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Large Language Models (LLMs) have significantly impacted numerous domains, including Software Engineering (SE). Many
recent publications have explored LLMs applied to various SE tasks. Nevertheless, a comprehensive understanding of the
application, effects, and possible limitations of LLMs on SE is still in its early stages. To bridge this gap, we conducted a
systematic literature review (SLR) on LLM4SE, with a particular focus on understanding how LLMs can be exploited to
optimize processes and outcomes. We selected and analyzed 395 research papers from January 2017 to January 2024 to answer
four key research questions (RQs). In RQ1, we categorize different LLMs that have been employed in SE tasks, characterizing
their distinctive features and uses. In RQ2, we analyze the methods used in data collection, preprocessing, and application,
highlighting the role of well-curated datasets for successful LLM for SE implementation. RQ3 investigates the strategies
employed to optimize and evaluate the performance of LLMs in SE. Finally, RQ4 examines the specific SE tasks where LLMs
have shown success to date, illustrating their practical contributions to the field. From the answers to these RQs, we discuss
the current state-of-the-art and trends, identifying gaps in existing research, and highlighting promising areas for future
study. Our artifacts are publicly available at https://github.com/xinyi-hou/LLM4SE_SLR.
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CCS Concepts: • General and reference → Surveys and overviews; • Software and its engineering → Software
development techniques; • Computing methodologies → Artificial intelligence.

Additional Key Words and Phrases: Software Engineering, Large Language Model, Survey

1 INTRODUCTION
In the field of language processing, traditional Language Models (LMs) have been foundational elements,
establishing a basis for text generation and understanding [295]. Increased computational power, advanced
machine learning techniques, and access to very large-scale data have led to a significant transition into the
emergence of Large LanguageModels (LLMs) [529, 561]. Trained with expansive and diverse data, these models
have demonstrated an impressive ability to simulate human linguistic capabilities, leading to many changes across
multiple work domains. With their capacity to learn frommassive corpora and to generate plausible text, LLMs are
blurring the line between human and machine-produced language. They provide researchers and engineers alike
with powerful tools to explore the complexity and richness of human communication, consequently sparking a
transformational period in the field of language processing and beyond.

Software Engineering (SE) – a discipline focused on the development, implementation, and maintenance
of software systems – is one of those areas reaping the benefits of the LLM revolution [277]. The utilization of
LLMs in SE primarily emerges from an innovative perspective where numerous SE challenges can be effectively
reframed into code, text, repository, or developer-data analysis tasks [454, 511]. Using LLMs to address these
SE tasks has shown a wealth of potential breakthroughs [33, 37, 211, 215, 216, 401, 429, 490, 491, 539, 555].
The use of LLMs is particularly influential for tasks such as requirements analysis [136, 555], which involves
analyzing textual requirements from various software stakeholders during software construction or maintenance,
program analysis [126, 215], which addresses imprecision and other limitations of traditional static analysis
tools, code summarization [144, 445], which involves yielding an abstract natural language depiction of a code’s
functionality, generation of well-structured code [518] and code artifacts like annotations [246], as well as program
repair [216, 572]. Codex, an LLM with 12 billion parameters, has demonstrated the ability to solve 72.31% of
complex Python programming challenges posed by humans [43]. GPT-4 [321], an LLM from OpenAI, has been
used with a strong performance in several SE tasks, encompassing code writing, understanding, execution, and
reasoning. It not only handles real-world applications and diverse coding challenges but also shows the ability to
explain results in natural language and generate code from pseudocode [30].

Simultaneously, researchers have embarked on a series of research activities regarding LLM-related works,
where a number of literature reviews or survey papers have been produced [36, 88, 508]. Table 1 summarises
some of the key ones as of the time of publishing this article. However, these related studies have limitations.
They either focus narrowly on a single SE task, such as the application of LLMs in software testing [450] and
natural-language-to-code (NL2Code) tasks [529], or they are primarily centered on Machine Learning (ML) or
Deep Learning (DL) models [454, 468, 511], overlooking more advanced and recently emerged LLM applications,
such as ChatGPT [319], which are increasingly finding applications within the SE field [271, 402, 429, 477].
Alternatively, some merely offer a preliminary exploration of the performance of LLMs in various SE tasks
through empirical experiments [75, 277, 402, 495, 524], or analyze existing partially relevant studies to reveal
the challenges in this field [86] without conducting a systematic literature review. Furthermore, some works
have investigated the application of Code LLMs in SE [548, 567], yet have not fully considered general LLMs
like ChatGPT and LLaMA [433], which are also being widely applied to various SE tasks [145, 326, 383, 499]. The
integration of LLMs within SE is a complex endeavor, requiring several key considerations including the choice
of the right model, comprehension of the unique features of different LLMs, devising pre-training and fine-tuning
strategies, handling of data, evaluation of outcomes, and surmounting implementation challenges [529]. Despite
the burgeoning interest and ongoing explorations in the field, a detailed and systematic review of LLMs’
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Table 1. State-of-the-art surveys related to LLMs for SE.

Reference Year Scope of models1 Scope of SE tasks SLR2 Time frame # Collected Papers
Yang et al. [511] 2022 DL General SE scope Ø 2015-2020 250
Watson et al. [468] 2022 DL General SE scope Ø 2009-2019 128
Wang et al. [454] 2022 ML, DL3 General SE scope Ø 2009-2020 1,209 (ML) + 358 (DL)
Zhang et al. [548] 2023 Code LLM General SE scope Ø 2017-2023 185
Zheng et al. [567] 2023 Code LLM General SE scope Ø 2021-2023 149
Fan et al. [86] 2023 LLM General SE scope × - Not specified
Zan et al. [529] 2023 LLM (12M+) NL2Code × 2020-2023 Not specified
Wang et al. [450] 2023 LLM (117M+) Software testing Ø 2019-2023 52
Our work 20244 LLM General SE scope Ø 2017-2024 395
1 “M” means million and “B” means billion. The numbers in parentheses indicate the parameter sizes of LLMs.
2 SLR stands for Systematic Literature Review. This column denotes whether the paper follows an SLR process.
3 ML and DL refer to Machine Learning and Deep Learning, respectively.
4 Initial draft was publicly shared in 2023 (https://arxiv.org/abs/2308.10620).

application in SE has been notably absent in the current literature. This gap signifies a need to more deeply
understand the relationship between LLMs and their use in SE. Our research aims to bridge this gap, providing
valuable insights to the community.

In this paper, we conduct an SLR on the utilization of LLMs in SE (LLM4SE). By mapping the current state-of-
the-art, pinpointing the key strengths, weaknesses, and gaps in the existing LLM4SE literature, and proposing
potential avenues for future research, our review aims to provide researchers and practitioners with a thorough
guide to the convergence of LLMs and SE. We anticipate that our findings will be instrumental in guiding future
inquiries and advancements in this rapidly evolving field. This work makes the following key contributions:

• We are the first to present a comprehensive SLR including 395 papers published between January 2017
and January 2024 that focus on the use of LLM-based solutions to address SE challenges. We conducted a
detailed analysis of the selected papers based on publication trends, distribution of publication venues,
etc.

• We have classified the LLMs utilized for the reported SE tasks and have provided a summary of the usage
and trends of different LLM categories within the SE domain.

• We describe the reported LLM data processing stages, encompassing data collection, categorization,
preprocessing, and representation.

• We discuss optimizers used for LLM4SE tasks, including tuning techniques, prevalent prompt engineering
techniques, and commonly employed evaluation metrics.

• We describe the key applications of LLM4SE encompassing a diverse range of 85 specific SE tasks, grouped
into six core SE activities – requirements engineering, software design, software development, software
quality assurance, software maintenance, and software management.

• We summarise key challenges of using LLMs for the SE field, and have suggested several key potential
research directions for LLM4SE.

Section 2 presents our research questions (RQs) and elaborates on our SLR methodology. The succeeding
Sections 3 to 6 are devoted to answering each of these RQs individually. Section 7 discloses the potential threats
to the validity of our study. Section 8 discusses the challenges yet to be overcome when employing LLMs to solve
SE tasks and highlights promising opportunities and directions for future research. Section 9 concludes the whole
paper.
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2 APPROACH
This SLR follows the methodology proposed by Kitchenham et al. [198, 199], used in most other SE-related
SLRs [230, 262, 353, 454]. Following the guidelines provided by Kitchenham et al., our methodology included
three main steps: planning the review (i.e., Section 2.1, 2.2), conducting the review (i.e., Section 2.3, 2.4), and
analyzing the basic review results (i.e, Section 2.5).

2.1 Research Questions
To provide a comprehensive overview of the LLM4SE field, it is important to fully comprehend how these models
are currently being applied in SE, the challenges they face, and their potential future research directions in SE.
Thus, we aim to provide an SLR of the application of LLMs to software engineering. This study thus aims to
answer the following research questions:

RQ1:What LLMs have been employed to date to solve SE tasks? RQ1 is designed to map out the landscape
of LLMs applied in the field of SE. It seeks to identify and categorize the various LLM architectures—such as
decoder-only, encoder-decoder, and encoder-only models—that have been leveraged to address diverse SE
challenges. This RQ aims to provide a comprehensive overview of how these models are being utilized and the
implications of their usage in this field.

RQ2: How are SE-related datasets collected, preprocessed, and used in LLMs? RQ2 examines the methods
used for the assembly, refinement, and application of datasets in the realm of LLMs for SE tasks. It aims to uncover
the strategies for dataset collection, the criteria for dataset selection, and the preprocessing steps essential for
making the data conducive for LLM training and application. Additionally, this question seeks to explore the
types of data that are most prevalent in SE-related LLM research and how these data types influence the modeling
and outcomes.

RQ3: What techniques are used to optimize and evaluate LLM4SE? RQ3 explores the use of different
optimization and evaluation techniques specific to LLMs in the context of SE. This includes an investigation
into Parameter Efficient Fine-Tuning (PEFT) methods and various prompting techniques that are tailored to
enhance LLM performance on SE tasks. Furthermore, this RQ aims to assess the range of evaluation metrics and
methodologies employed to gauge the effectiveness and impact of LLMs in SE, providing insights into how these
models are fine-tuned and assessed for their utility and efficiency.

RQ4: What SE tasks have been effectively addressed to date using LLM4SE? This RQ identifies the
range of SE tasks that have been successfully carried out using LLMs, offering a detailed view of the application
spectrum of LLM4SE. It seeks to identify the specific tasks within SE, such as code generation and program repair,
where LLMs have shown significant utility, and to explore the nature and scope of these applications.

2.2 Search Strategy
As shown in Fig.1, we employed the “Quasi-Gold Standard” (QGS) [534] approach for paper search. We conducted
a manual search to identify a set of relevant studies and extracted a search string from them.This search string was
then used to perform an automated search, and subsequently, a backwards and forwards snowballing search was
employed to further supplement our search results. This approach ensures both search efficiency and maximum
coverage, minimizing the risk of omission. Subsequently, we employed a series of relatively strict filtering steps
to obtain the most relevant studies. We followed five steps to determine the relevance of the primary studies:

(1) Select publication venues for manual search and select digital databases for automated search to ensure
coverage of all the selected venues.

(2) Establish QGS: Screen all papers for manual search and filter by inclusion/exclusion criteria (defined in
Table 3).

(3) Subjectively define the search string based on domain knowledge.
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Fig. 1. Study identification and selection process.

(4) Conduct an automated search using the search string defined in Step (3).
(5) Conduct snowballing search after performing study selection on the results of manual search and auto-

mated search.

2.2.1 Search Items. During the manual search, we selected six of the top SE conferences and journals (i.e., ICSE,
ESEC/FSE, ASE, ISSTA, TOSEM, and TSE, as shown in Table 2) and searched for papers that applied LLM4SE.
We systematically crawled a list comprising 4,618 published papers from the top venues. Following automated
scanning via scripts, we manually verified and identified 51 papers that were relevant to our research objectives.
These 51 relevant papers formed the basis for constructing the Quasi-Gold Standard (QGS). Our search string
needs to combine two sets of keywords: one pertaining to SE tasks, and the other related to LLMs. Only if the
paper contains both types of keywords, there is a higher probability that it is the paper we need. The complete
set of search keywords is as follows:

• Keywords related to SE tasks: Software engineering, Software development, Program*1, Software testing,
Software mainten*, SE, Software lifecycle, Software design*, Code representation, Code generation, Code
comment generation, Code search, Code localization, Code completion, Code summarization, Method name
generation, Bug detection, Bug localization, Vulnerability detection, Testing techniques, Test case generation,
Program analysis, Bug classification, Defect prediction, Program repair, Code clone detection, Bug report,

1The * symbol serves as a wildcard, representing any characters or character sequence. For example, “Program*” can match “Program”,
“Programming”, “Programmer”, and so on.
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Table 2. Publication venues for manual search.

Acronym Venues
ASE International Conference on Automated Software Engineering

ESEC/FSE Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
ICSE International Conference on Software Engineering

ISSTA International Symposium on Software Testing and Analysis
TOSEM Transactions on Software Engineering and Methodology

TSE Transactions on Software Engineering

Software quality evaluation, SATD detection, Code smell detection, Compiled-related, Code review, Software
classification, Code classification, Code change, Incident detection, Requirement extraction, Requirement
traceability, Requirement validation, Effort cost prediction, Mining GitHub/Github mining, Mining SO (Stack
Overflow)/SO mining, Mining app/App mining, Mining tag/Tag mining, Developer-based mining

• Keywords related to LLMs: LLM, Large Language Model*, Language Model*, LM, PLM, Pre-trained, Pre-
training, Natural Language Processing, NLP, Machine Learning, ML, Deep Learning, DL, Artificial Intelligence,
AI, Transformer, BERT, Codex, GPT, T5, Sequence Model*, Attention Model*, Transfer Learning, Neural
Network*, ChatGPT, GPT-*

It is important to note that the list of keywords related to LLMs that we set up includes Machine Learning,
Deep Learning, and other such terms that do not seem to be necessarily related to LLMs. The reason for this is
that we want to avoid omitting papers related to our research as much as possible, so the process of performing
automated searches expands our search scope.

2.2.2 Search Datasets. After determining the search string, we conducted an automated search across seven
widely used databases, which cover all published papers and many pre-prints of under review papers. Given
that the first paper about the Transformer architecture [438], which forms the basis for LLMs, was published in
2017, we focused our search on papers published from that year onward2. Two authors independently performed
the automated search, and the search results from each database were merged and deduplicated. Specifically,
we obtained 1,192 papers from IEEE Xplore, 10,445 papers from the ACM Digital Library, 62,290 papers from
ScienceDirect, 42,166 papers from Web of Science, 85,671 papers from Springer, 9,966 papers from arXiv, and
4,035 papers from DBLP.

2.3 Study Selection
2.3.1 Study Inclusion and Exclusion Criteria. Using our search strategy, we initially obtained 218,765 papers that
potentially relate to our research. Next, we needed to further evaluate the relevance of these papers based on
inclusion and exclusion criteria (To ensure that our inclusion and exclusion criteria were sufficiently objective
and rational, we designed these criteria following several state-of-the-art SLR papers [304, 454, 468, 511].), as
shown in Table 3, so that the selected papers can directly address our research questions. The paper selection
process, as illustrated in Fig. 1, consists of six phases. In the first phase, we conducted automated filtering to
exclude papers with less than 8 pages [23, 454] (Exclusion criteria 1), reducing the number of papers to 80,611.

In the second phase, we examined the titles, abstracts, and keywords of the papers to identify those that include
relevant LLM-related keywords. We then expanded the search scope to avoid missing relevant papers, including
ML, DL, and other related keywords that may not directly correspond to LLM. The purpose of this phase is to
narrow down the scope and filter out papers directly related to LLM (Inclusion criteria 1). Papers that are filtered
out in this phase are then manually reviewed in the fifth phase. Additionally, we excluded 448 non-English written
literature (Exclusion criteria 7). After the second phase, the number of papers was reduced to 5,078.
2The cut-off date for the paper collection process of this version is January 31, 2024.

ACM Trans. Softw. Eng. Methodol.

 



Large Language Models for Software Engineering: A Systematic Literature Review • 7

Table 3. Inclusion criteria and Exclusion criteria.

Inclusion criteria
1) The paper claims that an LLM is used.
2) The paper claims that the study involves an SE task.
3) The paper with accessible full text.
Exclusion criteria
1) Short papers whose number of pages is less than 8.
2) Duplicate papers or similar studies with different versions from the same authors.
3) Studies belonging to books, thesis, monographs, keynotes, panels, or venues not executing a full

peer-review process.
4) Tool demos and editorials.
5) The paper is published in a workshop or a doctoral symposium.
6) The paper is a grey publication, e.g., a non-refereed technical report or thesis.
7) Non-English written literature.
8) The paper mentions the use of LLMs without describing the employed techniques.
9) The paper leverages SE methods to enhance LLMs, rather than focusing on using LLMs for SE tasks.

Table 4. Checklist of Quality Assessment Criteria (QAC) for LLM studies in SE.

ID Quality Assessment Criteria
QAC1 Is the study relevant to SE tasks?
QAC2 Does the study utilize LLMs?
QAC3 Is the research not a secondary study, such as an SLR, review, or survey?
QAC4 Was the research published in a high-repute venue?
QAC5 Is there a clear motivation for the research?
QAC6 Does the study provide a clear description of the techniques used?
QAC7 Are the experimental setups, including experimental environments and

dataset information, described in detail?
QAC8 Does the study clearly confirm the experimental findings?
QAC9 Are the key contributions and limitations of the study discussed?

QAC10 Does the study make a contribution to the academic or industrial community?

The third phase involves identifying the venues of the papers (Exclusion criteria 3). We extracted publication
information such as “journal”, “URL”, “DOI”, and “series” to determine the publication sources. For papers from
arXiv in 2023 and 2024, we chose to retain them, considering that this field is emerging and many works are in
the process of submission. Although these papers did not undergo peer review, we have a quality assessment
process to eliminate papers with low quality. This step resulted in 1,172 papers.

In the fourth phase, we merged and deduplicated the remaining papers from the seven databases and the
manually searched paper list (Exclusion criteria 2), resulting in 810 papers. We then reviewed the full texts of
the papers and excluded 190 papers that were grey publications or were published in workshops or doctoral
symposiums (Exclusion criteria 4, 5, 6). By further assessing the quality of the papers, we identified 382 papers
directly relevant to our research. This phase primarily involved excluding papers that mentioned LLMs but did
not directly apply them, such as papers that only discussed LLMs in future work or focused on evaluating the
performance of LLM-enabled tools [450] (Exclusion criteria 8). For systematic views, survey, and review papers,
we have retained them and will assess their content during the quality assessment phase to determine their
relevance to our research.

2.3.2 Study Quality Assessment. A well-crafted quality assessment can help to prevent biases introduced by
low-quality studies and can indicate to readers where caution about conclusions should be drawn [510]. We
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Fig. 2. Overview of the selected 395 papers’ distribution.

formulated ten Quality Assessment Criteria (QAC), as shown in Table 4. These aim to assess the relevance, clarity,
validity, and significance of included papers. We used a scoring system of -1, 0, 1 (irrelevant/unmet, partially
relevant/met, relevant/fully met). The first three questions were designed for the remaining 382 papers in the fifth
stage. If QAC1, QAC2, or QAC3 received a score of -1, there is no need to proceed with QAC4-QAC10, and the
paper can be excluded directly. QAC4-QAC10 involved assessing the content of the papers using a scoring system
of 0, 1, 2, 3 (poor, fair, good, excellent). Finally, we calculated the total score of QAC4-QAC10 for each paper. For
published papers, the maximum score for QAC4-QAC10 should be 21 (3 × 7). We retained papers with a score of
16.8 (21 × 0.8) or above. For unpublished papers on arXiv, the score for QAC4 is always 0, and the maximum
score for QAC5-QAC10 should be 18 (3 × 6). We retained papers with a score of 14.4 (18 × 0.8) or above. After
this quality assessment, we obtained a final set of 382 papers.

2.4 Snowballing Search
To identify any additional possibly relevant primary studies, we conducted a snowballing search. Snowballing
refers to using the reference list of a paper or the citations to the paper to identify additional papers. Snowballing
can benefit us by not only looking at the reference lists and citations ,but also looking at where papers are
actually referenced and where papers are cited. Using the references and the citations respectively is referred to
as backward and forward snowballing.

