multivariate case

- Similarly, we can define a problem with *n* independent variables
- $x = (x_1, x_2, ..., x_n)$
- Multiple linear regression:
 - $\hat{y} = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$
 - $\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$

• as a scalar product of $x = (1, x_1, x_2 \dots x_n)$ and $\theta = (\theta_0, \theta_1 \dots \theta_n)$

- Solution:
 - $\bullet \quad \theta = (X^T X)^{-1} X^T Y$
- The coefficients help understand the relationship between the independent and dependent variables
 - E.g. θ_1 indicates the change in the predicted y for a one-unit increase in x_1 , all else being equal

Non-linear relationships

- We may want to model non-linear relationships
- We can *add new features*, non-linear transformations of the original one(s)
 - E.g., if we expect an inverse quadratic relationships between x and y, we introduce a new feature, ¹/_{x²}
- Then, we use a "classic" linear regression
 - The model learns a separate coefficient for each feature

•
$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \leftrightarrow \theta_0 + \theta_1 x + \theta_2 \frac{1}{x^2}$$

Polynomial regression

- We can introduce more flexibility in representing relationships with a polynomial regression
 - i.e., add new polynomial features up to degree *n*
 - Increases model capacity
 - Univariate: $\hat{y} = \theta_0 + \theta_1 x + \theta_2 x^2 \dots + \theta_n x^n$
- For multivariate problems, we can add either powers, or interactions (or both!)
 - Powers $(x_1^2, x_2^2, x_1^3 ...)$
 - Interactions $(x_1x_2, x_1x_2^2, ...)$, capturing relations between variables at different polynomial degrees
 - E.g., $x_1, x_2, x_3, n = 2 \rightarrow x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3$
 - The total number of features increases <u>combinatorially</u>!

Evaluation

Mean squared error (MSE)

•
$$MSE = \frac{1}{n} \sum_i (y_i - \hat{y}_i)^2$$

- Sometimes not normalized by # points
 - SSE (Sum of SE)
- RMSE (root MSE)
 - $RMSE = \sqrt{MSE}$
 - Same unit of measurement as the dependent var.
- Mean absolute error (MAE)

•
$$MAE = \frac{1}{n} \sum_i |y_i - \hat{y}_i|$$

Penalizes more «small» errors (w.r.t. MSE)

 R²: proportion of the variance in the dependent variable that is explained by the independent variables

$$R^2 = 1 - \frac{MSE}{\sigma^2}$$

- Edge cases:
 - Model predicts everything perfectly
 - $MSE = 0, R^2 = 1$ (upper bound)
 - Model is no better than predicting mean value of y

• $MSE = \sigma^2$, $R^2 = 0$

- Model is worse than predicting mean value
 - $MSE < \sigma^2$, $R^2 < 0$

Residual plots

- Residual plots: visual assessment of the goodness of fit of a regression model
 - Expecting residuals to be random scattered around zero, with constant variance, and no patterns

Regularization

Overfitting and underfitting

- Overfitting: the model is too complex and fits the training data too closely (high variance)
 - Poor performance on test data
- Underfitting: the model is too simple and does not capture the underlying relationships (high bias)
 - Poor performance on training and test data

High bias vs high variance

Underfitting (High bias)

Overfitting (High variance)

Preventing overfitting

We can generally prevent overfitting by:

- Reducing model capacity
 - (e.g., reduce the polynomial degree used)
- Increasing the dataset size
- Introducing regularization techniques

Regularization techniques

- Allow model to use high capacity, but penalize it if used unnecessarily
- Penalty term in the cost function
- L1 (Lasso) penalizes all non-zero weights linearly
 - Cost = $MSE + \lambda ||\boldsymbol{\theta}||_1$
 - Bring *θ* values to 0 if not strictly needed
- L2 (Ridge) penalizes ≈ 0 values less than ≈ 0 values

• Cost = $MSE + \lambda ||\boldsymbol{\theta}||_2$

• Allows θ values to be \approx 0 for small contributions

Other regressors

Tree-based regression

We can build decision trees for regression

- Real values used as targets instead of classes
- Node impurity computed as variance
- Each leaf assigns average value of points in it

Other techniques

- Random forests can be obtained by aggregating the output of decision tree regressors (e.g., by averaging them)
- In KNN, we can produce the predicted outcome as the (possibly weighted) average of the neighbors' "votes"
- Neural networks natively produce continuous outputs

