
Lab 5
The objective of this laboratory is to start playing around with Apache Spark.

1. Problem specification
If you completed Lab 1, you should now have (at least one) files with the word frequencies in
the Amazon food reviews, in the format word\tfreq, where freq is an integer (a copy of the
output of Lab 1 is available in the HDFS shared folder /data/students/bigdata-01QYD/Lab2/).
Your task is to write a Spark application to filter these results, analyze the filtered data and
compute some statistics on them.

Task 1
The first filter you should implement is the following:

• Keep only the lines containing words that start with the prefix “ho”

The returned RDD contains the set of lines (word\tfreq) that satisfy the filtering operation.

Print on the standard output the following statistics, based on the content of the RDD
returned by the filtering operation:

• The number of selected lines
• The maximum frequency (maxfreq) among the ones of the selected lines (i.e., the

maximum value of freq in the lines obtained by applying the filter).

Task 2
Extend the previous application. Specifically, in the second part of your application, among
the lines selected by the first filter, you have to apply another filter to select only the most
frequent words. Specifically, your application must select those lines that contain words with
a frequency (freq) greater than 80% of the maximum frequency (maxfreq) computed before.

Hence, implement the following filter:

• Keep only the lines with a frequency freq greater than 0.8*maxfreq.

Finally, perform the following operations on the selected lines (the ones selected by applying
both filters):

• Count the number of selected lines and print this number on the standard output
• Save the selected words (without frequency) in an output folder (one word per line)

Task 3
Similarly to Lab 2, we want to evaluate the frequency distribution of all the words in the input
dataset. Considering the same input file (format word\tnumber), compute for each of the
following group the number of words with the associated frequency:

• Group 0: interval [0, 100), words with an associated frequency between 0 and 99
• Group 1: interval [100, 200), words with an associated frequency between 100 and

199
• Group 2: interval [200, 300), words with an associated frequency between 200 and

299

• Group 3: interval [300, 400), words with an associated frequency between 300 and
399

• Group 4: interval [400, 500), words with an associated frequency between 400 and
499

• Group 5: interval [500, +inf), words with an associated frequency of 500 or more

Example

Input file:

Word Number
Hello 1
World 99
Hadoop 501
Spark 500
BigData 342

Output file:
Group0 2
Group3 1
Group5 2

2. Testing the application

Run your application

1. Create a Jupyter notebook (select PySpark (Local)) and run you application on the input

HDFS folder /data/students/bigdata-01QYD/Lab2/. Set the name of the output folder in
your code.

a. Analyze the returned results (the statistics/results printed on the standard output
and the content of the output folder)

2. Create a Python script and execute it with the spark-submit command.
a. Note. In this version of the code prefix, input folder, and output folder must be

specified by means of three command line arguments (hint: use sys.argv[])
b. Analyze the returned results. They should be consistent with the previous ones.
c. Run your Python script two times:

i. Run it on the gateway by using the --master local option of spark-submit
ii. Run it on the nodes of the cluster by using the --master yarn option of

spark-submit

How to run your application

• Approach based on Jupyter notebooks

o Pyspark (Local) notebook - To run your application on the gateway
§ Open a browser and connect to jupyter.polito.it
§ Log in and open a “Pyspark (local)” notebook
§ Write your application in the notebook and run it on the gateway (data are

read from and stored on HDFS but driver and executors are instantiated
on the gateway)

o PySpark (Yarn) notebook - To run your application on the nodes of the cluster

Group Words in the group
0 Hello, World
1
2
3 BigData
4
5 Hadoop, Spark

§ Open a browser and connect to jupyter.polito.it
§ Log in and open a “Pyspark (Yarn)” notebook
§ Write your application in the notebook and run it on the nodes of the

cluster (data are read from and stored on HDFS and driver and executors
are instantiated on the nodes/servers of the cluster BigData@Polito)

• Approach based on a “standalone” python script (a textual file with the extension .py)

and the spark-submit command
o spark-submit

§ Write your Python application by using your preferred editor and save it in
a Python file (.py)

• To run a Spark script with spark-submit, your script must explicitly
create the SparkContext object. To do this, insert the following
lines of code at the beginning of your script

from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("Name of my application")
sc = SparkContext(conf = conf)

• Remember also to stop/close the SparkContext at the end of your
application

sc.stop()

§ Open a browser and connect to jupyter.polito.it
§ Log in and open a Terminal
§ Copy your Python script in the local file system of the gateway (use the

drag and drop approach)
§ Run your Python script by executing the following command in the

terminal
spark-submit --master yarn --deploy-mode client <your_script>

• Note that <your_script> must end by .py for Spark to interpret it as

Python application
• The driver is instantiated on the gateway (--deploy-mode client)

and the executors on the nodes of the cluster (--master yarn)
• You can use --master local if you want to run also the executors of

your application on the gateway (data are read from and stored on
HDFS but driver and executors are instantiated on the gateway
with the setting --master local --deploy-mode client)

⚠⚠⚠ Shut down JupyterHub container ⚠⚠⚠
As soon as you complete all the tasks and activities on JupyterHub environment,
please remember to shut down the container to let all your colleagues in all the sessions
connect on JupyterHub and do all the lab activities.

1. Go into File -> Hub Control Panel menu

2. A new browser tab opens with the “Stop My Server” button. Click on it and
wait till it disappears.

1.

2.

Click the “Stop My
Server” button

