
Materialized view and trigger – Practice 3 

 

 

 

 

 

 

 

Data Science and Database Technology 

Politecnico di Torino 

 

The purpose of this tutorial is to define materialized views that are useful for quickly responding to 
frequent queries from the data warehouse. 
The views created must then be kept updated appropriately, managing any changes made on the 
initial tables of the data warehouse. 

 

1. Connection to the database 
 

Populate the database with the data warehouse tables used in the first practice (download the zip on the course 
website). As in Lab1, for this practice you will use Oracle Live. For any detail, check Lab1 instructions 

 

 

2. Creation and updating of the materialized view with the use 
of CREATE MATERIALIZED VIEW in ORACLE 

 
2.1. Creation and update of materialized view 

Exercise 1.1 Starting from the data warehouse described in the first laboratory practice (and whose logical 
scheme is shown in the Table 1), define two materialized views useful for reducing the response times of at 
least three of the  6 queries listed below. 

 

    SQL QUERIES: 

 
1. Select the total income for each type of phone rate and for each month of the year 2003. Also select 

the total income, the total income for each type of phone rate regardless of the month, and the total  
income for each month regardless of the type of phone rate. 

2. Select the monthly number of calls and the monthly income. Associate the RANK() to each month 
according to its income (1 for the month with the highest income, 2 for the second, etc., the last month 
is the one with the least income). 

3. For each month in 2003, select the total number of calls. Associate the RANK() to each month 
according to its total number of calls (1 for the month with the highest number of calls, 2 for the 
second, etc., the last month is the one with the least number of calls). 

4. Separately by phone rate, select the total income of January 2003. 

5. Select the monthly income and the cumulative monthly income from the beginning of the year. 

6. Consider the year 2003. Separately for phone rate and month, analyze (i) the total income, (ii) the 
percentage of income with respect to the total revenue considering all the phone rates, (iii) the 
percentage of income with respect to the total revenue considering all the months. 

https://livesql.oracle.com/
https://www.polito.it/
https://dbdmg.polito.it/dbdmg_web/


 

Tables Description 

DWABD.TIMEDIM 

( 

ID_time INT NOT NULL, 

DateDay DATE NOT NULL, 

DayOfWeek CHAR(15) NOT NULL, 

DateMonth CHAR(15) NOT NULL, 

DateYear INT NOT NULL, 

PRIMARY KEY(ID_time) 

); 

 
Time dimension 

10 rows 

DWABD.PHONERATE 

( 

ID_phoneRate INTEGER NOT NULL, 

phoneRateType VARCHAR(20) NOT NULL, 

PRIMARY KEY(ID_phoneRate) 

); 

 
Phone rate 
dimension 

 
7 rows 

DWABD.LOCATION 

( 

ID_location INTEGER NOT NULL, 

City VARCHAR(20) NOT NULL, 

Province CHAR(20) NOT NULL, 

Region CHAR(20) NOT NULL, 

PRIMARY KEY(ID_location) 

); 

 
Place dimension 

1500 rows 

DWABD.FACTS 

( 

ID_time INTEGER NOT NULL, 

ID_phoneRate INTEGER NOT NULL, 

ID_location_Caller INTEGER NOT NULL, 

ID_location_Receiver INTEGER NOT NULL, 

Price FLOAT NOT NULL, 

NumberOfCalls   INTEGER NOT NULL, 

PRIMARY 

KEY(ID_time,ID_phoneRate,ID_location_Caller,ID_location_Receiver), 

FOREIGN KEY(ID_time) REFERENCES timeDim(ID_time), 

FOREIGN KEY(ID_phoneRate) REFERENCES phoneRate(ID_phoneRate), 

FOREIGN KEY(ID_location_Caller) REFERENCES location(ID_location), 

FOREIGN KEY(ID_location_Receiver) REFERENCES 

location(ID_location) 

); 

Fact table 

7809 rows 

Table 1 – Data warehouse table



Exercise 1.2 After creating the materialized views, make sure that these are suitably updated when any changes 
occur on the data. Which tables should be monitored to update the views created accordingly? 

 

Follow the steps below to create the logs and their view: 
 

STEP A: Try to modify the contents of the FACTS table as follows: 
 

insert into FACTS(Id_time, ID_phoneRate, ID_location_Caller, ID_location_Receiver, Price, 
NumberOfCalls) values(8,1,558,752,40000,150) 

 

insert into FACTS(Id_time, ID_phoneRate, ID_location_Caller, ID_location_Receiver, Price, 
NumberOfCalls) values(1,6,558,752,100,100) 

STEP B: Now check the new content of the materialized views, updating them with the following command: 

BEGIN 

DBMS_SNAPSHOT.REFRESH ('View_Name'); 
END; 

 

    How have the two materialized views changed? 
 

Exercise 1.3 (Optional) Try running the queries with and without materialized views and verify that the output 
obtained is the same in both cases. 

 



3. Update and management of views via Trigger 

 
Assuming that the CREATE MATERIALIZED VIEW command is not available, now create the materialized 
views defined in the previous exercise by following the steps listed: 

 

STEP 3.1 Create the structure of the materialized view with the following statement: 
 

CREATE TABLE VM1 (…) 

STEP 3.2 Populate the VM1 table with the necessary records using the following statement 

INSERT INTO VM1 (…) 
( SELECT … 
… ) 

 

Exercise: Now write the Triggers necessary to propagate the changes (insertion of a new record) made in 
the FACTS table to the materialized views created VM1 and VM2. 

 

Verify that the triggers are working correctly by performing the following and verifying that VM1 and VM2 
are updated accordingly: 

 

insert into FACTS(Id_time, ID_phoneRate, ID_location_Caller, ID_location_Receiver, Price, 
NumberOfCalls) values(8,2,558,752,40000,150) 

 
insert into FACTS(Id_time, ID_phoneRate, ID_location_Caller, ID_location_Receiver, Price, 
NumberOfCalls) values(1,7,558,752,100,100) 

 

On which of the two tables has an existing record been updated? On which one has a new record been 
inserted? 

 

Useful statements for trigger management: 
 

• Drop a trigger: DROP TRIGGER trigger_name; 

• Update or substitute an existing trigger: CREATE OR REPLACE TRIGGER trigger_name; 

• Visualized the created trigger: SELECT trigger_name, triggering_event, table_name, status, description, 
action_type, trigger_body            FROM user_triggers; 

 
• Visualize trigger errors: SELECT * FROM USER_ERRORS; 


	1. Connection to the database
	2. Creation and updating of the materialized view with the use of CREATE MATERIALIZED VIEW in ORACLE
	Table 1 – Data warehouse table

	3. Update and management of views via Trigger
	Useful statements for trigger management:


