

Big data processing and analytics
September 12, 2024

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark Streaming application.
Consider the following Spark application

Create an RDD associated with a first input file

Temp1RDD = sc.textFile("Temperature1.txt")

Print on the standard output the number of elements of Temp1RDD

print("elements Temp1RDD "+str(Temp1RDD.count()))

Create an RDD associated with a second input file

Temp2RDD = sc.textFile("Temperature2.txt")

Print on the standard output the number of elements of Temp2RDD

print("elements Temp2RDD "+str(Temp2RDD.count()))

Create an RDD that contains the union of Temp1RDD and Temp2RDD

UnionRDD = Temp1RDD.union(Temp2RDD)

Computes the number of lines of UnionRDD

numLinesUnion = UnionRDD.count()

Print on the standard output the value of numLinesUnion

print("numLinesUnion "+str(numLinesUnion))

Store the content of UnionRDD in the output folder

UnionRDD.saveAsTextFile("outputFolder/")

Suppose the input files Temperature1.txt and Temperature2.txt are read from HDFS. Suppose this

Spark application is executed only 1 time. Which one of the following statements is true? d

 a) This application reads the content of Temperature1.txt 1 time and the content of

Temperature2.txt 1 time.

 b) This application reads the content of Temperature1.txt 2 times and the content of

Temperature2.txt 2 times.

 c) This application reads the content of Temperature1.txt 3 times and the content of

Temperature2.txt 3 times.

 d) This application reads the content of Temperature1.txt 4 times and the content of

Temperature2.txt 4 times.

 2. (2 points) Consider the following MapReduce application for Hadoop.

DriverBigData.java

/* Driver class */

package it.polito.bigdata.hadoop;

import ….;

/* Driver class */

public class DriverBigData extends Configured implements Tool {

 @Override

public int run(String[] args) throws Exception {

 int exitCode;

 Configuration conf = this.getConf();

 // Define a new job

 Job job = Job.getInstance(conf);

 // Assign a name to the job

 job.setJobName("Exercise 12/09/2024 - Question");

 // Set path of the input file/folder for this job

 FileInputFormat.addInputPath(job, new Path("inputFolder/"));

 // Set path of the output folder for this job

 FileOutputFormat.setOutputPath(job, new Path("outputFolder/"));

 // Specify the class of the Driver for this job

 job.setJarByClass(DriverBigData.class);

 // Set job input format

 job.setInputFormatClass(TextInputFormat.class);

 // Set job output format

 job.setOutputFormatClass(TextOutputFormat.class);

 // Set map class

 job.setMapperClass(MapperBigData.class);

 // Set map output key and value classes

 job.setMapOutputKeyClass(Text.class);

 job.setMapOutputValueClass(NullWritable.class);

 // Set reduce class

 job.setReducerClass(ReducerBigData.class);

 // Set reduce output key and value classes

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(NullWritable.class);

 // Set the number of reducers to 3

 job.setNumReduceTasks(3);

 // Execute the job and wait for completion

 if (job.waitForCompletion(true)==true)

 exitCode=0;

 else

 exitCode=1;

 return exitCode;

 }

 /* Main of the driver */

 public static void main(String args[]) throws Exception {

 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);

 System.exit(res);

 }

}

--MapperBigData.java

/* Mapper class */

package it.polito.bigdata.hadoop;

import …;

class MapperBigData extends

 Mapper<LongWritable, // Input key type

 Text, // Input value type

 Text, // Output key type

 NullWritable> { // Output value type

 protected void map(LongWritable key, // Input key type

 Text value, // Input value type

 Context context) throws IOException, InterruptedException {

 // Emit the pair (value, NullWritable) if line starts with "C"

 if (value.toString().startsWith("C") == true) {

 context.write(new Text(value), NullWritable.get());

 }

 }

}

--ReducerBigData.java

/* Reducer class */

package it.polito.bigdata.hadoop;

import …;

class ReducerBigData extends

 Reducer<Text, // Input key type

 NullWritable, // Input value type

 IntWritable, // Output key type

 NullWritable> { // Output value type

 // Define numLinesC

 int numLinesC;

 protected void setup(Context context) {

 // Initialize numLinesC

 numLinesC = 0;

 }

 protected void reduce(Text key, // Input key type

 Iterable<NullWritable> values, // Input value type

 Context context) throws IOException, InterruptedException {

 // Increment numLinesC

 numLinesC++;

 }

 protected void cleanup(Context context) throws IOException, InterruptedException {

 // Emit the pair (numLinesC, NullWritable))

 context.write(new IntWritable(numLinesC), NullWritable.get());

 }

}

Suppose that inputFolder contains the files Cities1.txt and Cities2.txt. Suppose the HDFS

block size is 1024 MB.

Content of Cities1.txt and Cities2.txt:

Filename (size and number of lines) Content

Cities1.txt (65 bytes – 8 lines) Beijing

Cairo

Delhi

Dhaka

Dortmund

Mexico City

Mumbai

São Paulo

Cities2.txt (39 bytes – 5 lines) Cairo

Chongqing

Delhi

Istanbul

Kolkata

Suppose we run the above MapReduce application (note that the input folder is set to

inputFolder/).

What is a possible output generated by running the above application?

a) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00002

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 2

part-r-00001 (1 line) 0

part-r-00002 (1 line) 0

b) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00002

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 1

part-r-00001 (1 line) 2

part-r-00002 (1 line) 0

c) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00002

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 1

part-r-00001 (1 line) 1

part-r-00002 (1 line) 1

d) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 part-r-00002

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the three part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 3

part-r-00001 (1 line) 0

part-r-00002 (1 line) 0

Part II

PoliSales is an international e-commerce company that asked you to develop two applications:

- a MapReduce program (Exercise 1)

- a Spark-based program (Exercise 2)

to address the analyses they are interested in. The applications can read data from the input files

described in the following.