Before conducting snowballing, a set of initial papers needs to be prepared. In this study, the initial paper
list consists of the remaining 382 papers after the quality assessment. We performed forward and backward
snowballing, which resulted in the collection of 3,964 and 9,610 papers, respectively. After initial deduplication,
we were left with 5,152 papers. We then conducted the full study selection process on these 5,152 papers, including
deduplicating them with the 382 papers from performing snowballing on the initial list. As a result, we obtained
an additional 13 papers.

2.5 Data Extraction and Analysis
We thus finally obtained 395 relevant primary study papers after searching and snowballing. Fig. 2 presents an
overview of the distribution of the included papers. As shown in Fig. 2 (a), 154 papers are published in peer-
reviewed venues. ICSE is the most common of these venues, with a contribution of 41 papers. Other venues with
noteworthy contributions include TSE, ESEC/FSE, and TOSEM, contributing 14, 12, and 11 papers respectively.
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Fig. 3. Topics discussed in the collected papers.

Table 5. Extracted data items and related research questions (RQs).

RQ Data Item
1,2,3,4 The category of SE task
1,2,3,4 The category of LLM

1,4 Characteristics and applicability of LLMs
2 The adopted data handling techniques
3 The adopted weight training algorithms and optimizer
3 The selected evaluation metrics
4 The SE activity to which the SE task belongs
4 The developed strategies and solutions

The remaining 241 papers are published on arXiv, an open-access platform that serves as a repository for scholarly
articles. This finding is not surprising since much new LLM4SE research is rapidly emerging and thus many
works are just completed and are likely in the peer review process. Despite the non-peer-reviewed nature of
these papers, we have performed a rigorous quality assessment process on all collected papers, to ensure the
quality of validity of our findings. This approach allows us to include all high-quality and relevant publications
while maintaining high research standards.

Fig. 2 (b) shows the temporal distribution of the included papers. The number of publications has seen a rapidly
growing trend since 2020. In 2020 and 2021, there are only 7 and 13 relevant papers, respectively. However, by
2022, the number of papers has increased dramatically to 56. What’s surprising is that, in 2023 alone, the number
of published papers has already reached 273. And within just one month in 2024, 46 relevant papers are published.
This rapid growth trend demonstrates that there is a growing research interest in the domain of LLM4SE.

In order to visualize the main content of our collection of papers, we generated a word cloud based on the
abstracts of 395 papers as shown in Fig. 3. The most frequently occurring words include “code”, “LLM”, “language”,
“model”, “large”, “task”, “software”,“generation”, “performance”, and “program”, clearly indicating the main themes
explored in these papers. The terms “code” and “software” emphasize the core elements of software engineering,
while “LLM”, “large”, “language” and “model” denote the use of large language models in a variety of tasks. The
terms “generation”, “task”, and “program” emphasize the use of the LLM for automatic code generation and other
SE tasks. In addition, “performance” reflects the evaluation and assessment of the effectiveness of LLM in SE
applications. The word cloud provides further visual evidence that the literature we have collected is closely
related to our research topic.

We then conducted data extraction during the full-text review. This extraction phase collected all relevant data
that would facilitate a comprehensive and insightful response to the RQs outlined in Section 2.1. As depicted in
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Fig. 4. Distribution of the LLMs (as well as LLM-based applications) discussed in the collected papers. The numbers in
parentheses indicate the count of papers in which each LLM has been utilized.

Table 5, we extracted data including the classification of SE tasks, their corresponding activities, as well as the
category, characteristics, and applicability of the LLMs. With this collected data, we systematically analyzed the
relevant aspects of LLM4SE.

3 RQ1: WHAT LLMS HAVE BEEN EMPLOYED TO DATE TO SOLVE SE TASKS?

3.1 Large Language Models (LLMs)
Pre-trained language models (PLMs) have demonstrated impressive capabilities in solving various NLP tasks [203,
382, 470, 561]. Researchers have observed that scaling up the model sizes significantly enhances their capacity,
leading to remarkable performance improvements when the parameter scale surpasses a certain threshold [138,
382, 424]. The term “Large Language Model” (LLM) was introduced to distinguish language models based on
their parameter size, specifically referring to large-sized PLMs [561]. However, we note that the literature lacks a
formal consensus on the minimum parameter scale for LLMs, as the model’s capacity is intertwined with both
data size and total compute [450]. In this paper, we adopt the LLM scope division and taxonomy introduced by
Pan et al. [327] and categorize the mainstream LLMs investigated in this study into three groups according to
their architectures: encoder-only, encoder-decoder, and decoder-only LLMs. This taxonomy and relevant models
are shown in Fig. 4. We have included the LLMs used by each work and their parameter sizes (if declared in the
paper) in our public repository: https://github.com/xinyi-hou/LLM4SE_SLR. Additionally, Table 6 summarizes
the LLMs with different architectures suitable for different types of SE tasks.
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Table 6. Summary of LLMs with different architectures used in SE tasks.

Model Type Example of SE tasks
Encoder-only Understanding Code Understanding

Bug localization
Vulnerability detection

Encoder-Decoder Understanding and Generation Code summarization
Code translation
Program repair

Decoder-only Generation Code generation
Code completion
Test case generation

Encoder-only LLMs, such as BERT [65] and its variants [93, 119, 212, 261], use only the encoder component
to process and encode input into hidden representations, capturing word relationships and context. BERT’s
bidirectional attention mechanism considers both the left and right context of each word. In software engineering
(SE), models like CodeBERT [93], GraphCodeBERT [119], RoBERTa [261], and ALBERT [212] are widely used.
Specialized models such as BERTOverflow [417] and CodeRetriever [235] have been developed for SE applications,
leveraging program structure and novel pre-training tasks. For example, CodeBERT uses token prediction to
enhance the understanding of programming languages for tasks like code completion and bug detection [93].
GraphCodeBERT incorporates edge-type prediction to understand code structure, aiding in tasks like code
summarization and analysis [119]. These models excel in tasks requiring a nuanced understanding of sentences
or code snippets, such as code review, bug report comprehension, and named entity recognition related to code
entities [19, 232, 299, 345, 381, 504].
Encoder-decoder LLMs incorporate both encoder and decoder modules [438]. The encoder ingests the input
sentence and encodes it into a hidden space, effectively capturing the underlying structure and semantics.
This hidden representation serves as an intermediary language, bridging the gap between diverse input and
output formats. Conversely, the decoder utilizes this hidden space to generate the target output text, translating
the abstract representation into concrete and contextually relevant expressions. Models such as PLBART [5],
T5 [351], and CodeT5 [466] embodies this architecture. Further advancements are evident in CodeT5+ [463],
while AlphaCode [238] and CoTexT [339] showcase the architecture’s adaptability to various SE tasks. The
encoder-decoder design offers flexible training strategies and is proficient in handling multifaceted tasks such as
summarization, translation, and question-answering. Within the field of SE, this ability has been successfully
applied to tasks like code summarization [9, 116], code translation [165, 507], and program repair [285, 367].
The encoder module’s capacity to understand and represent both the structure and semantics of code is pivotal,
allowing the decoder to translate this comprehension into concise, human-readable summaries.
Decoder-only LLMs, such as the GPT series (GPT-1 [349] to GPT-4 [321]) and their derivatives like ChatGPT [319],
generate output text through sequential token prediction without relying on an encoder. They have been used in
various SE tasks, with specialized versions like CodeGPT [270], InstructGPT [322], Codex [43], and Copilot [110]
being fine-tuned for specific SE applications. Open-source models like GPT-J [446], GPT-Neo [28], GPT-NeoX [27],
LLaMA [433], and Vicuna [52] also follow this architecture. Decoder-only LLMs are usually more suitable for
various generation tasks, such as code generation and code completion. These models can generally perform
downstream tasks from a few examples or simple instructions without adding prediction heads or fine-tuning,
making them valuable tools in SE research. 2022 marked a surge in the development of decoder-only LLMs,
a trend that gained further momentum in 2023, notably with the launch of commercial products by
leading Internet companies. For example, Google launched Gemini [113], Meta introduced LLaMA [433] and
Llama 2 [434], and Anthropic unveiled Claude [18], etc. Contrary to LLMs such as GPT-4 and its derivative
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application, ChatGPT, released by OpenAI, which were promptly integrated into SE tasks, these new additions
have not yet found widespread application within the SE field. Their potential remains largely unexplored, with
opportunities for further assessment and utilization in specific tasks and challenges. The continued advancement
of these models emphasizes the active exploration and innovation within decoder-only architectures.
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Fig. 5. Trends in the application of LLMs with different architectures in SE tasks over time.

3.2 Trend Analysis
As shown in Fig. 5, in the span from 2020 to 2024, the architecture of LLMs has witnessed notable shifts in
preference and application within SE tasks. The specific choices between decoder-only, encoder-decoder, and
encoder-only structures have shaped the direction of research and solutions in the SE domain [480]. This analysis
explores trends in the adoption of these architectures over the years, reflecting the evolving dynamics of LLM for
SE tasks.
Evolution of LLM architectures in 2021. The year 2020 saw research papers predominantly concentrating on
encoder-only LLMs for SE tasks, evidenced by a total of eight papers. Decoder-only LLMs or encoder-decoder
LLMs were scarcely featured in that year’s research. A marked change occurred in 2021. Out of 19 papers in
2021, nine were dedicated to decoder-only LLMs, constituting 47.37% of the research. Additionally, two papers, or
10.53%, focused on encoder-decoder LLMs. Encoder-only LLMs witnessed a slight decline, representing 42.1%
of the field with eight papers. This rapid transition can be linked to the generative capability of decoder-only
LLMs. Researchers [213, 370, 402] found that these models, e.g., GPT series, requiring minimal fine-tuning, could
produce not only syntactically correct but also functionally relevant code snippets. Their proficiency in grasping
the context of code quickly made them a preferred choice.
Diversity of LLM architectures in 2022. 2022 experienced a significant increase in diversity, with more
varied LLM architectures finding representation. Out of a total of 142 papers, 73 were centered around decoder-
only LLMs, comprising 51.41% of the studies. Encoder-decoder LLMs made their presence known in 17 papers,
accounting for 11.97%. Meanwhile, encoder-only LLMs led the field slightly with 52 papers, capturing 36.62% of
the research interest. This diverse distribution suggests an exploration phase where researchers were actively
assessing and leveraging different architectures to suit varied needs and challenges. The near-equal interest
across different architectures underscores the field’s richness, indicating that no single approach had become the
definitive choice.
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Dominance of the decoder-only architecture in 2023. 2023 signaled a strong shift towards decoder-only
LLMs. A very large 432 instances of utilizing decoder-only LLMs were recorded across 195 unique papers,
reflecting that a single paper might employ multiple such models. These papers focusing on decoder-only LLMs
constituted a significant 70.7% of the total research papers in our selected primary studies this year. In comparison,
encoder-decoder LLMs were the subject of 85 papers, contributing 13.91%, while encoder-only LLMs appeared to
stabilize, with 94 papers, representing 15.39% of the 2023 research landscape. This trend signifies a shift in focus
and resources toward exploring and harnessing the decoder-only architecture as the primary approach in many
current and future LLM4SE research and applications.
Exploration of the LLM architecture in 2024. The initial trends in January 2024 showcase the ongoing
evolution of LLM architectures. Among the 120 papers examined, decoder-only LLMs continued to maintain a
prominent position, with 77 papers dedicated to this architecture, constituting 64.17% of the research. Encoder-
decoder LLMs appeared in 24 papers, representing 20% of the total, while encoder-only LLMs were featured in 19
papers, making up 15.83%. Although there is a slight decrease in the dominance of decoder-only architectures
compared to the previous year, they still hold a central role. The persistent exploration of encoder-decoder
and encoder-only architectures suggests an enduring interest in diverse configurations within the SE research
community.
Criteria for LLM selection in SE tasks.The selection of an LLM for SE tasks should involve careful consideration
rather than arbitrary choice. Key factors guiding this selection encompass themodel’s proficiency in understanding
the context of code, its ability to generate relevant content, responsiveness to fine-tuning, and demonstrated
performance on SE-specific benchmarks [225, 239, 493]. Given the stringent syntactical rules and functional
requirements inherent to SE tasks, models capable of seamlessly integrating these complex aspects were typically
favored.
Task-specific fine-tuning. A notable trend is the customization of LLMs for precise SE tasks [161, 232, 538]. By
fine-tuning models with datasets tailored to specific functions such as bug detection or code review, researchers
were able to achieve marked performance improvements [56, 205].

In conclusion, the evolution of LLMs for SE, transitioning from encoder-only to decoder-only architectures,
highlights the field’s vibrancy and adaptability. This shift has fundamentally altered the approach to SE tasks,
reflecting the ongoing innovation within the discipline.

RQ1 - Summary

(1) There are more than 70 different LLMs used for SE tasks in our selected primary studies. Based on
the underlying architecture or principles of different LLMs, we classified the summarized LLMs into three
categories, i.e., decoder-only, encoder-decoder, and encoder-only LLMs.
(2) We observed that each LLM architecture serves a specific purpose in SE tasks, with encoder-only LLMs
focusing on comprehensive understanding, encoder-decoder LLMs used for tasks requiring understanding of
input information followed by content generation, and decoder-only LLMs being more suitable for generation
tasks.
(3) We analyzed the trend of LLM usage for SE tasks. The most widely used LLMs are with decoder-only
architectures. There are over 45 LLMs in the decoder-only category and 195 papers have researched the
application of decoder-only LLMs to SE tasks.

4 RQ2: HOW ARE SE-RELATED DATASETS COLLECTED, PREPROCESSED, AND USED IN LLMS?
Data plays a crucial role in the LLM training phase [415]. First, data is collected to obtain diversity and richness
to ensure that the model can cope with different scenarios and situations. Second, data is classified to clarify
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the training objectives of the model and avoid confusion and misinformation. The preprocessing of data is
indispensable to clean and transform the data to improve its quality. Finally, data is formatted into a structure
suitable for model processing, allowing the LLM to learn the data’s features and patterns effectively. We analyze
the reported processes of data collection, data classification, data preprocessing, and data representation in our
selected primary studies on LLM4SE.

4.1 How are the datasets for training LLMs sourced?
Data is an indispensable and critical factor in training LLMs, which determines the generalization ability,
effectiveness, and performance of the models [415]. Adequate, high-quality, and diverse data is critical to
allow models to fully learn features and patterns, optimize parameters, and ensure reliability in validation
and testing. We first investigate the methods used to obtain the dataset. By analyzing the methods of data
collection, we divided the data sources into four categories: open-source datasets, collected datasets, constructed
datasets, and industrial datasets. Open-source datasets [38, 190, 451, 531] refer to publicly accessible collections
of data that are often disseminated through open-source platforms or repositories. For example, datasets like
HumanEval [43], which consists of 164 manually crafted Python problems, each accompanied by its respective
unit tests. The open-source nature of these datasets ensures their credibility and allows for community-driven
updates, making them a reliable resource for academic research. Collected datasets [150, 287, 381, 429] are those
that researchers compile directly from a multitude of sources, including but not limited to, major websites, forums,
blogs, and social media platforms. For instance, researchers [35, 374, 475, 504] often scrape data from Stack
Overflow [324] threads or GitHub [109] issues comments to create a dataset tailored to their specific research
questions. Constructed datasets [84, 186, 202, 535] are specialized datasets that researchers create by modifying or
augmenting collected datasets to better align with their specific research objectives. These modifications can
be carried out through manual or semi-automatic methods and may include the generation of domain-specific
test sets, annotated datasets, or synthetic data. For example, researchers often take a collected dataset of code
snippets and manually annotate them with bug types to create a constructed dataset for studying automated
program repair techniques [89, 174, 485]. Industrial datasets [11, 292, 464] are those obtained from commercial or
industrial entities and often contain proprietary business data, user behavior logs, and other sensitive information.
These datasets are particularly valuable for research that aims to address real-world business scenarios. However,
the acquisition of such datasets is often complicated by issues related to business confidentiality and data privacy.
For example, in a collaborative effort with China Merchants Bank (CMB), Wang et al. [464] were able to access
21 projects from CMB’s repositories. Access to such data would likely require non-disclosure agreements and
other legal safeguards to protect business interests. Each of these dataset types offers unique advantages and
challenges, and the choice between them should be guided by the specific requirements and constraints of the
research project at hand.

Fig. 6 shows the collection strategies of LLM-related datasets. As can be seen from the data in the figure,
235 studies used open-source datasets for training LLMs. One of the main reasons for using open-source
datasets in LLM training is their authenticity and credibility. Open-source datasets usually contain real-world
data collected from various sources (such as relevant studies that have been conducted), which makes them
highly reliable and representative of real-world scenarios. This helps LLMs learn from real examples to better
understand real-world applications and improve their performance. Second, since LLMs are a topic that has just
recently emerged, a lack of suitable training sets does exist. Therefore, researchers often collect data from sites
such as Stack Overflow and GitHub and build datasets to make the data more composite for SE tasks. Among
the 395 papers we studied, we discovered that only six studies utilized industrial datasets. This suggests
a potential misalignment between the properties of datasets used in academic research and those encountered in

ACM Trans. Softw. Eng. Methodol.

 



Large Language Models for Software Engineering: A Systematic Literature Review • 15

235

49
84

6
0

60

120

180

240

300

Open-source

datasets

Collected

datasets

Constructed

datasets

Industrial

datasets

N
um

be
r 

of
 p

ap
er

s

Fig. 6. The collection strategies of LLM-related datasets.

real-world industrial contexts. This divergence underscores the need for future research to investigate industrial
datasets, thereby ensuring that LLMs are applicable and robust across both academic and industrial scenarios.

Note that some studies use multiple datasets that span different categories, e.g., Xu et al. [495] evaluated the
performance of Codex, GPT-J, GPT-Neo, and other LLMs on SE tasks, and Mastropaolo et al. [289] investigated
the use of T5 in several code-related tasks such as fixing bugs and generating code comments. For different LLMs
or different SE tasks, researchers may use different training datasets. On the other hand, some papers focus on
exploring how existing LLMs (e.g., ChatGPT) are used in SE tasks [477] and do not specify the dataset used for
model training, as these LLMs like ChatGPT often do not require users to prepare training data themselves for
general usage scenarios.

4.2 What types of SE datasets have been used in existing LLM4SE studies?
Data types play a pivotal role in shaping the architecture and selection of LLMs, as they directly influence the
extraction of implicit features and subsequent model decisions[35, 107, 392, 506]. The choice of data types can
significantly impact the overall performance and generalization ability of the LLMs. We examine and classify the
types of SE datasets employed in LLM4SE studies. By investigating the relationship between data types, model
architectures, and performance, we seek to shed light on the critical role of data types in the success of LLM4SE
applications.
Data type categorization. We classified the data types of all datasets into five categories: code-based, text-based,
graph-based, software repository-based, and combined data types. Table 7 describes the specific data included in
the data types corresponding to the datasets we summarized from the 395 studies. We can find that most of the
studies used text-based datasets, accounting for a total of 151. The dominance of text-based datasets in
training LLMs for SE tasks highlights the models’ exceptional natural language processing capabilities. These
LLMs excel in understanding and processing textual data, making them an ideal choice for tasks that involve
code comprehension, bug fixing, code generation, and other text-oriented SE challenges. Their ability to process
and learn from vast amounts of text data enables them to provide powerful insights and solutions for various SE
applications.

Themost prevalent type of data utilized in training LLMs for SE tasks is programming tasks/problems
with 42 instances observed among the surveyed papers. This dominance can be attributed to the diverse and
challenging nature of programming problems, which provide LLMs with opportunities to generalize knowledge
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Table 7. Data types of datasets involved in prior studies.

