

Data Management and Visualization

Politecnico di Torino

NoSQL with PyMongo – Practice 4

The practice purpose is to become familiar with MongoDB tools. You will be required to experience both

A. (legacy) the visual application Compass, provided by MongoDB,
B. the MongoDB python APIs (pymongo). In this second case, we have already set up a Colab notebook

to avoid local configuration problems.

The python side is highly recommended, since it is broader. Ask the teacher assistant if you have

problems with this path.

1. Problem specifications
The database contains Car Sharing information divided into two main collections: Bookings and Parkings. The

most relevant information for each collection is shown in Table 1 (Parkings) and 2 (Bookings).

Name Type Description

_id objectid Document identifier

address string Parking address of the vehicle

city string City location of the vehicle

engineType string Identifier of the engine type of the vehicle

exterior string String describing the external condition of

the vehicle during the parking

final_date date Date and hour of the end of the parking period

fuel int32 Fuel level (0-100) during the parking period

init_date date Date and hour of the beginning of the parking

period

interior string String describing the internal condition of

the vehicle during the parking

loc coordinates Coordinates of the parking location

plate int32 Identifier of the vehicle’s plate

smartphoneRequired Boolean Boolean value denoting if the smartphone is

required to

 start/finish the parking

vendor string Company owner of the vehicle

vin string Identifier of the chassis of the vehicle

Table 1: Parkings database info.

Name Type Description

_id objectid Document identifier

car_name string Vehicle’s model

city string City location where the vehicle has been booked

distance int32 Distance covered during the vehicle renting

driving object distance int32 Distance covered during the

vehicle renting (in meters)

duration int32 Duration of the renting (in

seconds)

engineType string Identifier of the engine type of the vehicle

exterior string String describing the external condition of the vehicle during

the renting

final_address string Address of the final position of the renting period

final_date date Date and hour of the end of the renting period

final_fuel int32 Fuel level (0-100) at the end of the renting period

init_address int32
Address of the starting position of the renting period

init_date date Date and hour of the beginning of the renting period

init_fuel int32
Fuel level (0-100) at the beginning of the renting period

interior string String describing the internal condition of the vehicle during the

renting

plate int32 Identifier of the vehicle’s plate

smartphoneRequired Boolean Boolean value denoting if the smartphone is required to

start/finish the parking

vendor string Company owner of the vehicle

walking object distance int32 Walk distance to reach the

vehicle (in meters).

duration int32
Duration of the walking trip to

reach the vehicle (in seconds).

Table 2: Bookings database info.

2. Database Connection (remote database)

A: Use, Install and configure

Compass

You can download MongoDB

Compass at

https://www.mongodb.com/try/do

wnload/compass.

It allows you also to perform

analysis on a local cluster, but we

will skip it for now.

B: Work with the Colab notebook

You can find the notebook with all the instructions at the following

link.

https://colab.research.google.com/drive/1nu3785xgJeSe3EMxk1xCh5

JIVvSuBxNn#scrollTo=tQ4uBOR-q1ms

Remember to go to File > Save a copy on Drive before make any

edit on the file. You can also download the file as a Jupyter Notebook

to run it locally if you want.

Now, you need to create a free cluster to upload the database (if you do not have already one)

with the following steps:

1. create a MongoDB account (https://www.mongodb.com/cloud/atlas/register)

2. Select “Build a Cluster” option (free cluster). The default settings are the ones set to get the account

completely free.

3. give a name to your cluster (default: cluster0)

4. Close the connection options (we will return here later)

5. Under Database Access, click on “Add New Database User”

a. select authentication method with password

b. In the section “Database User Privileges”, Select the role “Read and write to any

database” in the “Built-in Role” sub-section.

c. fill in the form and click on “Add User”.

6. Configure remote access by clicking on “Network Access”

a. click on “Add IP Address”

b. enter in the Access List Entry field 0.0.0.0/0

https://www.mongodb.com/try/download/compass
https://www.mongodb.com/try/download/compass
https://www.mongodb.com/try/download/compass
https://www.mongodb.com/try/download/compass
https://www.mongodb.com/try/download/compass
https://colab.research.google.com/drive/1nu3785xgJeSe3EMxk1xCh5JIVvSuBxNn#scrollTo=tQ4uBOR-q1ms
https://colab.research.google.com/drive/1nu3785xgJeSe3EMxk1xCh5JIVvSuBxNn#scrollTo=tQ4uBOR-q1ms
https://www.mongodb.com/cloud/atlas/register
https://www.mongodb.com/cloud/atlas/register
https://www.mongodb.com/cloud/atlas/register

7. Get string connection from MongoDB Atlas server

a. Under the “Database” page from the side menu, select “Clusters”. Now you can see the

cluster that you’ve created

b. click “Connect” near the newly created cluster and select “Drivers”

c. copy the connection string, similar to:

mongodb+srv://<user_db_name>:<db_password>@cluster0.kudqw.mongodb.net/?retryWrites
=true&w=majority&appName=<cluster_name>

• [Python Notebook] Paste the connection string into the appropriate field in the notebook

and Run the cell.

• [MongoDB Compass] On the left panel, go to the “Connections” section

o Click on “add connection” (+ sign)

o Paste the connection string and click “Connect”

8. Finally, download the following JSON files locally from the following link.

You can either create a Database, 2 collections, and add the data via Compass, or follow the instructions

on the notebook to create the database ‘lab4’ with pymongo and the set of collections.

3. Analyze the database using visualizations
1. (Bookings) Identify the most common percentage(s) of fuel level at the beginning of the renting period.

2. (Bookings) Identify the most common percentage(s) of fuel level at the end of the renting period.

3. (Parkings) Identify the time range(s) with most parking requests (init date).

4. (Parkings) Identify the time range(s) with most booking requests (end parking).

5. (Parkings) Visualize on the map the vehicles having the fuel level lower than 5%.

4. Querying the database

1. (Parkings) Find the plates and the parking addresses of the vehicles that begin the booking (end

parking) after 2017-09-30 at 6AM.

Hint: it is possible to use the function Date("<YYYY-mm-ddTHH:MM:ss>")

2. (Parkings) Find the addresses and the level of fuel of the vehicles that during the parking period had

at least 70% of fuel level. Order the results according to descending value of fuel level.

3. (Parkings) Find the plate, the engine type and fuel level for ‘car2go’ vehicles (vendor) with good internal

and external conditions.

4. (Bookings) For the renting that required a walking distance greater than 15 Km (to reach the vehicle),

find the hour and the fuel level at the beginning of the renting period. Order results according to

decreasing initial fuel level.

https://drive.google.com/drive/folders/1FQl8HRbZDTXR4279ZEsfUEm1fIdpOs1E?usp=sharing

5. Data Aggregation

1. (Bookings) Group documents according to their fuel level at the end of the renting. For each group,

select the average fuel level at the beginning of the renting period.

2. (Bookings) Select the average driving distance for each vendor. On average, for which vendor the users

cover longer distances?

Bonus Queries

1. (Parkings) Find the vehicles parked less than a mile far from Piazza San Carlo (coordinates: 7.683016,

45.067764).

Hint: use the operators $geoWithin and $centerSphere.

2. (Parkings) Repeat the query at the previous step using the coordinates of a place of personal interest in

Turin (e.g. Politecnico di Torino) using Open Street Maps to find the exact coordinates

(www.openstreetmap.org, inverse the coordinates order).

http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/
http://www.openstreetmap.org/