 Products.txt

o Products.txt is a textual file containing information about the Products that are sold

by PoliSales. There is one line for each Product and the total number of distinct

Products is greater than 5,000,000. This file is large, and you cannot suppose the

content of Products.txt can be stored in one in-memory Java variable.

o Each line of Products.txt has the following format

 ProductID,Name,Category

where ProductID is the unique identifier of the Product, Name is the name

of ProductID, and Category is its category.

 For example, the following line

ID1,Galaxy S24 256GB Black,Smartphone

means that the Product with ProductID ID1 is characterized by the name

Galaxy S24 256GB Black and belongs to the Smartphone category.

Note that many Products can be associated to the same category.

 Prices.txt

o Prices.txt is a textual file containing information about the prices of the Products.

The price of each Product varies over time. There are potentially multiple lines for

each Product. This file is large, and you cannot suppose the content of Prices.txt can

be stored in one in-memory Java variable.

o Each line of Prices.txt has the following format

 ProductID,StartingDate,EndingDate,Price

where ProductID is the identifier of a Product, and StartingDate and

EndingDate are the beginning and end of the period of validity of the price

reported in the attribute Price for Product ProductID.

 For example, the following line

ID1,2021/01/31,2022/21/31,98.7

means the price associated with Product ID1 from January 31, 2021, to

December 31, 2022, was 98.70 euros. The format of StartingDate and

EndingDate is “YYYY/MM/DD”.

Note that the price of each Product varies over time. Every time there is a price

variation, a new line is inserted in Prices.txt with information about the new price

and its validity period. Each Product is associated with a single price in each period.

 Sales.txt

o Sales.txt is a textual file containing information about daily sales for each Product.

Sales.txt contains historical data about the last 30 years. This file is big and its

content cannot be stored in one in-memory Java variable. There is one line for each

combination (ProductID, Date) for the last 30 years.

o Each line of Sales.txt has the following format

 ProductID,Date,NumberOfProductsSold

where ProductID is the identifier of an Product, Date is a date, and

NumberOfProductsSold is an integer value representing the number of times

ProductID was sold on that Date.

 For example, the following line

ID1,2021/04/30,1234

means that on April 30, 2021, the Product identified by ID1 was sold 1234

times. The format of Date is “YYYY/MM/DD”.

Note that there is a many-to-many relationship between Products and Dates (i.e.,

the combination of attributes (ProductID, Date) is the "primary key" of Sales.txt).

Each Product is associated with all the dates of the last 30 years, and each date of

the last 30 years is associated with all Products. Even if a Product was not sold on a

specific date, there is a line for that combination in Sales.txt anyway, with

NumberOfProductsSold set to 0 (zero).

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliSales are interested in performing some analyses about the Product.

Design a single application based on MapReduce and Hadoop and write the corresponding Java

code to address the following point:

 Categories with the largest number of products. The application computes the number of

products associated with each Category and outputs only the Categories with the largest

number of products. Store the result in the output HDFS folder (one Category per output

line associated with its number of products). Output format: Category, Number of products

Suppose that the number of distinct Categories is limited and they can fit in main memory.

Suppose that the input is Products.txt and it has already been set.

Suppose that the name of the output folder has also already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce methods.

setup and cleanup if needed). The content of the Driver must not be reported.

 Use the following two specific multiple-choice questions to specify the number of instances

of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with the first

job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class,

o attributes/fields of the class (data type and name),

o personalized methods (if any), e.g., the content of the toString() method if you

override it,

o do not report the get and set methods. Suppose they are "automatically defined".

Answer the following two questions to specify the number of jobs (one or two) and the number

of instances of the reducer classes.

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

(a) 0

(b) exactly 1

(c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

(a) One single job is needed

(b) 0

(c) exactly 1

(d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliSales asked you to develop a single Spark-based application based either on

RDDs or Spark SQL to address the following tasks. The application takes the paths of the three

input files and two output folders (associated with the outputs of the following points 1 and 2,

respectively).

1. Products that decreased their total sales in 2021 with respect to the sales in 2019. The first

part of this application considers only the years 2019 and 2021. It selects the Products with

a total number of products sold in 2021 lower than the total number of products sold in

2019. Store the selected Products in the first output folder (one product per output line).

2. Most sold product(s) for each year. The second part of this application considers all input

data. It selects, for each year, the product(s) associated with the highest total annual sales

for that year. For each product and year, the total annual sales for that product is given by

the sum of the number of products sold in all days of that year. Store the result in the

second output folder, as pairs (year, ID of the most sold product for that year).

Note: For each year, many products might be associated with the highest annual sales.

Moreover, pay attention to the fact that the maximum annual sales can differ each year.

 You do not need to write Java imports. Focus on the content of the main method.

 Suppose both JavaSparkContext sc and SparkSession ss have already been set.

 Only if you use Spark SQL, suppose the first line of each file contains the header

information/the name of the attributes. Suppose, instead, there are no header lines if you

use RDDs.

 Please comment your solution by stating the meaning of the fields you intend to process

with each instruction, e.g., key=(product id, date), value=(category, year)

 If you need personalized classes, report for each of them:

o the name of the class,

o attributes/fields of the class (data type and name),

o personalized methods (if any), e.g., the content of the toString() method if you

override it,

o do not report the get and set methods. Suppose they are "automatically defined".