Category Data type Total
Text-based Programming tasks/problems (42) Prompts (33) 151

datasets SO (i.e. Stack Overflow) posts (12) Bug reports (11)
Requirements documentation (9) APIs/API documentation (8)
Q&A pairs (6) Vulnerability descriptions (4)
Reviews (4) Logs (3)
Methods (3) Project issues (3)
Code comments (2) Theorems (2)
Buggy text (1) Dockerfiles (1)
Outage descriptions (1) Semantic merge conflicts (1)
Site text (1) Software development tasks (1)
User intents (1) Software specifications (1)
User reviews (1)

Code-based Source code (60) Bugs/Buggy code (16) 103
datasets Vulnerable source code (8) Patches (4)

Code changes (3) Test suites/cases (3)
Bug-fix pairs (2) Error code (2)
Error-fix pairs (1) Flaky test cases (1)
Identifiers (1) Labeled clone pairs (1)
Packages (1)

Graph-based GUI Images (1) 1
datasets
Software Code repository (9) Android apps (3) 20

repository Issues and commits (3) Pull-requests (2)
-based datasets Industrial projects (1) Open-source projects (1)

Web applications (1)
Combined Programming tasks and test suites/cases (17) Source code and comments (12) 55

datasets Programming tasks and solutions (8) Source code and description (3)
Code-text pairs (2) Souce code and API usage sequences (2)
Source code and test suites/cases (2) Bug report and test suites/cases (1)
Buggy code and comments (1) Buggy code and solutions (1)
Code files and summaries (1) Binary code and related annotations (1)
Failing test code and error messages (1) Source code and Q&A pairs (1)
Source code, methods, and logs (1) Vulnerable code and description (1)

*See Appendix A for the full table including references.

and skills across various SE challenges, fostering a robust understanding of software concepts and enhancing
performance across a wide range of tasks, including code generation, code completion, and code summarization,
etc. Prompts follow closely behind programming tasks, with 33 instances observed in the surveyed papers,
providing task-specific guidance to LLMs, serving as cues or instructions for the models, and helping them
understand the context and requirements of SE tasks. This combination helps the models develop a robust
understanding of software concepts and perform well in a wide range of tasks. There are also SO (i.e., Stack
Overflow) posts (12), bug reports (11), etc., which are among the more numerous data types in text-based datasets.

The predominance of source code (60) as the most abundant data type in code-based datasets can be attributed
to its fundamental role in SE. Source code serves as the foundation of any software project, containing the logic
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and instructions that define the program’s behavior.Therefore, having a large volume of source code data is crucial
for training LLMs to understand the intricacies of software development, enabling them to effectively generate,
analyze, and comprehend code in various SE tasks. There are also common data types, such as bugs/buggy code
(16) and patches (4), for program repair tasks. Additionally, vulnerable source code (8) is used for vulnerability
detection tasks. Graph-based datasets are used in some research studies for SE tasks, e.g., Kolthoff et al. [204]
used a dataset composed of screenshots from Google Play Android applications to construct a graphical user
interface (GUI) repository in their study on LLM for the rapid prototyping task. These datasets represent code
using graph structures, capturing relationships and dependencies between code components.

Software repository-based datasets are compilations of data extracted from version control systems, such as Git
repositories, containing code, documentation, and related artifacts. This data includes Code repository (3), issues
and commits (3), and so on. The data in software repositories can provide a wealth of information covering all
aspects of the software development process, including code evolution history, records of issue fixes and feature
improvements, code quality assessments, and so on. These data are valuable for studying behaviors and trends in
the software development process, improving software quality and development efficiency, and evaluating the
performance of software engineering techniques. Therefore, many studies have used software repository-based
datasets for empirical analysis and model training.

Some studies employed combined datasets containing multiple datatypes. Among them, the most common
type is “programming tasks and test suites/cases”. Other combinations of data types include “source code and
comments”, “programming tasks and solutions”, “source code and description ”, “code-text pairs”, etc.

4.3 How do data types influence the selection of data-preprocessing techniques?
For the training and application of LLMs, the raw dataset needs to be subjected to data processing to obtain a
clean and suitable dataset for model training. The data processing steps [217, 281] involve operations such as
data cleaning, noise removal, normalization, etc. To ensure consistency and quality of the data, different data
types may require different processing methods to improve the performance and effectiveness of LLMs in SE
tasks. In this section, we aim to detail the data preprocessing procedures for the two most used types of datasets,
i.e., text-based datasets and code-based datasets.
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Fig. 7. The data preprocessing procedure for text-based datasets.
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Fig. 8. The data preprocessing procedure for code-based datasets.

The data preprocessing procedure for text-based datasets. As shown in Fig. 7, the steps of text-based dataset
preprocessing consist of seven steps in total, yet there are some differences from the code-based dataset prepro-
cessing steps. The process begins with data extraction [55, 56, 84, 506], where relevant text is carefully extracted
from SE documentation from a variety of sources, including bug reports [56], requirements documents [204], code
comments [344], and API documentation [191]. This step ensures that the dataset captures diverse, task-specific
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textual information. After data extraction, the text is initially segmented and categorized according to the specific
requirements of the research task. For example, the text can be segmented into sentences or further broken
down into individual words as needed for analysis [130, 205]. To ensure the quality and relevance of the dataset,
substandard data deletion is performed to eliminate any invalid or irrelevant text. For example, the dataset used by
Lee et al. [217] was constructed from bug reports, and in the “low-quality data deletion” process the researchers
filtered out bug reports with fewer than 15 words because the text was too short to contain contextual information.
Next, preprocessing operations are performed on the text to standardize and clean it. Common preprocessing
steps include removing certain symbols, stop words, and special characters [352, 464]. This standardized form
of text facilitates the efficient processing of LLMs. To avoid introducing bias and redundancy in the dataset,
researchers eliminated duplicate instances by removing any duplicate text samples [130, 205, 495]. This step
enhances the diversity of the dataset and helps the model to generalize better to new inputs. “Data tokenization”
is a key step in preparing the text for LLMs [273]. Text is labeled into smaller units, such as words or subwords,
so that LLMs are easier to manage and process efficiently. Finally, the preprocessed dataset is partitioned into
different subsets, usually including a training set, a validation set, and a test set.
Thedata preprocessing procedure for code-based datasets.We now summarize the process of preprocessing a
code-based dataset, which consists of seven steps. Fig. 8 describes the individual data processing steps in detail and
gives examples. The first step is data extraction, which involves retrieving relevant code segments from different
sources such as software repositories or version control systems [184, 506]. Depending on the requirements of the
research task [289, 525], code segments can be extracted at different levels of granularity, ranging from individual
methods and functions to entire source code files or even complete software projects. The next step is to remove
any code segments that do not meet predefined criteria or quality standards [224, 344, 392]. This filtering process
ensures that the extracted code is relevant to the specific SE task under study, thus eliminating incomplete or
irrelevant code snippets. To avoid introducing bias and redundancy during model training, the third step involves
removing duplicate instances [57, 495, 563]. Any duplicate code instances are identified and removed from the
dataset, thus increasing the diversity and uniqueness of the data. After the data extraction and filtering steps,
the fourth step, data compilation, comes into play. The extracted and filtered code segments are merged and
compiled into a unified code dataset. This compilation process simplifies data storage and access and facilitates
subsequent analysis and model training [35, 285]. In the fifth step, the problem of invalid or non-executable code
is solved by removing data that cannot be compiled. Any code segments that cannot be compiled or executed are
removed from the dataset to ensure that the remaining code instances are valid and usable during model training
and evaluation. The sixth step is code representation, which consists of converting the code segments into a
suitable representation that can be processed by the LLMs. This conversion can take different forms: token-based
representation involves tokenizing the source or binary code into distinct tokens; tree-based representation parses
the code into Abstract Syntax Trees (AST); and graph-based representation generates a Program Dependence
Graph (PDG), encompassing Control Flow Graphs (CFG) and Call Graphs (CG). Finally, in the “data segmentation”
step, the preprocessed dataset is partitioned into different subsets for training, validation, and testing [57, 475].
The training set is used to train the LLM, the validation set helps to tune the hyperparameters and optimize the
model performance, and the testing set evaluates the model’s ability on unseen data. By strictly adhering to
these seven preprocessing steps, researchers can create structured and standardized code-based datasets, thus
facilitating the effective application of LLMs for a variety of SE tasks such as code completion, error detection,
and code summarization.

It is worth emphasizing that the order of these steps is not fixed and can be adjusted based on the specific research
task and its associated requirements. Researchers need to carefully consider the objectives, characteristics of the
dataset, and the desired outcomes when determining the optimal sequence for these preprocessing techniques.
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4.4 What input formats are the datasets for LLM training converted to?
Once suitable datasets have been carefully chosen and clean data has been achieved through the preprocessing
steps, the next critical aspect is the transformation of the data into appropriate formats that can effectively serve
as inputs for LLMs. Table 8 shows four distinct data input types that emerged during the research: Token-based
input, Tree/Graph-based input, Pixel-based input, and Hybrid-based input. We now detail each as follows:

Table 8. The various input forms of LLMs proposed in prior studies. See Appendix B for the full table including references.

Category Input forms Total
Token-based input Text in tokens (150) Code in tokens (118) 347

Code and text in tokens (78)
Tree/Graph-based input Code in tree structure (2) Code in graph structure (3) 5

Pixel-based input Pixel (1) 1
Hybrid-based input Hybrid input forms (2) 2

Token-based input. Token-based input [7, 9, 19] involves representing code and text as sequences of tokens,
which are smaller units like words or subwords. Text in tokens refers to the tokenization of textual data, such
as documentation, bug reports, or requirements, enabling the LLMs to process and analyze natural language
descriptions effectively. Code and text in tokens combine both code and its associated textual context, allowing
the model to capture the relationships between code elements and their descriptions. Code in tokens refers to
the representation of code snippets broken down into meaningful tokens, allowing the LLMs to understand
programming language syntax and semantics at a fine-grained level.
Tree/Graph-based input. Tree-based input [277, 317, 558] represents code as hierarchical tree structures,
capturing the syntactic relationships between code elements. Each node in the tree represents a code element,
and the edges represent the hierarchical nesting of control flow statements and other code structures. This form
of input allows the LLMs to understand the code’s hierarchical structure and perform tasks like code completion
and bug fixing. Graph-based input represents code as a graph structure, where nodes represent code elements
and edges represent the relationships between them. Unlike trees, graphs allow more flexible and complex
relationships between code elements, enabling the model to capture non-linear dependencies in the code. This
form of input is used in tasks like code summarization and vulnerability detection by considering the code’s
intricate relationships.
Pixel-based input. Pixel-based input [303] visualizes code as images, where each pixel represents a code element
or token. This visual representation allows the LLMs to process and understand code through image-based
learning. In this input form, LLMs learn from the visual patterns and structures in the code to perform tasks like
code translation or generating code visualizations.
Hybrid-based input. Hybrid-based input [315] combines multiple modalities to provide LLMs with diverse
perspectives for better code comprehension. For example, a hybrid input may combine code in tokens with visual
representations of code, allowing the model to learn both from the fine-grained details in the tokenized code and
from the overall visual structure of the code. This approach enhances the model’s ability to understand complex
code patterns and improve performance in tasks such as code comprehension and code generation.

During our investigation of LLM-based models for SE tasks, we observed distinct trends in the usage of
different input forms during the training process. Token-based input forms, namely code in tokens and
text in tokens were the most prevalent, collectively constituting approximately 97.75% of the studies3.
Specifically, code in tokens was widely adopted in 118 studies, accounting for approximately 33.24% of the total

3This refers to studies that explicitly state input forms of LLMs, i.e., a total of 355 papers as shown in Table 8.
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studies, demonstrating its popularity as a primary choice for representing code snippets. This approach allowed
LLMs to grasp programming language syntax and semantics effectively, making it suitable for a wide range of
code-related tasks. Similarly, text in tokens was utilized in 150 studies, comprising around 42.25% of the total
studies. This input form allowed LLMs to process natural language descriptions, bug reports, and documentation
with greater efficiency and accuracy. The popularity of token-based input forms underscores their significance in
leveraging the power of LLMs for software engineering applications.

In contrast, tree/graph-based input forms, such as code in tree-structure, were used in only seven
studies, making up approximately 1.4% of the total. Although less prevalent, this input type emerged as a
promising choice to represent the hierarchical structure and syntactic relationships within code. Its adoption
indicated an ongoing exploration of tree-based representations in specialized tasks, such as code completion and
bug fixing.

Pixel-based input and hybrid-based input were relatively less common, each found in one study,
contributing approximately 0.28% of the total studies each. While their adoption rates were lower, these
input forms presented intriguing possibilities for specific applications. Pixel-based input offered a unique visual
representation of code, potentially advantageous for code translation tasks. Meanwhile, hybrid-based input,
combining multiple modalities (e.g., code in tree structure and text in tokens in Niu et al.’s work [315]), showcased
the potential for enhancing code comprehension tasks by offering diverse perspectives for the models to learn
from.

In summary, the trends in input form usage reveal a strong preference for token-based input, demonstrating
its versatility and effectiveness in various SE tasks. However, ongoing exploration of other input forms, such as
tree/graph-based, pixel-based, and hybrid-based, suggests a dynamic and evolving landscape in the application of
LLMs for SE, with potential for further innovation and improvement in specialized domains. Each of these input
forms caters to specific characteristics of the SE tasks being addressed, enabling LLMs to perform effectively
across a wide range of code-related applications with a more comprehensive understanding of the input data.

RQ2 - Summary

(1) We divided the datasets into four categories based on the source of data: open-source, collected, constructed,
and industrial datasets. The use of open-source datasets is the most prevalent, constituting approximately
62.83% of the 374 papers that explicitly state the dataset.
(2) We categorized the data types within all datasets into five groups: code-based, text-based, graph-based,
software repository-based, and combined. Text-based and code-based types are the most frequently
used in applying LLMs to SE tasks. This pattern indicates that LLMs are particularly adept at handling text
and code-based data in SE tasks, leveraging their natural language processing capabilities.
(3) We summarized the data preprocessing procedures for different data types and found several common
preprocessing procedures, i.e., data extraction, low-quality data deletion, duplicated instance deletion, and data
segmentation.

5 RQ3: WHAT TECHNIQUES ARE USED TO OPTIMIZE AND EVALUATE LLM4SE?

5.1 What tuning techniques are used to enhance the performance of LLMs in SE tasks?
Through surveying research related to LLM4SE, we found that while many general-purpose LLMs (efig: op-
timizerscan be directly applied to software engineering tasks such as code generation [74, 249, 517], code
summarization [7, 410, 509], and program repair [37, 103, 491] without fine-tuning, the hidden potential of LLMs
often needs to be realized through tuning to be fully exploited. Specifically, this requires training LLMs with
task-specific data to learn knowledge relevant to the task context to perform better. We observed that out of 83
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studies, LLMs were fine-tuned using full fine-tuning techniques to adapt to downstream SE tasks, with the
majority being BERT series models [57, 84, 91, 166, 205, 215, 217, 247, 273, 374, 440, 465, 471, 535, 555]. The cost
of training these LLMs is expensive, requiring a large amount of computational resources and massive amounts
of data. It is also costly to train and deploy the fine-tuned models separately for each downstream task, as the
traditional fine-tuning approach would need to copy a model and perform full-parameter fine-tuning for each
downstream task [34, 63, 84, 161, 166, 217].

To reduce this computational burden, some researchers have previously used In-Context Learning (ICL) [103,
105, 143, 151, 171], which feeds the model with manually designed “prompts” that are overly reliant on human
design and do not require updating model parameters at all. However, ICL only operates at the time of inference
and does not involve learning task-specific parameters, which experimentally proved to give the model limited
improvement in downstream tasks [251]. To address this problem, researchers have begun to apply Parameter
Efficient Fine-Tuning (PEFT) [140] techniques to LLMs. PEFT aims to improve the performance of pre-trained
models on new tasks by optimizing the subset of parameters fine-tuned, thereby reducing the overall computational
complexity. This approach maintains the majority of the pre-trained model’s parameters in a fixed state, focusing
fine-tuning efforts on a minimal yet impactful set of parameters [474]. Prior code intelligence research has
demonstrated the capabilities of PEFT techniques, frequently revealing their superiority over full fine-tuning on
a variety of tasks [474]. Four common techniques of PEFT include Low-Rank Adaptation (LoRA) [141], prompt
tuning [218], prefix tuning [236], and adapter tuning [140]. We now elaborate on each as follows:
Low-Rank Adaptation (LoRA). LoRA injects low-rank trainable matrices into the attention layers of the
Transformer architecture to significantly reduce the number of trainable parameters. We observed that eight
studies [19, 269, 325, 388, 390, 399, 463, 541] utilized LoRA to enhance the performance of LLMs in SE tasks. For
instance, Pan et al. [325] trained SteloCoder, specifically designed for translating multiple programming languages
into Python code, which is based on the StarCoder LLM. LoRA technology was employed during the modification
of the StarCoder model architecture to adjust the parameter count. Additionally, Silva et al. [399] applied LoRA
to LLaMA, resulting in a highly effective “program repair adapter” for fixing bugs through fine-tuning.
Prompt tuning. Prompt tuning involves appending learnable tokens to the model’s input, guiding it towards
better task performance. This method keeps the model’s architecture unchanged, leveraging adaptable prompts to
influence outputs without altering internal parameters. In the surveyed papers, three researchworks [269, 463, 574]
utilized prompt tuning. For instance, Zhu et al. [574] proposed a method named AUMENA, which automates
method naming tasks through context-aware prompt tuning.
Prefix tuning. Prefix tuning adapts pre-trained language models by adding trainable tokens not just to the input
but also across internal layers, affecting the model’s intermediate representations. This approach modifies the
model’s processing with minimal changes to its original parameters, allowing for task-specific customization. This
technique was utilized in the following two studies: Lu et al. [269] fine-tuned LLaMA-Reviewer for automating
code review, while Wang et al. [463] fine-tuned CodeT5+ for multiple downstream tasks such as code completion,
code generation, and code search.
Adapter tuning. Adapter tuning adds small neural network modules to the original model, then fine-tuning
them on specific tasks without altering the original model’s parameters. Agarwal et al. [1] fine-tuned LLMs using
adapter tuning techniques to make them suitable for code representation tasks. Wang et al. [449] indicated that
LLMs refined through adapter tuning perform exceptionally well in code search and code summarization tasks.

In addition to the above-mentioned tuning methods, other techniques have been used for tuning LLMs in the
LLM4SE domain, such as Reinforcement Learning (RL) [157, 158, 162, 405, 506], Supervised Fine Tuning
(SFT) [72, 158, 287, 405, 506], an unsupervised data augmentation method called syntax fine-tuning [346],
knowledge preservation fine-tuning [397], and task-oriented fine-tuning [410], etc.
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5.2 What prompt engineering techniques are applied to improve the performance of LLMs in SE
tasks?

Prompt engineering is a method of enhancing model performance by using task-specific instructions, known as
prompts, without modifying the core model parameters. This approach enables LLMs to seamlessly integrate into
downstream tasks solely based on the given prompts, guiding model behavior without the need to update model
parameters [371]. Fig. 9 presents eight prompt engineering techniques currently applied in the LLM4SE domain.
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Fig. 9. The prompting engineering techniques used in LLMs for SE tasks. See Appendix C for the full table including
references.

Zero-shot prompting. In zero-shot prompting [350], the model is expected to perform a task without any explicit
training on that task. Instead, it relies on the prompt provided during inference to generate the desired output.
Following few-shot prompting in terms of usage frequency, 79 studies adopted zero-shot prompting [205, 227,
273, 337, 378, 475, 485, 499]. For example, Li et al. [227] introduced CodeEditor, a pre-trained model specifically
designed for code editing, and demonstrated its effectiveness in automatic code editing under zero-shot settings.
Few-shot prompting. Few-shot prompting involves providing a limited number of examples or instructions
to the model to perform a specific task. The model learns from these examples and generalizes to similar tasks
with minimal training data. In the surveyed LLM4SE research, 88 studies utilized few-shot prompting [7, 92, 96,
105, 186, 471, 496, 553]. For instance, Geng et al. [105] adopted an in-context learning paradigm and providing
a specific number of prompts simultaneously significantly outperformed state-of-the-art supervised learning
methods in generating comments with multiple intents.
Chain-of-Thought (CoT) prompting. Wei et al. [470] introduced a prompting technique called Chain-of-
Thought (CoT), which involves each prompt building upon the preceding one, resulting in a coherent chain
of reasoning that enhances the model’s ability to generate well-structured and thoughtful responses. Huang
et al. [152] proposed a novel method leveraging the fault-tolerance and comprehension capabilities of pre-trained
LLMs to generate Control Flow Graphs.This method involves a Chain-of-Thought (CoT) with four steps: structural
hierarchy extraction, nested code block extraction, CFG generation for nested code blocks, and merging of CFGs
for all nested code blocks. Tian et al. [431] also introduced the first test case-driven code generation technique,
named TCoT, to further enhance LLMs’ capabilities in code generation. Including the two studies mentioned earlier,
a total of 18 studies applied CoT to improve LLMs’ performance in SE tasks [64, 92, 151, 152, 226, 234, 264, 298].
Automatic Prompt Engineer (APE). Inspired by classical program synthesis and human prompt engineering
methods, Zhou et al. [573] introduced an Automatic Prompt Engineer (APE) for automatic instruction generation
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and selection. APE is a system designed to automatically generate effective prompts for LLMs based on the
desired task. It aims to simplify the process of prompt engineering by automating the generation of task-specific
instructions. Sharing a similar concept of automated prompts, Sun et al. [410] proposed a new prompt learning
framework called PromptCS. PromptCS trains a prompt agent that can generate continuous prompts to fully
explore LLMs’ potential in code summarization tasks. Continuous prompts, generated under the guidance of
LLMs, are easier for LLMs to comprehend compared to manually written discrete prompts.
Chain of Code (CoC) prompting. CoC prompting [219] is similar to CoT prompting but is specifically tailored
for programming tasks. It involves providing a sequence of prompts or code snippets to guide the model’s code
generation process. Huang et al. [145] proposed CodeCoT, and Le et al. [214] proposed CodeChain, both of which
are reasoning frameworks that better guide LLMs in code generation.
Automatic Chain-of-Thought (Auto-CoT) prompting. Auto-CoT [559] is an automated version of CoT
prompting where the sequence of prompts is generated automatically based on the input and desired task.
Paranjape et al. [328] introduced a framework, Automatic. ART, for generating intermediate reasoning steps
automatically. ART can select multi-step reasoning and tools from a task library based on given tasks at any time
and has been experimentally proven effective in code tasks.
Modular-of-Thought (MoT) prompting. In code generation tasks, LLMs often generate solutions in the form
of a single block of code, limiting their effectiveness in handling complex problems. To overcome this limitation,
Li et al. [223] proposed the Modular-of-Thought Coder (MoTCoder). They introduced a new MoT prompting
optimization framework to facilitate task decomposition into logical subtasks and submodules. Experimental
results demonstrate that MoTCoder significantly improves the modularity and correctness of solutions generated
by LLMs in programming tasks.
Structured Chain-of-Thought (SCoT) prompting. Considering that source code contains rich structural
information, Li et al. [226] proposed SCoT prompting specifically for code generation tasks. Researchers enable
LLMs to use program structure to construct CoTs (i.e., intermediate natural language reasoning steps) to obtain
SCoTs. Then, LLMs generate the final code based on SCoTs. Compared to CoT prompts, SCoT prompts explicitly
constrain LLMs to consider how to address requirements from the source code perspective. Evaluations across
multiple benchmarks show that SCoT significantly enhances LLMs’ performance in code generation.
Others. In addition to the eight prompting techniquesmentioned above, we identified 76 studies where researchers,
although not explicitly mentioning the application of any of the aforementioned prompting techniques, carefully
designed prompts or proposed new strategies based on prompts to apply LLMs to SE tasks better. For instance, Ren
et al. [358] proposed a code generationmethod based on knowledge-driven prompt chains. Li et al. [234] applied dif-
ferential prompting to ChaGPT to better identify test cases that cause failures in buggy programs. Ahmed et al. [7]
enhanced the performance of LLMs in code summarization tasks using automatic semantic augmentation prompts.

5.3 How are evaluation metrics utilized to assess the performance of LLM4SE tasks?
Evaluating the performance of LLM4SE is a crucial aspect of their development and deployment [186]. Bench-
marking against existing datasets and using baselines are common practices to evaluate the effectiveness of
LLMs [34]. However, given the diversity of SE tasks, a single evaluation metric may not suffice to capture the
model’s performance comprehensively. Thus, researchers often employ a range of evaluation metrics tailored to
specific problem types [289, 315, 374]. We categorize the SE tasks summarized from 395 papers into four categories
according to their addressed problem types, i.e., regression, classification, recommendation, and generation tasks,
as displayed in Fig. 10 (b). The selection of evaluation metrics depends on the target problem types. For example,
MAE (Mean Absolute Error) has been used for regression tasks [99]. We summarize the most frequently used
evaluation metrics for each task type.
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Table 9. Evaluation metrics for different types of tasks.

Problem Type Metric Total
Regression MAE (Mean Absolute Error) (1) 1

Classification Precision (35) Recall (34) 147
F1-score (33) Accuracy (23)
AUC (Area Under the ROC Curve) (9) ROC (Receiver Operating Characteristic) (4)
FPR (False Positive Rate) (4) FNR (Falser Negative Rate) (3)
MCC (Matthews Correlation Coefficient) (2)

Recommendation MRR (Mean Reciprocal Rank) (15) Precision/Precision@k (6) 39
MAP/MAP@k (6) F-score/F-score@k (5)
Recall/Recall@k (4) Accuracy (3)

Generation BLEU/BLEU-4/BLEU-DC (62) Pass@k (54) 338
Accuracy/Accuracy@k (39) EM (Exact Match) (36)
CodeBLEU (29) ROUGE/ROUGE-L (22)
Precision (18) METEOR (16)
Recall (15) F1-score (15)
MRR (Mean Reciprocal Rank) (6) ES (Edit Similarity) (6)
ED (Edit Distance) (5) MAR (Mean Average Ranking) (4)
ChrF (3) CrystalBLEU (3)
CodeBERTScore (2) MFR (Mean First Ranking) (1)
PP (Perplexity) (1)

*See Appendix D for the full table including references.

For classification tasks, the most commonly used metrics are Precision [26, 48, 84, 91, 131], Recall [26, 48, 84,
91, 131, 136] and F1-score [11, 26, 48, 84, 91, 131], with 35, 34, and 33 tudies, respectively, employing these metrics.
For example, in the study conducted by Khan et al. [191], F1-score is utilized to evaluate the performance of an
automatic bug-fixing model. Similarly, Sharma et al. [384] use Precision and Recall to assess the effectiveness of a
transformer-based model for code summarization. These metrics are essential for evaluating the model’s ability
to correctly classify code snippets [91] or identify specific SE properties [48].

For recommendation tasks, MRR (Mean Reciprocal Rank) is the most frequent metric, used in 15 studies [55,
161, 224, 247, 352, 374, 392, 471]. MRR is employed to measure the effectiveness of recommendation systems for
code completion, as demonstrated in the study by Ciborowska et al. [55]. Precision@k [55, 130, 247, 574] and
F1-score@k [130, 247, 574, 575] are also utilized in recommendation tasks, with 6 studies each. These metrics are
used to evaluate the precision and F1-score of the recommended code snippets or code completions.

In generation tasks, metrics like BLEU, along with its variants BLEU-4 and BLEU-DC [7, 9, 19, 40, 57], and
Pass@k [31, 34, 38, 43, 67, 71] are the most commonly used, appearing in 62 and 54 studies, respectively. For
instance, Wang et al. [463] employed BLEU to evaluate a code-to-code translation model. Pass@k is used in the
research by Jiang et al. [171] to assess code generation models, measuring the proportion of generated code
snippets that match the reference solutions. Additionally, ROUGE/ROUGE-L [7, 9, 103, 105, 231, 239, 287, 289,
315, 526], METEOR [7, 9, 40, 103, 105, 315], EM (Exact Match) [9, 103, 123, 300, 463, 475, 515, 558], and ES (Edit
Similarity) [257] are used in specific studies to evaluate the quality and accuracy of generated code or natural
language code descriptions.
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RQ3 - Summary

(1) We discovered a range of tuning techniques gradually becoming widely adopted in the LLM4SE do-
main. Among these, Parameter Efficient Fine-Tuning (PEFT) techniques, including Low-Rank Adaptation
(LoRA), prompt tuning, prefix tuning, and adapter tuning, are gaining prominence for optimizing LLMs while
minimizing computational complexity.
(2) We identified a diverse set of eight prompting techniques, including zero-shot prompting, few-shot
prompting, Chain-of-Thought (CoT), Automatic Prompt Engineer (APE), Chain of Code (CoC), Automatic
Chain-of-Thought (Auto-CoT), Modular-of-Thought (MoT), and Structured Chain-of-Thought (SCoT), applied
in the LLM4SE domain to enhance model performance. These techniques leverage task-specific instructions,
known as prompts, to guide LLMs without modifying core model parameters, providing a promising avenue
for improving LLM capabilities in software engineering tasks.
(3) We summarized the most widely used evaluation metrics according to four problem types, i.e., regres-
sion, classification, recommendation, and generation. Nineteen different evaluation metrics appeared in the
generation task, while nine metrics were used for the classification task.

6 RQ4: WHAT SE TASKS HAVE BEEN EFFECTIVELY ADDRESSED TO DATE USING LLM4SE?

6.1 What are the distributions SE activities and problem types addressed to date with LLM4SE?
In this section, we provide a detailed analysis of the use of LLMs for different SE tasks. We summarise reported
SE tasks [511] addressed with LLMs, following the six phases of the Software Development Life Cycle (SDLC)
(i.e., requirements engineering, software design, software development, software quality assurance, software
maintenance, and software management). Fig.10 (a) describes the distribution of LLMs in these six activities.
Table 10 shows a detailed count of selected primary studies reporting specific SE tasks addressed with LLMs.
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Fig. 10. Distribution of LLM utilization across different SE activities and problem types.

The highest number of studies is observed in the software development domain, constituting ap-
proximately 56.65% of the total primary studies. This underscores the focus to date on utilizing LLMs to
enhance coding and development processes. Software maintenance tasks account for about 22.71% of the primary
studies, highlighting the significance of LLMs in aiding software updates and improvements. The software quality
assurance domain is studied in approximately 15.14% of the primary studies, indicating a growing interest in
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automating testing procedures. In contrast, requirements engineering and software design activities represent
approximately 3.9% and 0.92% of the primary studies, respectively, suggesting relatively limited exploration so
far in these areas. The software management domain has the least representation, accounting for a tiny 0.69%
proportion of the studies. This distribution underscores the vital focus on development and maintenance tasks
while also indicating potential avenues for further research in testing, design, and management domains.

We classified our collection of LLM studies for SE tasks based on the type of problems they address (shown in
Fig.10 (b)). The distribution reveals that the majority of studies, about 70.97%, center around generation
tasks, showcasing the significance of LLMs in producing code or text. Following this, around 21.61% of the studies
fall under classification tasks, indicating the relevance of LLMs in categorizing software elements. Additionally,
roughly 6.77% of the studies are related to recommendation tasks, demonstrating the utility of LLMs in suggesting
solutions. Lastly, a tiny portion, around 0.65%, is allocated to regression tasks, reflecting the limited exploration
of LLMs to date for predictive modeling. This distribution underscores the broad applicability of LLMs
across different SE challenges, with a notable emphasis on code generation and classification tasks.

6.2 How are LLMs used in requirements engineering?
This section explores the utilization of LLMs in the domain of requirements engineering. It encompasses tasks such
as anaphoric ambiguity treatment, requirements classification, coreference detection, requirements elicitation,
and software traceability.
Anaphoric ambiguity treatment. Ambiguity in software requirements arises when a single reader can interpret
a natural language (NL) requirement in multiple ways, or when different readers have varying understandings
of the same requirement. Unclear and ambiguous NL software requirements can lead to suboptimal software
artifacts during later development stages. Moharil et al. [293] and Ezzini et al. [84] have empirically demon-
strated the significant role of LLMs such as BERT and SpanBERT in effectively addressing anaphoric ambiguity.
Sridhara et al. [402] revealed that ChatGPT excels in addressing anaphoric ambiguity in software requirements.
Through researchers’ analysis of ten English requirements specifications [84] containing anaphora-related chal-
lenges, ChatGPT consistently demonstrated its remarkable capability to accurately identify antecedents. This
empirical evidence emphasizes the valuable role ChatGPT can play in enhancing the clarity and precision of
software requirements, ultimately contributing to more effective software development processes by reducing
interpretational uncertainties.
Requirements classification. Originating in NL documents, requirements demand effective classification,
especially for early-stage project discernment, like security-related ones [200, 221]. Automated processing
hinges on identifying these requisites. Categorizing into functional (FR) or non-functional (NFR) requirements,
with quality constraints, benefits automated approaches [221]. Hey et al.[136] employ BERT for requirements
classification, where it excels in categorizing both FR and NFR requirements using a fine-tuning transfer learning
technique, outstripping traditional methods. Luo et al.[273] introduce a BERT-based software requirements
classification method, demonstrating remarkable transferability and generalization, especially in zero-shot
scenarios.
Requirements term identification. Moharil et al. [292] propose a technique for identifying terms used in
different contexts within the same domain or in interdisciplinary projects. Using BERT, which reads entire word
sequences for deeper language understanding, and K-means clustering, they create and group vectors for each
term in the corpora. The method has been validated on large Computer Science and multi-domain corpora
comprising eight different fields.
Coreference detection. Requirements, authored by diverse stakeholders, continually evolve, leading to termi-
nology differences and inconsistencies across domains. Entity coreference in Requirements Engineering (RE),
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Table 10. Distribution of SE tasks over six SE activities.

SE Activity SE Task Total
Requirements Anaphoric ambiguity treatment (4) Requirements classification (4) 17
engineering Requirements analysis and evaluation (2) Specification generation (2)

Coreference detection (1) Requirements elicitation (1)
Specification formalization (1) Traceability automation (1)
Use cases generation (1)

Software design GUI retrieval (1) Rapid prototyping (1) 4
Software specification synthesis (1) System design (1)

Software development Code generation (118) Code completion (22) 247
Code summarization (21) Code search (12)
Code translation (12) Code understanding (8)
API inference (5) Program synthesis (6)
API recommendation (5) Code editing (5)
Code representation (3) Code comment generation (2)
Method name generation (2) Code recommendation (2)
Agile story point estimation (1) API documentation augment (1)
API documentation smells (1) API entity and relation extraction (1)
Data analysis (1) Fuzz driver generation (1)
Control flow graph generation (1) Identifier normalization (1)
Instruction generation (1) Type inference (1)
Others (14)

Software quality Vulnerability detection (18) Test generation (17) 66
assurance Bug localization (5) Verification (5)

Testing automation (4) Fault localization (3)
Defect detection (2) GUI testing (2)
Static analysis (2) Binary taint analysis (1)
Compiler fuzzing (1) Decompilation (1)
Invariant prediction (1) Malicious code localization (1)
Mobile app crash detection (1) Resource leak detection (1)
Test prediction (1)

Software maintenance

Program repair (35) Code clone detection (8) 99
Code review (7) Debugging (4)
Bug reproduction (3) Review/commit/code classification (3)
Duplicate bug report detection (3) Logging (3)
Log parsing (3) Code revision (2)
Sentiment analysis (3) Vulnerability repair (2)
API misuses repair (1) Bug prediction (1)
Bug triage (1) Code coverage prediction (1)
Code review explained (1) Code-Review defects repair (1)
Crash bug repair (1) Dockerfile Repair (1)
Incivility detection (1) Patch correctness prediction (1)
Patch detection (1) Program merge conflicts repair (1)
Rename Refactoring (1) Tag recommendation (1)
Technical debt payback (1) Traceability recovery (1)
Web test repair (1) Type error repair (1)
Others (5)

Software management Effort estimation (2) Software tool configuration (1) 3
*See Appendix E for the full table including references.
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where various expressions refer to the same real-world entity, can cause confusion and affect comprehensibility.
Wang et al. [464] offer a novel application of the BERT model for coreference detection.
Traceability automation. Software and system traceability refers to the ability to establish and maintain
relationships between software artifacts, such as requirements, design definitions, code, and test cases, for product
querying and development support [360]. Lin et al. [247] found that T-BERT can effectively migrate knowledge
from code search to NLA-PLA (i.e., Natural Language Artifacts to Programming Language Artifacts) traceability,
even with limited training instances. It outperforms existing techniques in accuracy and can be adapted to
different domains without intermediate training for each project, offering a promising step toward practical,
trustworthy traceability.
Others. In addition to the four requirements engineering tasks detailed above, LLMs have also been applied to
requirements analysis and evaluation [343, 365], specification generation [275, 492], requirements elicitation [477],
specification formalization [83], and use case generation [550].

6.3 How are LLMs used in software design?
GUI (Graphical User Interface) retrieval. Kolthoff et al. [204] describe the application of BERT to the task
of GUI retrieval in SE. The authors fine-tune a BERT-based learning-to-rank (LTR) model for this task. GUIs,
which are not standard well-structured text documents, present unique challenges for text-based ranking tasks.
The BERT model is prepared by concatenating the natural language query and the GUI document text, and then
this input is used to train different BERT-LTR models. The models are evaluated based on their performance in
NL-based GUI ranking.
Rapid prototyping. Rapid prototyping enables developers to quickly visualize and iterate on software designs,
thereby accelerating the development process and ensuring alignment with user needs. White et al. [477]
investigate the role of LLMs in augmenting this process.The study introduces prompt design techniques, organized
into patterns, providing a structured methodology to tackle prevalent challenges in LLM4SE. This research
indicates that the realm of rapid prototyping stands to benefit from deeper integration with advanced machine
learning techniques, thereby creating opportunities for additional research and refinement aimed at producing
more intuitive and user-centric software designs.
Software specification synthesis. Software configuration is vital for system behavior, but managing configura-
tions and specifications becomes complex with larger systems. Mandal et al. [280] introduce SpecSyn, a framework
using an LLM for automatic software specification synthesis from natural language sources. This end-to-end
approach treats the task as a sequence-to-sequence learning problem, surpassing the previous state-of-the-art
tool by 21% in F1 score, and can find specifications from both single and multiple sentences.

6.4 How are LLMs used in software development?
Our analysis identifies wide-ranging applications of LLMs for software development, encompassing tasks such as
code generation, code completion, and code summarization.
Code generation. Code generation has long been a task of interest: there is extensive work on program
synthesis using symbolic and neural-semiotic approaches [13, 484]. Recently, LLMs trained for text generation
have demonstrated the ability to complete programs [27, 29]. Since 2020, several code generation models have
been trained or fine-tuned on programming language text [43, 58, 93, 98, 314, 495]. Unlike traditional program
synthesis techniques, neurolinguistic models can be conditioned on natural language (e.g., code annotations) as
well as generate programming language text. Researchers have experimentally demonstrated that LLMs like GPT-
4 [22, 108, 170, 254], GPT-2/GPT-3/GPT-3.5 [20, 74, 189, 225, 249, 254, 260, 302, 451, 517], BERT series [210, 531],
Codex [22, 43, 67, 123, 208, 279, 521], CodeGen [67, 177, 527], InCoder [206, 254, 300, 456], Copilot [484] and
CodeGeeX [565], play a key role in code generation. By pre-training on large-scale text data, these models
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Table 11. The state-of-the-art applications of LLMs in code generation task.

Model Baseline Benchmark Metric Date Reference
GPT-3.5 Codex, CodeGen, CodeGeeX, LLaMA, InCoder, Py-

CodeGPT, CodeParrot, GPT-2
HumanEval, MBPP,
MBCPP

Pass@k May 11, 2023 [225]

GPT-4 PaLM Coder, Codex, CodeGen-Mono, Incoder,
CodeGeeX, AlphaCode

HumanEval,
HumanEval-ET,
MBPP, MBPP-ET

Pass@k May 24, 2023 [74]

GPT-4 GPT-3.5, StarCoder, CodeGen, CodeGen2, Vicuna,
SantaCoder, Incoder, GPT-J, GPT-Neo, PolyCoder,
StableLM

HumanEval,
HumanEval+,
HumanEval-mini

Pass@k Jun 12, 2023 [254]

GPT-4 GPT-3.5, WizardCoder, Instruct-StarCoder, Santa-
Coder, Instruct-CodeGen, CodeGeeX, InCoder, Vi-
cuna, ChatGLM, PolyCoder

ClassEval, Hu-
manEval

Pass@k Aug 3, 2023 [77]

learn rich linguistic knowledge and semantic representations that enable them to understand the meaning and
structure of natural language. LLMs can automate code generation by converting natural language descriptions
into code [171]. These models generate program code from natural language descriptions, enhancing code-writing
efficiency and accuracy. They show excellent performance in code completion, automatic code generation, and
conversion of natural language annotations to code, providing software developers with powerful auxiliary tools
and promoting further automation and intelligence in the code writing and development process.

Within the domain of LLMs applied to software development tasks, studies centered on code generation
distinctly dominate the academic landscape. As reflected in Table 11, the GPT series, particularly GPT-4,
emerged as a key focus, with many more studies using them in the realm of code generation [74, 77,
225, 254]. Analyzing these studies, several noteworthy findings surface:

• Programming thinking in LLMs. Techniques that evoke “programming thinking” within LLMs, such
as the TIP (i.e., Thinking in Programming) [225] methodology, have shown promising strides. By guiding
LLMs to first craft a high-level code sketch before delving into detailed implementations, the synthesized
code exhibits higher accuracy and robustness.

• Class-level vs. Method-level generation. LLMs, while adept at method-level code generation, present
varied performance metrics when tasked with class-level generation [77]. This divergence underscores
the evolving nature of challenges as the granularity of code synthesis shifts.

• Expanding LLM capabilities.The next frontier in this discipline seems to lie in harmoniously integrating
LLMs with established SE tools and practices. The emergence of frameworks like EvalPlus [254] indicates
a trend towards enhancing the evaluation and accuracy of LLM-generated code, possibly ushering in an
era where human developers and LLMs collaboratively craft software solutions.

Code completion. Code completion is an assistive feature provided by many integrated development envi-
ronments (IDEs) and code editors. Its purpose is to automatically display possible code suggestions or options
as developers write code [14]. This innovation has been advanced by Language Models (LMs), evolving from
n-gram and RNN models to transformer-based models like Copilot [110] and CodeGPT [179], pre-trained on
extensive code datasets. Recent LLMs equipped with billions of parameters, excel in generating code snippets.
These models are trained on vast amounts of natural language text, equipping them with powerful semantic
understanding capabilities. In the context of code completion, LLMs such as Codex [43, 71, 245, 334], BERT
series [192], GitHub Copilot [71, 245, 345], CodeParrot [245, 495], GPT series [317, 495], T5 [57], InCoder [98],
PolyCoder [495], CodeGen [68, 69, 245, 313], and other LLMs [161, 317], can generate accurate and intelligent
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code suggestions based on code context and syntax structures. They comprehend the developer’s intent, predict
the next possible code snippet, and provide appropriate recommendations based on the context.

With the support of LLMs, code completion achieves significant improvements in efficiency and accuracy.
Developers can save time by avoiding manual input of lengthy code and reducing the risk of code errors. LLMs
also learn from extensive code repositories, acquiring knowledge and best practices to offer more intelligent and
precise suggestions, aiding developers in better understanding and utilizing code [57]. Additionally, these models
can provide personalized code recommendations based on developers’ coding styles and preferences, further
enhancing the effectiveness and user experience of code completion [257].
Code summarization. Code summarization is a task that attempts to understand the code and automatically
generate descriptions directly from the source code. It can also be viewed as an extended form of documentation.
Successful code summarization not only facilitates the maintenance of source code [160, 306] but can also be used
to improve the performance of code search using natural language queries [311, 505] and code classification [306].
LLMs play a significant role in code summarization by analyzing code structures and contexts to generate
informative natural language summaries. Specifically, LLMs such as Codex [6, 19, 103], CodeBERT [40, 103, 116],
and T5 [287, 289] comprehend the functionality and logic of the code, producing easily understandable human
language descriptions. For example, Arakelyan et al. [19] rigorously evaluate the efficacy of CodeT5 and Codex
across code generation and summarization tasks, shedding light on their performance under distribution shifts.
It unveils practical adaptation techniques, underscoring Codex’s commendable performance. Additionally, the
study demonstrates that while adapted models exhibit proficiency in code generation, their generality can present
trade-offs in the context of code summarization. As a result, code summarization with the support of LLMs
enhances code readability, improves software documentation quality, and accelerates code comprehension and
collaboration among developers. This advanced approach to code summarization demonstrates great potential
for automating and streamlining various aspects of software development in modern SE practices with the
employment of LLMs.
Code search. Code search, or code retrieval, is the task of retrieving source code from a large code base, usually
based on a user’s natural language query. Despite the success of neural models in code search, such models are
relatively shallow and are not capable of learning large amounts of data [374]. In recent years, some bimodal
pre-training models based on the BERT neural architecture have been proposed to capture semantic links between
natural and programming languages [93, 119, 366, 461], such as CodeBERT [93] and GraphCodeBERT [119].
Bimodal pre-training models learn generic representations from large amounts of data in an unsupervised manner
by designing pre-training goals. Salza et al. [374] explored the effectiveness of LLMs such as BERT [374] and
RoBERTa [40] in understanding natural language and code semantics and enhancing code search and retrieval.
These studies show that pre-training tasks alone may not be sufficient for code search, which emphasizes the need
for a multimodal understanding of data [392], including both natural language and code. In addition, research has
shown that the use of code generation models such as Codex [220] can enhance code retrieval by generating code
snippets from natural language documents, thereby improving semantic similarity and obtaining state-of-the-art
results on benchmark datasets.
Code translation. Code translation aims to convert source code from one programming language to another.
Researchers have been actively exploring the potential of large language models (LLMs) in this field. For instance,
study [507] introduces the CoTR approach to enhance the robustness of code translation models. Additionally,
SteloCoder [325] focuses on translating multiple programming languages to Python, showcasing improvements
in translation functionality. However, as noted in [326], LLMs still face challenges in automating code translation,
with high error rates. In summary, while LLMs show promise in code translation tasks, further optimization is
needed to improve translation quality and robustness.
Code understanding. In contrast to code summarization, which focuses on automatically generating human-
readable descriptions from source code, code understanding involves a deep analysis of source code to comprehend
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its logic, structure, functionality, and dependencies, as well as understanding the programming languages,
frameworks, and libraries used [386]. LLMs can assist in code understanding by leveraging their powerful natural
language processing capabilities to interpret code-related text, such as comments and documentation [182, 463].
They aid developers in grasping code functionality, identifying dependencies, and generating relevant code
documentation [277, 386]. Through their ability to comprehend both code and natural language, LLMs enhance
the efficiency and accuracy of code understanding, empowering developers to maintain, optimize, and integrate
code effectively [182].
Program synthesis. Program synthesis is the automated process of generating code that satisfies a given
specification or set of constraints, emphasizing the derivation of functional properties of the code [46, 47, 282,
329, 403]. It differs from code generation, which primarily translates higher-level representations into target code
without necessarily deriving its functionality from scratch [397, 543, 565]. Several studies have demonstrated
that LLMs can be used for program synthesis tasks. LLMs have a significant impact on program synthesis due
to their advanced language understanding and generation capabilities. LLMs can effectively interpret natural
language descriptions, code comments, and requirements, and then generate corresponding code snippets that
fulfill the given specifications. This helps developers rapidly prototype code and automate repetitive coding
tasks [100, 208]. When applied to program synthesis, LLMs enhance productivity and reduce the burden on
developers by automating the code-writing process based on high-level input [163]. Their ability to understand
the nuances of both natural language and programming languages makes them valuable tools in advancing the
field of SE and streamlining the development lifecycle.
API inference. The automated generation of application programming interface calls, known as API synthesis,
plays a crucial role in bridging human intent with machine execution. In recent studies, Wang et al. [455]
and Weyssow et al. [475] have both explored the potential of LLMs in this realm. Utilizing models like GPT-4
and LLaMA-based architectures, these researchers showcase the prowess of LLMs in generating accurate API
calls and adapting to real-time documentation changes, effectively addressing challenges like hallucination and
inaccurate input arguments. The integration of LLMs in API synthesis signifies a paradigm shift, promising
enhanced accuracy, adaptability, and reliability in code generation. As illuminated by these studies, the future
of API synthesis may be deeply anchored in advanced machine learning, heralding new research avenues and
refinements for more seamless human-machine interactions.
API recommendation. Several methods have been proposed to automate API (Application Programming
Interface) recommendations [118, 150, 258, 305], falling into two orthogonal approaches: information retrieval-
based (IR-based) and neural-based. In this context, our focus is on the latter. Wei et al. [471] introduced CLEAR, an
API recommendation method that employs the BERT sentence embedding model to represent queries, capturing
continuous semantic information. Through contrast training, CLEAR enables BERT to learn precise semantic
representations of queries, independent of their lexical content. Recently, Zhang et al. [541] developed ToolCoder,
which combines API search tools with existing models to aid in code generation and API selection. This approach
involves an automated data annotation method using ChatGPT, adding tool usage information to the source code
data, followed by fine-tuning the code generation model. During inference, an API search tool is integrated into
the generation process, allowing the model to utilize the tool for suggestions when selecting APIs automatically.
Code editing.Code editing involvesmodifying source code to fix bugs, enhance features, or optimize performance.
Recent studies have explored applying Large Language Models (LLMs) to this task. Tools like CodePlan [21] frame
repository-level code editing as a planning problem, synthesizing multi-step edits with LLMs. The Grace method
[123] enhances LLMs by conditioning code generation on previous edits to capture developer intent. CodeEditor
[227] introduces a specialized pre-training task to improve automatic code editing. COFFEEPOTS [294] leverages
open-source LLMs to generate corrective feedback. Additionally, LLMs have been adapted for high-level program
optimization, achieving significant speedups [396]. These studies demonstrate LLMs’ potential in automating
complex code editing tasks.
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Code representation. Code representation learning (also known as code embedding) aims to encode the code
semantics into distributed vector representations and plays a key role in recent deep-learning-based models
for code intelligence. Code representation can be used to support a variety of downstream tasks, such as code
completion [357], code search [117, 442], and code summarization [445, 539]. Niu et al. [315] propose a novel
sequence-to-sequence pre-training model that utilizes structural information from source code to enhance its
representation learning. The model is trained on a large corpus of source code, which enables it to capture the
complex patterns and dependencies inherent in programming languages. Wan et al. [444] show through their
research that attention is highly consistent with the syntactic structure of the code, that pre-trained code language
models can preserve the syntactic structure of the code in the intermediate representations of each converter
layer, and that pre-trained code models have the ability to induce a syntactic tree of the code. These revelations
suggest that incorporating the syntactic structure of the code into the pre-training process results in better code
representations.
Code comment generation. Code comment generation, the automatic creation of comments for source code,
serves to elucidate code functionality, implementation logic, and input-output details, thereby enhancing readabil-
ity and maintainability [105, 144]. As code complexity grows, manually crafting these comprehensive and accurate
comments can become burdensome and prone to errors. Automation in this domain can markedly enhance the
efficiency and quality of code documentation. LLMs such as Codex [105] and T5 [284] have been effectively
applied to code comment generation. These models are pre-trained on vast amounts of data and possess powerful
natural language processing and semantic understanding capabilities. During comment generation, LLMs analyze
the structure, semantics, and context of the source code to automatically generate high-quality comments that
correspond to the code’s functionality and logic. Addressing the often observed disconnect between code evolution
and its accompanying documentation, Mastropaolo et al. [284] explore the potential of LLMs, particularly the
T5 architecture, in assisting developers with code comment completion. Their empirical study juxtaposes the
performance of the T5 model against an n-gram model, revealing T5’s superior capabilities, though the n-gram
model remains a competitive alternative. The research underscores the significance of open-source datasets for
training and highlights the scant use of industrial datasets in current studies.
Method name generation. Method names significantly affect program comprehensibility, serving as a brief
summary of the source code and indicating the developer’s intent [201]. The importance of method names in
program comprehension is further evidenced by recent studies showing that some programmers even write down
important method names to help them figure out the procedures of an application [364]. Zhu et al. [574] present
AUMENA, a novel approach using the CodeT5 model for context-aware method naming in SE. AUMENA first
learns the contextualized representation of programming and natural language, then leverages LLMs with prompt
tuning to detect inconsistent method names and suggest accurate alternatives. This method avoids previous
generate-then-compare consistency checking limitations, modeling the task as a two-class classification problem.
Agile story point estimation. Agile story point estimation, representing the total work needed to implement a
product backlog item, is a complex task in agility. Story points are typically estimated by team consensus, using
methods like plan poker and expert judgment, and considering factors like workload and complexity. However,
subjective estimates may introduce uncertainty. Fu et al. [99] present GPT2SP, a Transformer-based approach that
overcomes limitations of a previous method called Deep-SE. Unlike Deep-SE, which restricts language models to
known words within a trained project, GPT2SP employs a broader context, making it transferable across projects.
GPT2SP’s performance is comparable to Deep-SE in within-repository evaluations and surpasses it in 62.5% of
cases, with improvements ranging from 3% to 46% across various projects.
API documentation smell detection. APIs, vital for modern software development, are often accompanied by
official documentation. Good documentation is key to proper API use, while poor quality can hinder adoption
and negatively impact developers’ productivity [2, 362, 363]. Khan et al. [191] identified five API documentation
smells and presented a benchmark of 1,000 API documentation units containing the five smells found in the
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official API documentation. The authors developed classifiers to detect these odors, with BERT showing the
best performance, demonstrating the potential of LLMs in automatically monitoring and warning about API
documentation quality.
API entity and relation extraction. Extracting APIs and their semantic relationships from unstructured text
(e.g., data from Stack Overflow) is a fundamental task in SE, but existing methods require labor-intensive manual
rule creation or data labeling. Huang et al. [148] present an innovative approach, AERJE, that leverages LLMs
for this task. AERJE consists of a BERT-based dynamic hint generator and a T5-based joint entity-relationship
extractor, which together enable efficient extraction of API entities and relationships without manual effort. The
approach achieved an F1 score of 96.51% for API entity extraction and 81.2% for API relationship extraction,
offering a significant advancement over traditional methods.
Code recommendation. Zhou et al. [570] pointed out that software developers tend to write similar code
examples several times due to the need to implement similar features in different projects. Therefore, during the
software development process, recommender systems can provide programmers with the most pertinent and
high-quality examples written by other programmers, thus helping them to complete their tasks quickly and
efficiently [66]. Open-source projects and informal documentation are the two main sources of information that
developers rely on to perform programming tasks. For example, open-source projects on GitHub provide code
examples and code resources for various tasks. Rahmani et al. [352] introduce a methodology to improve code
example recommendations for Java programming language on Stack Overflow using BERT and Query-Aware
Locality-Sensitive Hashing (LSH). They employ BERT to convert code into numerical vectors and then apply two
LSH variants, Random Hyperplane-based, and Query-Aware, to identify Approximate Nearest Neighbors (ANN).
Control flow graph generation. Control Flow Graphs (CFGs) are a cornerstone of SE that illustrate pro-
gram behavior by showing sequences of statements and their execution order conditions [12]. As a graphical
representation of program behavior, CFGs are critical in many SE tasks, including code search [42, 119], code
clone detection [144, 457, 469] and code classification [458, 540]. Huang et al. [152] presented a novel approach
for generating behaviorally correct CFGs of statically typed partial code by leveraging the error-tolerant and
understanding ability of LLMs. The approach involves a Chain of Thoughts (CoT) with four steps: structure
hierarchy extraction, nested code block extraction, CFG generation of nested code blocks, and fusion of all nested
code blocks’ CFGs. The CoT is broken down into an AI chain according to the single responsibility principle,
along with effective prompt instructions. This results in superior node and edge coverage compared to traditional
program analysis-based methods and the original CoT method.
Identifier normalization. Identifiers usually consist of multiple words, and a certain number of identifiers
contain abbreviations [172]. Consequently, the lexical meaning of identifiers and the overall functionality of
source code written by one developer may be challenging for other developers to comprehend. In addition,
the source code cannot match the vocabulary in other software artifacts described in natural language, thus
invalidating some automated algorithms. Therefore, there is a strong need to normalize identifiers with the aim
of aligning the vocabulary in identifiers with the natural language vocabulary in other software artifacts. Zhang
et al. [535] addressed this by introducing BEQAIN, an approach for identifier normalization. BEQAIN combines
BERT with a Question and Answering (Q&A) system and Conditional Random Fields (CRF), treating identifier
splitting as sequence labeling and abbreviation expansion as a Q&A task. It uses programming context to refine
expansion results when multiple expansions are possible, aligning identifier vocabulary with natural language
and enhancing software development comprehension and automation.
Type inference. Type inference, the automated process of determining data types in programming, plays a
crucial role in enhancing readability, maintainability, and reducing runtime errors [132, 340]. TypeScript, with its
unique blend of optional typing, presents a nuanced challenge, especially when navigating the vast landscape
of user-defined types. Addressing this complexity, Jesse et al. [166] introduced an approach that leverages the
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capabilities of a BERT-style pre-trained model. Their solution, DIVERSETYPER, adeptly infers types for user-
defined classes and interfaces by uniquely correlating class and interface declarations with their respective usage
contexts. Beyond merely filling the gaps of previous methodologies, DIVERSETYPER sets a new benchmark in
type inference, especially for user-defined types.
Others. In addition to the 20 software development tasks detailed above, LLMs can also be applied to API
documentation augment [503], data analysis [51], fuzz driver generation [532], and instruction generation [573].

6.5 How are LLMs used in software quality assurance?
Within the domain of software quality assurance, LLMs have emerged as valuable tools with diverse applications
for various tasks, including vulnerability detection, test generation, bug localization, verification, test automation,
etc.
Vulnerability detection. The number of software vulnerabilities is rapidly increasing, as shown by the vul-
nerability reports from Common Vulnerabilities and Exposures (CVEs) [17] in recent years. As the number
of vulnerabilities increases, there will be more possibilities for cybersecurity attacks, which can cause serious
economic and social harm. Therefore, vulnerability detection is crucial to ensure the security of software systems
and protect social and economic stability. Traditional static detection methods are based on static analysis
and predefined matching rules, which rely on developers’ expertise and make it difficult to detect unknown
vulnerabilities. With the assistance of LLMs [35, 48, 426], Tang et al. [419] introduced novel approaches using
LLMs to enhance vulnerability detection. One of their proposed models, CSGVD, combines sequence and graph
embedding for function-level vulnerability detection, outperforming other deep learning-based models on a
real-world benchmark dataset. Their study also explores the application of CodeT5 for vulnerability detection,
highlighting the importance of code-specific pre-training tasks.
Test generation. Test generation involves automating the process of creating test cases to evaluate the correctness
and functionality of software applications. It encompasses various aspects, including test case generation [544],
unit test generation [377, 398, 421, 493, 525], etc. LLM application in test generation offers several advantages,
including the ability to automatically generate diverse test cases, improving test coverage [377, 398] and identifying
potential defects [493]. LLMs can also assist in generating test cases based on natural language descriptions,
fostering better collaboration between developers and testers. Additionally, they help identify areas lacking test
coverage and suggest relevant test cases, ensuring comprehensive testing and reducing the risk of undiscovered
issues [544]. By enhancing test efficiency and effectiveness, LLMs contribute to producing more reliable and
high-quality software products.
Bug localization. Bug localization refers to the process of identifying the specific source code files, functions,
or lines of code that are responsible for a reported bug or software defect. Bug localization typically involves
analyzing bug reports or issue descriptions provided by users or testers and correlating them with the relevant
portions of the source code. This process can be challenging, especially in large and complex software projects,
where codebases can contain thousands or even millions of lines of code. Traditional bug localization methods
often rely on heuristics, code metrics, or stack trace analysis, which may not always provide precise results.
Ciborowska et al. [56] investigated data augmentation techniques to enhance bug localization models. They
introduce a pipeline applying token-level operations such as dictionary replacement, insertion, random swapping,
and deletion, along with paragraph-level back-translation to bug reports. By employing augmented data to train
BERT-based models for bug localization, they demonstrate that these techniques can substantially expand the
training data and boost the models’ performance.
Verification. Verification techniques, including prominent methods such as formal verification, hold a pivotal
role in the domain of software quality assurance [37, 432]. These techniques validate the correctness of software
systems, improving their reliability and security against potential threats. Utilizing mathematical and logical
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principles in the verification process facilitates thorough error detection and correction before deployment,
ensuring stable and secure performance in different operational contexts. Charalambous et al. [37] leverage LLMs,
particularly the GPT-3.5, in the realm of formal verification. Their approach combines LLMs with bounded model
checking (BMC) to automatically repair software based on formal methods, showcasing the model’s capability to
understand intricate software structures and generate accurate repairs.
Test automation. Automated testing methodologies offer a comprehensive array of tools and strategies designed
for the evaluation of software applications’ accuracy, reliability, and performance.These methodologies encompass
various techniques, such as mutation testing [195] and fuzzing [63, 64]. LLMs have been used for mutation
testing, introducing faults to the codebase to assess the effectiveness of test suites in identifying and detecting
errors [195]. Furthermore, LLMs can aid in fuzzing, generating valid and diverse input programs that help identify
vulnerabilities and bugs, particularly in challenging domains like deep learning libraries [63]. By incorporating
LLMs into test techniques, software engineers benefit from improved test coverage, reduced manual effort, and
enhanced bug detection [64], leading to more robust and reliable software systems.
Fault localization. Test suites typically include two types of test cases: pass-through test cases and fault-
inducing test cases [233]. In practice, there are far more pass test cases for faults than fault-inducing test cases,
which hinders the effectiveness of program debugging. However, in practice, it is difficult to find fault-inducing
test cases. This is because developers first need to find test inputs that trigger program faults, and the search
space for such test inputs is huge [97]. Moreover, developers need to build a test oracle to automatically detect
program faults, and building a test oracle is often an undecidable problem [155]. Li et al. [233] investigated the
application of ChatGPT to the task of finding fault-inducing test cases in SE. While recognizing ChatGPT’s
potential, they initially observed suboptimal performance in pinpointing these cases, particularly when two
versions of a program had similar syntax. The authors identified this as a weakness in ChatGPT’s ability to discern
subtle code differences. To enhance its performance, they devised a novel approach blending ChatGPT with
difference testing. Leveraging ChatGPT’s strength in inferring expected behavior from erroneous programs, they
synthesized programs that amplified subtle code differences. The experimental results reveal that this approach
greatly increases the probability of finding the correct fault-inducing test case.
Others. In addition to the six software quality assurance tasks detailed above, LLMs can also be applied to
defect detection [409, 480], GUI testing [265, 520], static analysis [126, 291], binary taint analysis [255], compiler
fuzzing [348], decompilation [497], invariant prediction [337], malicious code localization [409], mobile app crash
detection [266], and resource leak detection [447].

6.6 How are LLMs used in software maintenance?
Within the context of software maintenance, LLMs have been leveraged for bug prediction, program repair, code
review, debugging, and an array of other activities.
Program repair. The goal of automated program repair (APR) is to automatically identify and fix bugs or
defects in software [558]. It involves leveraging automated techniques to analyze buggy code and generate
correct patches to address the identified issues. LLMs, such as BERT [428, 546], CodeBERT [216], CodeT5 [332],
Codex [90, 174, 485], PLBART [332, 485], T5 [287, 523] and GPT series [33, 37, 211, 401, 429, 490, 491], have shown
effectiveness in generating syntactically correct and contextually relevant code. Leveraging LLMs for program
repair can achieve competitive performance in generating patches for various types of bugs and defects [491].
These models can effectively capture the underlying semantics and dependencies in the code [37], leading to the
production of accurate and effective patches [490, 546]. Moreover, LLMs can be fine-tuned on specific code repair
datasets [287], further improving their ability to generate high-quality patches for real-world software projects.
The application of LLMs in program repair not only accelerates the bug-fixing process but also enables software
developers to focus on more complex tasks, leading to enhanced software reliability and maintainability.
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Table 12. The state-of-the-art applications of LLMs in program repair task.

Model Baseline Benchmark Metric Date Reference
Codex GPT-Neo, GPT-J, GPT-NeoX, CodeT5, In-

Coder
QuixBugs-Python and
Java, Defects4J 1.2 and 2.0,
ManyBugs

Correct / plausi-
ble patches

May 20, 2023 [489]

Codex CodeT5, CodeGen, PLBART, InCoder Vul4J, VJBench, Correct / plausi-
ble patches

May 29, 2023 [485]

ChatGPT Codex, CodeGen-16B, CodeGen-6B,
CodeGen-2B, CodeGen-350M

QuixBugs-Python and
Java

Correct / plausi-
ble patches

Jan 30, 2023 [490]

ChatGPT Codex, CodeBERT, SelfAPR, RewardRepair,
Recoder, TBar, CURE, CoCoNuT

QuixBugs-Python and
Java, Defects4J 1.2 and 2.0

Correct fixes Apr 1, 2023 [491]

In recent research, program repair has emerged as a prevalent application. Among the LLMs, as shown in
Table 12, Codex [485, 489] and ChatGPT [490] have particularly distinguished themselves in the program repair
domain. ChatGPT edges ahead due to its inherent interactive design, enabling a continuous feedback
loop that yields refined and contextually apt patches [490, 491]. Such conversational dynamics, coupled
with rigorous comparisons across diverse baselines, underscore its superior adaptability and efficiency.

Summarising several key findings from research on LLMs for program repair:
• Interactive feedback. Incorporating an interactive feedback loop, as observedwith ChatGPT, significantly

augments the accuracy of program repair [490]. This dynamic interplay between patch generation and
validation fosters a deeper understanding of the software’s semantics, leading to more effective repairs.

• Domain-specific integration. Merging the capabilities of LLMs with domain-specific knowledge and
techniques further enhances their performance. Customized prompts, project-specific fine-tuning, and
leveraging SE techniques [450, 489] can dramatically elevate the efficacy of LLM-driven program repairs.

• Comparative analysis. Rigorous evaluation against diverse baselines reveals the versatility and adapt-
ability of LLMs, especially ChatGPT. This wide-ranging comparison not only establishes their superiority
but also underscores areas for potential improvement [491].

Code review. Code review is a critical quality assurance practice used to inspect, assess, and validate the quality
and consistency of software code [381]. Code review aims to identify potential errors, vulnerabilities, and code
quality issues, while also improving code maintainability, readability, and scalability. LLMs like BERT [381],
ChatGPT [402, 479], and T5 [231, 437], trained on massive code repositories, possess the ability to understand and
learn the semantics, structures, and contextual information of code [538]. In the code review process, LLMs assist
reviewers in comprehensively understanding code intent and implementation details, enabling more accurate
detection of potential issues and errors. Moreover, these models can generate suggestions for code improvements
and optimizations, providing valuable insights and guidance to reviewers. Additionally, Widyasari et al. [479] have
demonstrated that with suitable prompts LLMs can generate suitable explanations that help software engineers
more readily accept suggested changes. By combining the intelligence of LLMs with the expertise of human
reviewers, code review becomes more efficient and precise, further enhancing software quality and reliability.
Sentiment analysis. Sentiment analysis involves determining emotions in text data related to software products,
such as user feedback or comments [124, 156, 178]. The goal of sentiment analysis is to automatically classify the
sentiment of the text as positive, negative, or neutral, providing valuable insights into how users perceive and
react to software applications. Zhang et al. [555] conducted a study comparing pre-trained Transformer models
like BERT, RoBERTa, XLNet, and ALBERT with existing SA4SE tools across six datasets. The results show that the
Transformer models outperformed previous tools by 6.5% to 35.6% in macro/micro-averaged F1-scores, albeit with
a trade-off in runtime efficiency. However, this accuracy boost comes with some runtime costs, indicating that
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while Transformer models are less efficient than existing SA4SE approaches, their runtime cost is not prohibitively
high.
Tag recommendation. Improper tagging in software Q&A sites can lead to redundancy and other issues such
as tag explosion. He et al. [131] introduced PTM4Tag, a framework utilizing PLMs with a triplet architecture to
recommend tags for posts. By separately modeling the title, description, and code snippets of posts, PTM4Tag
was compared using five popular PLMs, including BERT, CodeBERT, etc. The SE-specialized CodeBERT showed
the best performance, notably surpassing CNN-based methods. An ablation study revealed that while the title
was crucial in tag prediction, using all post components achieved the optimal result.
Duplicate bug report detection. In large software projects, multiple users may encounter and report the same
or similar bugs independently, resulting in a proliferation of duplicate bug reports [159]. Duplicate bug report
detection involves analyzing the textual content of bug reports and comparing them to find similarities and
redundancies. LLM models, such as BERT [159], ChatGPT [552], and other transformer-based architectures, are
well-suited for natural language understanding and contextual representation. When applied to this task, LLMs
can effectively capture the semantic similarities between bug reports, even in cases with slight variations in
language or phrasing. The utilization of LLMs in this context not only enhances efficiency in managing bug
reports but also contributes to improving the overall software development and maintenance workflow, reducing
redundancy, and ensuring prompt bug resolution [551].
Bug reproduction. Bug reports are crucial for software maintenance, allowing users to inform developers of
problems encountered while using the software. Therefore, researchers have invested significant resources in
automating error playback to speed up the software maintenance process. The success of current automated
approaches depends heavily on the characteristics and quality of error reports, as they are limited by manually cre-
ated schemas and predefined vocabularies. Inspired by the success of the LLMs in natural language understanding,
Feng et al. [92] propose AdbGPT, which utilizes natural language understanding and logical reasoning capabilities
of the LLM to extract Steps to Reproduce (S2R) entities from bug reports and guide the bug replay process based
on the current graphical user interface (GUI) state. The researchers describe how cue engineering, a small amount
of learning, and thought chain reasoning can be utilized to leverage the knowledge of the LLM for automated
error replay. This approach is significantly lightweight compared to traditional approaches, which utilize a single
LLM to address both phases of S2R entity extraction and guided replay through novel hint engineering.
Logging. Logging involves the systematic recording of events, messages, or information during the operation of a
software application. It provides valuable information for understanding the behavior, performance, and potential
problems of an application. Developers strategically insert logging statements throughout the code base to
capture relevant data such as variable values, function calls, and error messages. These logs are an important tool
for testing [39, 41], debugging [375], monitoring [128, 129], and analyzing the behavior of software operations,
helping developers identify and diagnose bugs, performance bottlenecks, and other critical issues. Mastropaolo
et al. [287] introduce LANCE, a system for automatically generating and injecting full log statements into Java
code using the T5 model. Sridhara et al. [402] present that ChatGPT performs well in the log summarization task,
generating aggregated results that are better than the current state of the art.
Debugging. Debugging targets identifying, locating, and resolving software defects or errors, commonly known
as bugs. The debugging process involves scrutinizing the code, tracing the execution flow, and isolating the
root cause of the problem to correct the error effectively. LLMs, such as BERT and other transformer-based
architectures, excel at utilizing contextual information and natural language understanding. In terms of debugging,
LLMs can be used to simulate the scientific debugging process, such as AutoSD proposed by Kang et al. [184].
This model generates hypotheses about code problems and extracts relevant values to identify potential problems.
In addition, the SELF-DEBUGGING method proposed by Chen et al. [45] enables LLM to debug its own generated
code by learning a small number of presentations and explanations, which effectively improves the accuracy
and sampling efficiency of code generation. Using LLMs in debugging not only improves fixing performance by
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generating competitive fixes but also provides insights into and explanations of the model’s decision-making
process, making it an important tool for improving software quality and developer productivity.
Vulnerability repair. Vulnerability repair is the process of identifying and fixing security holes or weaknesses
in software applications. Pearce et al. [334] investigate how to use LLMs for software zero-point vulnerability
remediation.The authors explore the challenges faced in designing hints to induce LLMs to generate fixed versions
of insecure code. It shows that while the approach is promising, with LLMs capable of fixing 100% of synthetic
and hand-created scenarios, a qualitative assessment of the model’s performance on a corpus of historical real-life
examples reveals challenges in generating functionally correct code. It is concluded that despite the potential
for future targeted LLM applications in this area, challenges remain. For a complete end-to-end system, the full
system needs to be evaluated in conjunction with error localization and an improved testbed.
Code clone detection. Code clones are code samples that are identical to each other [24, 188]. These code
samples can have structural or semantic equivalence [416]. Sharma et al. [384] investigate BERT’s application in
code clone detection through an exploratory study. Analyzing BERT’s attention to code markers, they found
that identifiers received higher attention, advocating their use in clone detection. This insight enhanced clone
detection across all layers, and the implications extended beyond BERT. The researchers suggest that these
findings could lead to the development of smaller models with performance akin to larger ones, thus mitigating
computational accessibility issues.
Bug prediction. Gomes et al. [111] conduct a BERT and TF-IDF (Term Frequency-Inverted Document Frequency)
application for long-lived bug prediction in Free/Libre Open-Source Software (FLOSS) study to compare their
accuracy in predicting long-lived errors. The results show that BERT-based feature extraction consistently
outperforms TF-IDF, demonstrating BERT’s ability to capture the semantic context in error reports. In addition,
smaller BERT architectures also show competitive results, highlighting the effectiveness of LLMs in bug prediction.
This approach promises to enable more accurate error detection in FLOSS projects and improve software quality
and maintenance.
Bug triage. Bug triage is pivotal for effective issue management in large projects. It entails prioritizing bugs
and assigning appropriate developers for resolution. While bug triage is straightforward for smaller projects,
scalability brings complexity. Finding the right developers with the needed skills becomes intricate as bugs vary
in expertise requirements. Some even demand combined skills, amplifying the intricacy. Lee et al. [217] introduce
the Light Bug Triage framework (LBT-P). This innovative approach employs BERT to extract semantic information
from bug reports. To surmount challenges with LLMs in bug triage, the researchers employ techniques like model
compression, knowledge preservation fine-tuning, and a new loss function.
Program merge conflicts repair. Program merge conflicts repair addresses the challenges faced when integrat-
ing individual code changes, which can lead to textual or semantic inconsistencies. Zhang et al. [536] explored
the potential of using k-shot learning with LLMs like GPT-3 to automate this repair process. While these models
showed promise in resolving semantic conflicts for Microsoft Edge, they didn’t fully replace the benefits of
domain-specific languages for certain synthesis patterns.
Traceability recovery. Traceability recovery focuses on re-establishing lost or unclear connections between
related software artifacts, thereby facilitating coherent software evolution and maintenance [106]. While tradi-
tional methods have offered some solutions, the integration of LLMs has recently emerged as a promising avenue
for enhancing the accuracy and efficiency of this task. Zhu et al. [575] present TRACEFUN, a traceability link
recovery framework enhanced with unlabeled data, serves as a testament to this potential, leveraging LLMs to
bridge the gap between labeled and unlabeled data, thereby refining traceability link predictions.
Others. In addition to the 14 software maintenance tasks detailed above, LLMs can also be applied to review/-
commit/code classification [107, 205, 504], log parsing [264, 276, 522], code revision [181, 441], API misuses
repair [554], Code coverage prediction [436], code review explained [479], Code-Review defects repair [564],
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crash bug repair [76], dockerfile Repair [135], incivility detection [95], patch correctness prediction [547], patch de-
tection [420], rename Refactoring [252], technical debt payback [286], web test repair [498], type error repair [54],
etc.

6.7 How are LLMs used in software management?
Research papers describing the utilization of LLMs in software management are still limited.
Effort estimation. Effort estimation refers to the process of predicting the amount of time, resources, and
manpower required to complete a software development project. Alhamed et al. [11] conduct an evaluation of the
application of BERT in the task of effort estimation for software maintenance. Their study underscores BERT’s
potential to offer valuable insights and aid in the decision-making process while also highlighting the associated
challenges and need for further investigation.

RQ4 - Summary

(1)We categorized SE tasks into six activities: requirements engineering, software design, software development,
software quality assurance, software maintenance, and software management. Subsequently, we summarized
the specific applications of LLMs in these SE activities.
(2) We identified a total of 85 SE tasks and found that LLMs are most widely used in software development,
with 229 papers mentioning over 24 SE tasks. The least applied area, software management, was mentioned in
only three studies.
(3)Code generation and program repair are themost prevalent tasks for employing LLMs in software
development and maintenance activities. We analyze the top-performing LLMs repeatedly validated in
these tasks and summarize novel findings.

7 THREATS TO VALIDITY
Paper search omission. One key limitation is the possibility of omitting relevant papers during the search
process. When gathering papers related to LLM4SE tasks from various publishers, it is possible to miss some
papers due to incomplete summarization of keywords for software engineering tasks or LLMs. To address this
concern, we adopted a comprehensive approach, combining manual search, automated search, and snowballing
techniques, to minimize the risk of missing relevant papers. For manual search, we systematically searched for
LLM papers related to SE tasks in six top-tier SE venues and extracted authoritative and comprehensive SE tasks
and LLM keywords from these sources. Using these constructed search strings, we conducted automated searches
on seven widely used publisher platforms. Additionally, to further augment our search results, we employed both
forward and backward snowballing.
Study selection bias. Another limitation is the potential study selection bias. We established inclusion and
exclusion criteria to perform the initial selection of papers, followed by manual verification based on quality
assessment criteria (QAC). This process involves a combination of automated and manual procedures. The
automated selection process may result in mislabeling of papers due to incomplete or ambiguous information
in their corresponding BibTeX records. To mitigate this issue, any papers that cannot be confidently excluded
are temporarily retained for manual verification. However, the manual verification stage could be influenced
by the subjective judgment and biases of the researchers, affecting the accuracy of the quality assessment of
papers. To address these concerns, we invited two experienced reviewers in the fields of SE and LLM research to
conduct a secondary review of the study selection results. The two reviewers raised objections to some of our
results. Following a thorough discussion among all authors and reviewers regarding these issues, a consensus was
ultimately reached. This step aims to enhance the accuracy of our paper selection and minimize the likelihood of
omission or misclassification. By using these measures, we strive to ensure that the selected papers are accurate
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and comprehensive, minimizing the impact of study selection bias and enhancing the reliability of our systematic
literature review. We additionally provide a replication package4 for others to view.
Empirical knowledge bias. This SLR, along with 395 relevant studies in the LLM4SE field, answers four RQs.
This implies the need for manual analysis and understanding of each study. In this process, there may be biases
introduced by subjective judgments and experiential knowledge. To minimize potential errors in this regard,
we have made the following efforts. Firstly, in determining the RQs, as the first comprehensive overview of the
LLM4SE field, we aim to provide a comprehensive interpretation of the current state and trends in this domain.
Considering the commonality in AI4SE research, we referred to Yang et al.’s survey on DL4SE [511] during our
RQ formulation. We finally decided to focus on LLM types, datasets, tuning, evaluation, and targeted SE tasks.
Secondly, for the understanding and analysis of each study, to ensure accurate comprehension of paper details,
before addressing each RQ, we extensively reviewed relevant literature to predefine the approximate categories
and details for each RQ. For example, in RQ3, based on prior work [371, 474, 561], we identified differences
between tuning techniques for LLMs and those commonly used in traditional machine learning, such as prompt
engineering and PEFT.

8 CHALLENGES AND OPPORTUNITIES

8.1 Challenges
8.1.1 Challenges in LLM Applicability.
Model size and deployment.The size of LLMs has seen a marked increase over time, moving from GPT-1’s 117M
parameters to GPT-2’s 1.5B, and further to GPT-3’s 175B parameters [508]. The billions and even trillions [296]
of parameters pose significant storage, memory, and computational challenges, which can hinder LLMs in
resource-limited and real-time scenarios, especially when developers lack access to powerful GPUs or TPUs.
CodeBERT [93], a pre-trained model proposed in 2019, has a total of 125M parameters, resulting in a large model
size of 476 MB. Recently proposed models like Codex [43] and CodeGen [313], have over 100 billion parameters
and over 100 GB in size. The large sizes also require more computational resources. As pointed out by Hugging
Face team [25], training a 176B model (i.e., BLOOM [376]) on 1.5 TB datasets consumes an estimated 1,082,880
GPU hours. Similarly, the training of the GPT-NeoX-20B model [27] on the Pile dataset [101], encompassing over
825 GiB of raw text data, requires the deployment of eight NVIDIA A100-SXM4-40GB GPUs. Each of these GPUs
comes with a price tag of over 6,000 dollars [16], and the training extends to 1,830 hours or approximately 76
days. Moreover, even training a relatively smaller model like the PolyCoder (2.7B) [495], employing eight NVIDIA
RTX 8000 GPUs on a single machine, demands a commitment of around 6 weeks. These examples illustrate the
significant computational costs associated with training LLMs. These also have significant energy costs with
predictions of massively increased energy usage by LLM-based platforms [361]. Fortunately, there are preliminary
studies on reducing code models’ size and improving their efficiency. Shi et al. [391] use a genetic algorithm to
compress CodeBERT into only 3 MB and reduce its response latency by more than 70%. Overall, the challenge of
increasing model sizes and efficient deployment requires further attention from the communities.
Data dependency. In Section 4, we provide a detailed analysis of the datasets used in 395 studies and the data
preprocessing process, finding that LLMs rely heavily on a large number of different datasets for training and
fine-tuning, posing the data dependency challenge. The quality, diversity, and quantity of data directly affect the
performance and generalizability of the models. Given their size, LLMs often require large amounts of data to
capture nuances, but obtaining such data can be challenging. Relying on limited or biased datasets may cause the
model to inherit these biases, resulting in biased or inaccurate predictions. In addition, the domain-specific data
required for fine-tuning can be a bottleneck. Due to the relatively short period of time since the emergence of LLM,
such large-scale datasets are still relatively rare, especially in the SE domain. Another issue is the risk of benchmark
4https://github.com/xinyi-hou/LLM4SE_SLR
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data contamination, where training and test data overlaps could lead to inflated performance metrics [563]. For
instance, Brown et al. [29] discovered a code bug that prevented them from fully removing all overlapping data.
They were unable to afford retraining and resorted to using “cleaned” variants of the benchmarks to mitigate the
issue. Moreover, there are grave concerns around the inclusion of Personally Identifiable Information (PII) in
pre-training corpora. Instances of PII, such as phone numbers and email addresses, have led to privacy leaks
during the prompting process [81, 207].
Ambiguity in code generation. Ambiguity in code generation poses a significant challenge for LLMs in SE tasks.
When code intent is unclear (e.g., multiple valid solutions exist), LLMs may struggle to produce accurate and
contextually appropriate code. This can lead to syntactically correct but functionally incorrect code, impacting the
reliability and effectiveness of LLM-based code generation. Addressing this issue requires exploring techniques to
incorporate additional context, domain-specific knowledge, or multi-model ensembles to improve LLMs’ ability
to handle ambiguity and generate precise code, ensuring their successful integration into real-world software
development processes.

8.1.2 Challenges in LLM Generalizability. The generalizability of LLMs refers to the ability of these models
to consistently and accurately perform tasks in different tasks, datasets, or domains outside their training
environment. While LLMs are trained on massive amounts of data, ensuring extensive knowledge capture, their
performance is sometimes problematic when confronted with specific or idiosyncratic tasks outside the scope
of their training. This challenge is particularly evident in the SE domain, where we present the application of
LLMs to 85 SE tasks in Section 6. We observed that the context and semantics of code or documents vary greatly
across projects, languages, or domains. Ensuring that the LLM generalizes well requires careful fine-tuning,
validation on different datasets, and continuous feedback loops. Without these measures, models run the risk of
over-adapting their training data, thus limiting their usefulness in a variety of real-world applications. Recent
studies have shown that the LLMs cannot generalize their good performance to inputs after semantic-preserving
transformations. For example, Yang et al. [512] show that the performance of CodeBERT on different tasks
decreases significantly after substituting the variables’ names in the input.

8.1.3 Challenges in LLM Evaluation. We summarized key evaluation metrics used in different types of SE tasks
according to four task types: regression, classification, recommendation, and generation (Section 6). We found
that when applying LLMs in the software engineering domain, the methodology for evaluating the performance
of the models is usually based on a set of predefined metrics. Unfortunately, these metrics (e.g., Accuracy, Recall,
or F1-score), while useful in some cases, may not fully capture all the effects and impacts of a model in a given SE
task. For example, a model may perform well in terms of accuracy but may fail in processing specific types of
inputs or in some specific situations. In addition, these metrics may not capture certain qualitative aspects of the
model, such as its interpretability, robustness, or sensitivity to specific types of errors. Some of the most recent
studies on LLM4SE tasks [3, 142, 400, 497, 524, 543], in which researchers customized some evaluation metrics to
assess the performance of models, also further illustrate the limitations of some of the widely used evaluation
metrics in the field of LLM.

8.1.4 Challenges in LLM Interpretability, Trustworthiness, and Ethical Usage. Interpretability and trustworthiness
are crucial aspects in the adoption of LLMs for SE tasks. The challenge lies in understanding the decision-making
process of these models, as their black-box nature often makes it difficult to explain why or how a particular code
snippet or recommendation is generated. Recent studies [229, 443, 514] also show that LLM of code trained on
low-quality datasets can have vulnerabilities (e.g., generating insecure code). The lack of interpretability and
trustworthiness can lead to uncertainty and hesitation among developers, who may be hesitant to rely on LLM-
generated code without a clear understanding of how it was derived. Establishing trust in LLMs requires efforts
to develop techniques and tools that provide insights into the model’s internal workings and enable developers
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to comprehend the reasoning behind the generated outputs. Enhancing interpretability and trustworthiness can
ultimately promote the widespread adoption of LLMs in SE, leading to more efficient and effective development
practices. Many LLMs are not open and it is unclear what data they have been trained on, both quality and
representativeness but also ownership of the source training data. This brings into question ownership of the
derivative data, e.g., generated designs, code, or test cases. There is also potential for various adversarial attacks
e.g. deliberately seeding LLMs with code vulnerabilities so that automatically generated code snippets have subtle
but vulnerable aspects.

8.2 Opportunities
8.2.1 Optimization of LLM4SE.
The advent of code-specialized LLMs in SE. The recent emergence of code-specialized LLMs, such as GitHub
Copilot [110], Amazon’s CodeWhisperer [15], OpenAI Code Interpreter [320] integrated into ChatGPT, and
Code Llama [290] from Meta’s Llama family, signals a transformative phase in LLM4SE. These specialized LLMs,
fine-tuned on code-specific datasets, are not merely incremental improvements but paradigm shifts in code
understanding, generation, and efficiency. They offer new avenues for automated coding, personalized developer
assistance, enhanced code review, and quality assurance, among other tasks, setting the stage for groundbreaking
advancements in the SE domain.
Influence and applications of ChatGPT. ChatGPT’s popularity in recent academic research, as evidenced
by its large presence in our 395 analyzed papers, emphasizes its escalating influence and acceptance within
academia. Researchers’ preference for ChatGPT over other LLMs and LLM-based applications since its release can
be attributed to its computational efficiency, adaptability to various tasks, and potential cost-effectiveness [213,
225, 490]. Its applications extend beyond mere code efficiency and debugging, fostering a collaborative era
in development. This paradigm shift signifies a broader move towards integrating advanced natural language
understanding into conventional coding practices [213, 277, 370]. By thoughtfully analyzing these dynamics
and trends, we can foresee the potential pathways for LLMs and LLM applications like ChatGPT in shaping
more robust, efficient, and collaborative software development procedures. Such insights stand as a promising
indication of the future revolutionary impact of LLMs on SE.
Performance enhancement from task-specific model training.The choice between leveraging commercially
available pre-trained models like GPT-4 and building upon open-source frameworks such as Llama 2 [434],
Gemma [114], and Mistral [8] provides a nuanced set of options for individual or organizational customization in
specialized tasks. The distinction between these two approaches lies in the degree of control and customization.
Pre-trained models like GPT-4 are generally not designed for large-scale retraining due to their proprietary nature,
but they allow quick task-specific adaptations with limited data, thereby minimizing computational overhead.
On the other hand, frameworks like LLaMA offer an open-source foundation for more extensive customization.
While they come pre-trained, organizations often modify the source code and retrain these models on their
own large-scale datasets to meet specialized requirements [137, 519]. This process is computationally intensive,
leading to greater resource allocation and cost, but affords the advantage of creating highly domain-specific
models. Hence, the primary trade-off is between the ease of use and quick deployment offered by models like
GPT-4, and the deep customization capabilities but higher computational demands associated with open-source
frameworks like LLaMA.
Collaborative LLMs. From our review it is evident that LLMs have made significant strides in addressing
various SE challenges. However, as the complexity of SE tasks continues to grow, there’s an emerging need for
more sophisticated and tailored solutions. One promising direction is the concept of Collaborative LLMs. This
approach involves integrating multiple LLMs [74, 562, 572] or combining LLMs with specialized machine-learning
models [84, 535] to enhance their efficacy for SE tasks. By harnessing the collective strengths of different models,
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we believe that the SE community can achieve more precise and efficient outcomes, from code completion to bug
detection.

8.2.2 Expanding LLM’s NLP Capabilities in More SE Phases.
Integration of new input forms. In our analysis, we observed that the predominant input forms were code-
based datasets and text-based datasets. However, there was a noticeable scarcity of graph-based datasets [204]
(Section 4). Leveraging new input forms of natural language, such as spoken language, diagrams, and multimodal
inputs, presents an opportunity to enhance the LLMs’ ability to understand and process diverse user requirements.
Integrating spoken language could improve interactions between developers and models, enabling more natural
and context-rich communication. Diagrams can facilitate visual representations of code and requirements, offering
a complementary perspective for code generation. Furthermore, multimodal inputs that combine text, audio, and
visual cues could offer a more comprehensive context understanding, leading to more accurate and contextually
appropriate code generation. Additionally, exploring graph-based datasets could be crucial for addressing complex
code scenarios, as graphs capture the structural relationships and dependencies in code, allowing LLMs to better
comprehend code interactions and dependencies.
Widening LLM applications across SE phases. We observed a pronounced emphasis on the application of
LLMs in software development, quality assurance, and maintenance. These areas have undoubtedly benefited
from the capabilities of LLMs, leading to enhanced code completion [161, 257], decompilation [385, 497], bug
detection [92, 184], and other related tasks.The current application of LLMs in requirements engineering, software
design, and software management remains relatively sparse. This presents a significant opportunity: by expanding
the use of LLMs to these under-explored areas, we can potentially improve how requirements are elicited, how
software designs are conceptualized, and how projects are managed.

8.2.3 Enhancing LLM’s Performance in Existing SE Tasks.
Tackling domain-specific challenges. Many SE domains, including safety-critical systems and specific in-
dustries, suffer from a scarcity of open-source datasets, hindering the application of LLMs in these specialized
areas. Future research can focus on creating domain-specific datasets and fine-tuning LLMs to cater to the
unique challenges and intricacies of these fields [26, 413]. Collaboration with domain experts and practitioners
is vital to curate relevant data, and fine-tuning LLMs on this data can enhance their effectiveness and ensure
better alignment with the specific requirements of each domain, paving the way for LLMs to address real-world
challenges [30] in diverse software engineering domains [233].
Establishing a comprehensive evaluation framework for LLM4SE. The necessity for a universal, yet adapt-
able, evaluation framework for LLM4SE is pressing for both academic and industrial sectors. In academia, such a
framework enables streamlined assessments of LLM performance, efficacy, and limitations, serving as a bench-
mark to verify the models’ practical readiness. On the industrial side, collaborations with real-world development
teams using this framework yield empirical insights into LLMs’ utility, including their impacts on productivity,
code quality, and team collaboration, while also revealing challenges like model biases, misinterpretation of code
semantics, and context-specific limitations. Establishing this framework is critical for standardizing assessments
and facilitating responsible LLM adoption in both academic research and practical applications [26, 112].

8.3 Roadmap
We provide a roadmap for future development in leveraging Large Language Models for Software Engineering
(LLM4SE), with an additional high-level perspective that acknowledges the reciprocal relationship and emerging
exploration of Software Engineering for Large Language Models (SE4LLM).
Automated coding, development and personalized developer assistance. The pursuit of automation in
coding encompasses the auto-generation of code snippets, bug fixes, system optimization, and the creation
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of intelligent, personalized assistance for developers that is context-aware and adaptable to individual needs.
LLM’s generative capabilities can be leveraged to help developers better understand requirements and generate
syntactically and semantically correct code, thereby accelerating development cycles and improving software
quality. Leveraging LLM’s natural language processing to develop context-aware tools allows for interaction
with developers in a more intuitive and responsive manner. Additionally, fine-tuning LLMs for specific coding
tasks and developer assistance can further enhance their accuracy and efficiency, customizing the automation
process to suit the unique demands of different projects and individuals. Still, important concerns of trust (how
developers can put trust in LLM-powered agents) and synergy (how developers can work well hand-in-hand
with LLM-powered agents) need to be addressed for such assistance to be widely adopted [268].
Advancing testing and analysis. The inclusion of LLMs in software testing methods opens up avenues for
enhanced test case generation, bug classification, and defect prediction, thereby improving the precision and
efficiency of the software testing process. For instance, LLMs show potential to be fine-tuned to a project’s specific
requirements to generate customized test cases, which elevates the likelihood of early detection of subtle bugs or
security vulnerabilities. Furthermore, the integration of LLMs with traditional SE techniques, including both
static and dynamic program analysis presents a compelling direction for more rigorous code analysis [50]. The
potential for utilizing LLMs in formal analysis methodologies, including formal verification, is another area that
merits investigation [37]. These advancements not only facilitate the early discovery of complex errors but also
lead to reduced development costs and quicker time-to-market, ultimately contributing to the robustness and
reliability of the software products.
Integrating programming knowledge into LLMs. One critical future direction lies in the integration of
specialized code representation methods and programming domain knowledge into LLM4SE [278, 444]. This
integration aims to enhance the capability of LLMs to generate code that is not only functionally accurate but also
secure and compliant with programming standards. Leveraging advanced techniques in code embedding, syntax
tree parsing, and semantic analysis could significantly refine the generation capabilities of LLMs. Moreover,
embedding domain-specific rules and best practices into these models would enable them to auto-generate code
that adheres to industry or language-specific guidelines for security and style.
Enhanced code review and quality assurance.The transformation of the code review process can be supported
by employing LLMs to analyze code context, perform intelligent comparisons, and offer insights that go beyond
traditional automated review systems. The application of fine-tuned LLMs for code review can allow for more
precise error detection and tailored feedback, offering a more nuanced understanding of code quality and potential
improvements.
Extracting insights from data mining. LLMs can play a critical role in mining insights from platforms
like GitHub, StackOverflow, and app stores. Through the application in tasks such as requirement extraction,
traceability, validation, and various types of mining (tag, app, developer-based), LLMs can provide valuable insights
that inform development strategies and decision-making. By automating and enhancing these mining tasks, LLMs
contribute to a deeper understanding of user needs, emerging trends, and the efficiency of development practices.
Empowering predictive analytics and decision support. Leveraging LLMs for effort cost prediction, software
classification, code classification, incident detection, and software quality evaluation may support better data-
driven insights and predictive analytics. This empowers organizations to make informed decisions throughout the
development lifecycle. LLMs’ ability to model and analyze vast amounts of data enables more accurate forecasts
of project timelines, resource needs, and potential risks.
LLMs in software security.Thegrowing impact of LLM4SE offers both unparalleled opportunities and challenges
in the domain of software security. On the one hand, LLMs offer promising solutions for automated security audits,
compliance verifications, and vulnerability detection. These models can potentially be leveraged for automated
code reviews to ensure compliance with industry standards and legal regulations, while also identifying potential
security vulnerabilities [4, 62, 92, 94, 127, 335]. For instance, Ferrag et al. [94] showcased the efficacy of LLMs in
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cyber reasoning tasks related to software security. On the other hand, the usage of LLMs introduces novel security
concerns. Their complexity makes them susceptible to attacks, demanding novel strategies to fortify the models
themselves [61, 82, 259, 354, 355, 483]. As an example, Wu et al. [483] delve into methods to secure LLMs against
jailbreak attacks. An intriguing direction for future research lies in enabling LLMs to automatically identify and
rectify their own vulnerabilities. Specifically, the focus could be on equipping LLMs to generate self-applied
patches to their underlying code, thereby enhancing their inherent security, as opposed to merely implementing
application-layer restrictions. Given this landscape, future research should adopt a balanced approach, aiming to
exploit LLMs for automating and enhancing existing software security protocols while concurrently developing
techniques to secure the LLMs themselves. This dual focus is crucial for fully realizing the potential of LLMs in
enhancing the security and compliance assurance of software systems.
Software Engineering for Large Language Models (SE4LLM). As the capabilities and complexities of LLMs
continue to expand, there arises a reciprocal need for specialized SE practices tailored for the development,
optimization, and maintenance of these models. These include LLMs used for SE purposes (i.e., SE4LLM4SE).
SE4LLM encompasses a range of challenges and opportunities, including the design of scalable and maintainable
architectures, the creation of efficient training algorithms, the development of rigorous testing frameworks for
model robustness and fairness, and the implementation of ethical guidelines and compliance mechanisms. The
convergence of SE with LLMs not only facilitates the growth of more sophisticated and adaptable models but
also opens up new avenues for interdisciplinary research and innovation, bringing together the expertise of both
the AI and SE communities. This aligns with a broader vision where SE practices become an integral part of the
lifecycle of LLMs, ensuring their robustness, efficiency, and ethical alignment with societal values. While some
works exist in assessing and improving the robustness and efficiency of LLMs, including LLMs for SE, such as
work by Yang et al. [512] and Shi et al. [391], much more work is needed [513].

9 CONCLUSION
LLMs are bringing significant changes to the field of SE. The potential of these models to handle complex tasks
can fundamentally reshape many SE practices and tools. In this SLR, we analyzed the emerging utilization of
LLMs for software engineering, encompassing papers published since the inception of the first LLM (BERT).
We examined the diverse LLMs that have been employed in SE tasks and explored their distinct features and
applications (RQ1). We then investigated the processes involved in data collection, preprocessing, and usage,
emphasizing the significant role well-curated datasets play in the successful application of LLMs to solve SE tasks
(RQ2). Following this, we investigated the various strategies utilized to optimize and assess the performance
of LLMs for SE tasks (RQ3). Lastly, we reviewed the wide range of SE tasks where LLMs have been applied to
date, shedding light on the practical contributions LLMs have made (RQ4). We summarised some key existing
challenges of LLM4SE and provided a research roadmap, outlining promising future research directions.
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A DATA TYPES
We classified the data types of all datasets into five categories: code-based, text-based, graph-based, software
repository-based, and combined data types, as shown in Table 13.

Table 13. Data types of datasets involved in prior studies.

Category Data type # Studies References
Text-based datasets Programming tasks/problems 42 [32] [38] [43] [45] [59] [134] [139] [143] [162] [167] [177] [208]

[209] [210] [214] [225] [223] [226] [237] [253] [260] [312] [330]
[358] [370] [373] [389] [394] [401] [431] [467] [460] [452] [472]
[494] [516] [528] [526] [556] [542] [569] [576]

Prompts 33 [34] [74] [77] [108] [171] [170] [189] [190] [194] [197] [220]
[232] [241] [267] [254] [274] [310] [376] [397] [400] [418] [421]
[423] [432] [435] [439] [456] [451] [455] [476] [497] [515] [560]

SO (i.e., Stack Overflow) posts 12 [26] [131] [130] [133] [148] [205] [272] [299] [352] [390] [471]
[555]

Bug reports 11 [55] [56] [64] [92] [111] [133] [153] [159] [174] [186] [217]
Requirements documentation 9 [80] [84] [133] [136] [204] [273] [293] [343] [464]
APIs/API documentation 8 [63] [149] [191] [331] [481] [504] [503] [527]
Q&A pairs 6 [181] [347] [379] [440] [451] [573]
Vulnerability descriptions 4 [334] [412] [426] [485]
Reviews 4 [269] [297] [479] [553]
Logs 3 [264] [276] [522]
Methods 3 [284] [287] [525]
Project issues 3 [99] [413] [552]
Code comments 2 [344] [495]
Theorems 2 [96] [545]
Buggy text 1 [266]
Dockerfiles 1 [135]
Outage descriptions 1 [175]
Semantic merge conflicts 1 [536]
Site text 1 [202]
Software development tasks 1 [550]
User intents 1 [163]
Software specifications 1 [280]
User reviews 1 [465]

Code-based datasets Source code 60 [1] [10] [19] [31] [37] [40] [53] [57] [87] [103] [105] [142] [152]
[161] [166] [180] [182] [224] [244] [243] [250] [256] [252] [257]
[277] [275] [283] [300] [307] [317] [325] [344] [346] [368] [383]
[384] [386] [392] [390] [393] [394] [398] [405] [411] [414] [419]
[444] [463] [480] [493] [496] [500] [507] [506] [521] [531] [558]
[541] [566] [574]

Bugs/Buggy code 16 [33] [59] [78] [76] [126] [185] [184] [195] [333] [338] [399]
[459] [473] [488] [490] [557]

Vulnerable source code 8 [35] [48] [102] [115] [196] [348] [404] [533]
Patches 4 [216] [427] [428] [546]
Code changes 3 [107] [231] [537]
Test suites/cases 3 [165] [495] [544]
Bug-fix pairs 2 [85] [523]
Error code 2 [151] [478]
Error-fix pairs 1 [54]
Flaky test cases 1 [91]
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Table 13. Continued.

Category Data type # Studies References
Code-based datasets Identifiers 1 [535]

Labeled clone pairs 1 [75]
Packages 1 [377]

Graph-based datasets GUI Images 1 [204]
Software repository- Code repository 9 [21] [44] [79] [123] [173] [291] [422] [448] [542]

based datasets
Android apps 3 [265] [409] [520]
Issues and commits 3 [11] [247] [555]
Pull-requests 2 [381] [555]
Industrial projects 1 [240]
Open-source projects 1 [228]
Web applications 1 [498]

Combined datasets Programming tasks and test
suites/cases

17 [73] [90] [121] [146] [145] [164] [241] [298] [318] [323] [341]
[359] [378] [395] [396] [429] [499]

Source code and comments 12 [116] [122] [211] [286] [315] [344] [369] [437] [474] [509] [538]
[543]

Programming tasks and solutions 8 [67] [71] [125] [193] [206] [337] [372] [430]
Source code and description 3 [249] [407] [449]
Code-text pairs 2 [281] [356]
Souce code and API usage se-
quences

2 [475] [577]

Source code and test suites/cases 2 [367] [436]
Bug report and test suites/cases 1 [342]
Buggy code and comments 1 [564]
Buggy code and solutions 1 [294]
Code files and summaries 1 [462]
Binary code and related annota-
tions

1 [9]

Failing test code and error mes-
sages

1 [491]

Source code and Q&A pairs 1 [374]
Source code, methods, and logs 1 [239]
Vulnerable code and description 1 [482]

B INPUT FORMS
In LLM4SE research, data is often transformed into specific formats to be used as input for LLMs. Table 14 illustrates
four input formats, namely token-based input, tree/graph-based input, pixel-based input, and hybrid-based input,
along with all the papers that utilize each type.

Table 14. The various input forms of LLMs proposed in prior studies.

Category Input forms # Studies References
Token-based input Text in tokens 150 [11] [26] [32] [34] [43] [38] [45] [55] [56] [64] [63] [73] [74]

[77] [80] [84] [92] [95] [96] [99] [108] [111] [131][130] [133]
[134] [135] [136] [139] [143] [149] [146] [147] [148] [153] [159]
[163] [164] [167] [171]

(Continued)
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Table 14. Continued.

Category Input forms # Studies References
Text in tokens [170] [175] [174] [177] [181] [186] [189] [190] [191] [192] [194]

[197] [202] [204] [205] [208] [209] [214] [217] [220] [232] [225]
[223] [241] [226] [237] [247] [253] [267] [260] [266] [254] [264]
[269] [272] [273] [274] [276] [280] [284] [289] [288] [292] [293]
[297] [299] [309] [310] [323] [330] [331] [334] [336] [342] [343]
[347] [358] [376] [379] [381] [390] [389] [394] [397] [400] [401]
[413] [418] [421] [423] [426] [431] [432] [435] [439] [440] [464]
[456] [465] [467] [460] [455] [453] [452] [471] [472] [479] [485]
[481] [492] [494] [497] [504] [503] [515] [522] [525] [528] [527]
[555] [536] [556] [552] [553] [550] [545] [560] [569] [573] [576]

Token-based input Code in tokens 118 [1] [7] [10] [19] [31] [35] [37] [40] [48] [49] [53] [54] [57] [60]
[75] [76] [85] [87] [91] [103] [104] [102] [105] [107] [115] [120]
[152] [151] [154] [158] [161] [165] [166] [168] [169] [180] [182]
[185] [184] [183] [195] [196] [210][211] [216] [224] [227] [243]
[222] [250] [256] [255] [252] [257] [275] [283] [285] [287] [307]
[316] [325] [326] [333] [338] [346] [348] [356] [367] [368] [377]
[383] [384] [386] [388] [392] [390] [393] [394] [398] [399] [405]
[404] [411] [410] [414] [419] [420] [427] [428] [436] [441] [444]
[447] [459] [473] [478] [480] [486] [488] [490] [493] [495] [496]
[500] [507] [506] [501] [521] [531] [544] [546] [554] [537] [557]
[541] [547] [566] [574]

Code and text in tokens 78 [21] [44] [59] [67] [70] [71] [79] [90] [116] [121] [122] [125]
[142] [145] [157] [162] [173] [176] [193] [206] [231] [244] [239]
[234] [228] [249] [281] [286] [291] [294] [298] [308] [312] [318]
[337] [341] [344] [345] [352] [359] [369] [370] [372] [373] [374]
[378] [395] [396] [407] [408] [412] [422] [429] [430] [437] [463]
[449] [462] [448] [474] [475] [482] [491] [487] [499] [509] [516]
[517] [523] [526] [535] [538] [533] [543] [542] [564] [565] [577]

Tree/Graph-based input Code in tree structure 2 [317] [549]
Code in graph structure 3 [78] [277] [558]

Pixel-based input Pixel 1 [303]
Hybrid-based input Hybrid input forms 2 [9] [315]

C PROMPT ENGINEERING
Table 15 showcases eight prompt engineering techniques mentioned in 395 studies: Zero-shot prompting, Few-
shot prompting, CoT (Chain-of-Thought) prompting, APE (Automatic Prompt Engineer), CoC (Chain of Code)
prompting, Auto-CoT (Automatic Chain-of-Thought) prompting, MoT (Modular-of-Thought) prompting, and
SCoT (Structured Chain-of-Thought) prompting.

Table 15. Prompt engineering techniques for SE tasks.

Prompt engineering # Studies References
Zero-shot prompting 79 [7] [21] [32] [35] [49] [59] [64] [63] [73] [74] [85] [90] [87] [103] [116] [121]

[122] [123] [146] [154] [162] [176] [181] [180] [184] [183] [193] [205] [227]
[239] [241] [226] [237] [228] [222] [253] [260] [257] [273] [286] [291] [312]
[323] [333] [334] [336] [337] [367] [376] [378] [386]

(Continued)
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Table 15. Continued.

Prompt engineering # Studies References
Zero-shot prompting [395] [410] [429] [430] [432] [436] [441] [467] [463] [452] [475] [482] [485]

[488] [499] [503] [507] [515] [544] [556] [552] [549] [553] [543] [557] [564]
[565] [568]

Few-shot prompting 88 [7] [10] [19] [21] [33] [35] [37] [43] [38] [59] [60] [64] [71] [74] [75] [79] [85]
[92] [96] [104] [105] [121] [125] [126] [133] [134] [143] [146] [147] [148] [145]
[164] [167] [169] [171] [186] [185] [184] [190] [196] [208] [214] [232] [239]
[226] [253] [275] [279] [291] [294] [298] [299] [308] [310] [312] [318] [328]
[356] [365] [376] [379] [396] [406] [411] [407] [410] [430] [436] [467] [463]
[455] [452] [471] [490] [492] [497] [496] [500] [503] [502] [515] [537] [553]
[550] [562] [565] [568] [577]

CoT (Chain-of-Thought) prompt-
ing

18 [64] [92] [152] [151] [234] [226] [264] [298] [347] [379] [396] [431] [460] [452]
[500] [506] [533] [550]

APE (Automatic Prompt Engi-
neer)

2 [410] [573]

CoC (Chain of Code) prompting 2 [145] [214]
Auto-CoT (Automatic Chain-of-
Thought) prompting

1 [328]

MoT (Modular-of-Thought)
prompting

1 [223]

SCoT (Structured Chain-of-
Thought) prompting

1 [226]

Others 76 [7] [20] [34] [51] [59] [70] [77] [76] [83] [100] [108] [139] [142] [168] [170]
[176] [174] [177] [189] [202] [210] [217] [220] [244] [225] [241] [234] [265]
[255] [249] [267] [264] [277] [301] [303] [326] [333] [337] [341] [358] [370]
[390] [394] [396] [398] [400] [402] [410] [412] [418] [421] [420] [435] [447]
[451] [472] [477] [476] [478] [480] [486] [491] [487] [493] [494] [498] [506]
[516] [517] [521] [523] [525] [527] [526] [536] [560]

D EVALUATION METRICS
We categorize the types of tasks that LLMs address in SE into four categories: regression, classification, recom-
mendation, and generation. Each task has commonly used evaluation metrics, as shown in Table 16.

Table 16. Evaluation metrics for different types of tasks.

Problem Type Metric # Studies References
Regression MAE (Mean Absolute

Error)
1 [99]

Classification Precision 35 [10] [26] [35] [48] [53] [75] [78] [84] [91] [95] [131] [136] [148] [191] [192] [196]
[202] [204] [216] [299] [337] [343] [348] [381] [384] [389] [404] [409] [426] [428]
[504] [531] [555] [533] [547]

Recall 34 [10] [26] [35] [48] [53] [75] [84] [91] [95] [131] [136] [148] [191] [192] [196] [202]
[204] [216] [299] [337] [348] [381] [384] [389] [404] [409] [420] [426] [428] [531]
[555] [552] [533] [547]

F1-score 33 [26] [35] [48] [91] [95] [115] [131] [136] [148] [191] [192] [196] [202] [204] [216]
[255] [273] [299] [337] [348] [381] [384] [388] [389] [404] [420] [426] [504] [531]
[555] [533] [547] [571]

Accuracy 23 [48] [111] [115] [166] [182] [183] [191] [192] [196] [202] [216] [217] [234]
(Continued_1)
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Table 16. Continued_1.

Problem Type Metric # Studies References
Classification Accuracy [255] [281] [308] [337] [348] [369] [428] [531] [533] [547]

AUC (Area Under the
ROC Curve)

9 [11] [80] [388] [420] [428] [451] [504] [501] [547]

ROC (Receiver Operat-
ing Characteristic)

4 [11] [78] [80] [388]

FPR (False Positive
Rate)

4 [48] [413] [426] [451]

FNR (Falser Negative
Rate)

3 [413] [426] [451]

MCC (Matthews Cor-
relation Coefficient)

2 [95] [504]

Recommendation MRR (Mean Reciprocal
Rank)

15 [49] [55] [87] [161] [224] [243] [222] [247] [272] [283] [352] [374] [392] [449] [471]

Precision/Preci-
sion@k

6 [49] [130] [247] [471] [481] [574]

MAP/MAP@k 6 [49] [55] [159] [247] [471] [575]
F-score/F-score@k 5 [130] [247] [481] [574] [575]
Recall/Recall@k 4 [130] [471] [481] [574]
Accuracy 3 [161] [224] [374]

Generation BLEU/BLEU-4/BLEU-
DC

62 [1] [7] [9] [19] [40] [44] [57] [67] [103] [105] [116] [158] [157] [165] [171] [175] [208]
[244] [227] [239] [241] [256] [249] [263] [269] [284] [289] [285] [286] [300] [315]
[333] [367] [368] [383] [390] [389] [393] [394] [395] [410] [437] [463] [453] [449]
[459] [462] [448] [475] [507] [509] [506] [515] [526] [531] [538] [537] [557] [565]
[569] [576]

Pass@k 54 [1] [31] [34] [43] [38] [70] [71] [74] [77] [85] [121] [125] [139] [146] [145] [162] [164]
[171] [170] [209] [214] [225] [223] [241] [226] [237] [228] [260] [274] [294] [298]
[310] [318] [359] [370] [390] [394] [395] [425] [431] [467] [460] [452] [472] [499]
[507] [521] [528] [527] [526] [544] [543] [542] [565]

Accuracy/Accu-
racy@k

38 [92] [143] [152] [151] [154] [163] [165] [174] [186] [185] [209] [250] [256] [252] [276]
[289] [285] [291] [309] [315] [330] [336] [346] [356] [367] [379] [383] [394] [395]
[414] [427] [492] [496] [515] [522] [531] [535] [545]

EM (Exact Match) 36 [1] [9] [54] [79] [103] [108] [120] [121] [122] [123] [165] [176] [227] [241] [252] [257]
[286] [300] [333] [336] [346] [367] [383] [389] [395] [422] [463] [459] [474] [475]
[479] [507] [515] [538] [558] [543]

CodeBLEU 29 [1] [19] [44] [103] [122] [165] [171] [241] [249] [288] [325] [333] [367] [383] [393]
[394] [395] [463] [453] [448] [474] [475] [507] [526] [531] [537] [565] [569] [576]

ROUGE/ROUGE-L 22 [7] [9] [103] [105] [116] [158] [157] [175] [231] [239] [289] [315] [390] [411] [410]
[414] [462] [503] [509] [526] [569] [576]

Precision 18 [57] [102] [154] [180] [205] [269] [291] [389] [414] [427] [465] [475] [492] [503] [531]
[538] [553] [577]

METEOR 16 [7] [9] [40] [103] [105] [116] [175] [315] [390] [411] [410] [462] [509] [538] [569]
[576]

Recall 15 [102] [154] [180] [205] [228] [269] [291] [389] [414] [427] [465] [492] [503] [531]
[553]

F1-score 15 [102] [154] [180] [205] [228] [269] [291] [389] [414] [427] [465] [492] [503] [531]
[553]

MRR (Mean Reciprocal
Rank)

6 [256] [315] [389] [449] [509] [531]

ES (Edit Similarity) 6 [79] [120] [244] [257] [422] [448]
ED (Edit Distance) 5 [79] [227] [252] [323] [522]
MAR (Mean Average
Ranking)

4 [367] [435] [449] [531]
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Table 16. Continued_2.

Problem Type Metric # Studies References
Generation ChrF 3 [383] [569] [576]

CrystalBLEU 3 [227] [569] [576]
CodeBERTScore 2 [569] [576]
MFR (Mean First Rank-
ing)

1 [435]

PP (Perplexity) 1 [495]

E SE TASKS
According to the software development lifecycle, we have categorized the SE tasks mentioned in 395 studies into
six categories: Requirements engineering, Software design, Software development, Software quality assurance,
Software maintenance, and Software management. Table 17 presents all the papers that apply LLMs to these
tasks.

Table 17. Distribution of SE tasks over six activities.

SE Activity SE Task # Studies References
Requirements engineering Anaphoric ambiguity treatment 4 [84] [292] [293] [402]

Requirements classification 4 [80] [133] [136] [273]
Requirement analysis and evaluation 2 [343] [365]
Specification generation 2 [275] [492]
Coreference detection 1 [464]
Requirements elicitation 1 [477]
Specification formalization 1 [83]
Traceability automation 1 [247]
Use cases generation 1 [550]

Software design GUI retrieval 1 [204]
Rapid prototyping 1 [280]
Software specification synthesis 1 [477]
System design 1 [550]

Software development Code generation 118 [20] [22] [32] [34] [43] [44] [38] [45] [67] [72] [73] [74]
[77] [85] [108] [112] [121] [134] [139] [143] [149] [146]
[147] [145] [162] [164] [167] [171] [170] [173] [177] [189]
[194] [193] [206] [209] [210] [213] [214] [232] [225] [223]
[241] [226] [237] [228] [248] [253] [249] [267] [260] [254]
[263] [274] [279] [288] [298] [300] [302] [307] [309] [310]
[318] [323] [330] [336] [356] [358] [359] [370] [373] [379]
[383] [390] [389] [394] [397] [406] [407] [418] [423] [425]
[429] [431] [432] [456] [467] [451] [460] [453] [452] [448]
[472] [474] [480] [484] [482] [499] [509] [506] [516] [517]
[521] [528] [527] [526] [530] [531] [556] [537] [543] [542]
[550] [565] [566] [568] [569] [576]

Code completion 22 [57] [68] [70] [71] [79] [120] [161] [180] [192] [224] [244]
[250] [257] [317] [334] [344] [345] [389] [414] [422] [480]
[495]

Code summarization 21 [7] [9] [19] [40] [103] [102] [116] [176] [289] [285] [368]
[370] [390] [389] [394] [411] [410] [429] [449] [462] [509]

Code search 12 [87] [220] [242] [222] [256] [283] [372] [374] [392] [389]
[453] [449]
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Table 17. Continued_1.

SE Activity SE Task # Studies References
Software development Code translation 12 [165] [169] [256] [263] [325] [326] [346] [394] [480] [500]

[507] [509]
Code understanding 8 [182] [277] [281] [301] [386] [463] [480] [560]
API inference 5 [149] [331] [455] [475] [577]
Program synthesis 6 [100] [125] [163] [208] [395] [400]
API recommendation 5 [49] [243] [471] [481] [541]
Code editing 5 [21] [123] [227] [294] [396]
Code representation 3 [1] [315] [444]
Code comment generation 2 [105] [284]
Method name generation 2 [402] [574]
Code recommendation 2 [272] [352]
Agile story point estimation 1 [99]
API documentation augment 1 [503]
API documentation smells 1 [191]
API entity and relation extraction 1 [148]
Data analysis 1 [51]
Fuzz driver generation 1 [532]
Control flow graph generation 2 [152]
Identifier normalization 1 [535]
Instruction generation 1 [573]
Type inference 1 [166]
Others 14 [31] [130] [190] [299] [303] [312] [328] [341] [347] [376]

[387] [515] [562] [571]
Software quality assurance Vulnerability detection 18 [35] [48] [104] [102] [115] [196] [202] [256] [316] [388]

[404] [413] [408] [412] [419] [426] [502] [533]
Test generation 17 [20] [59] [102] [197] [342] [377] [378] [393] [398] [405]

[421] [439] [487] [493] [494] [525] [544]
Bug localization 5 [55] [56] [78] [92] [183]
Verification 5 [37] [96] [308] [432] [545]
Testing automation 4 [64] [63] [142] [195]
Fault localization 3 [234] [486] [501]
Defect detection 2 [409] [480]
GUI testing 2 [265] [520]
Static analysis 2 [126] [291]
Binary taint analysis 1 [255]
Compiler fuzzing 1 [348]
Decompilation 1 [497]
Invariant prediction 1 [337]
Malicious code localization 1 [409]
Mobile app crash detection 1 [266]
Resource leak detection 1 [447]
Test prediction 1 [91]

Software maintenance Program repair 35 [33] [37] [60] [90] [103] [151] [154] [158] [168] [174]
[211] [216] [263] [285] [333] [338] [367] [399] [401] [427]
[428] [429] [459] [473] [476] [478] [485] [488] [490] [491]
[523] [546] [549] [558] [557]

Code clone detection 8 [10] [53] [75] [169] [256] [369] [384] [389]
Code review 7 [122] [231] [263] [269] [381] [437] [538]
Debugging 4 [184] [373] [430] [435]
Bug reproduction 3 [153] [186] [185]
Review/commit/code classification 3 [107] [205] [504]
Duplicate bug report detection 3 [133] [159] [552]
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Table 17. Continued_2.

SE Activity SE Task # Studies References
Software maintenance Logging 3 [239] [287] [496]

Log parsing 3 [264] [276] [522]
Sentiment analysis 3 [26] [555] [553]
Code revision 2 [181] [441]
Vulnerability repair 2 [157] [334]
API misuses repair 1 [554]
Bug prediction 1 [111]
Bug triage 1 [217]
Code coverage prediction 1 [436]
Code review explained 1 [479]
Code-Review defects repair 1 [564]
Crash bug repair 1 [76]
Crash bug repair 1 [76]
Dockerfile Repair 1 [135]
Patch correctness prediction 1 [547]
Patch detection 1 [420]
Program merge conflicts repair 1 [536]
Rename Refactoring 1 [252]
Tag recommendation 1 [131]
Technical debt payback 1 [286]
Traceability recovery 1 [575]
Web test repair 1 [498]
Type error repair 1 [54]
Others 5 [175] [297] [380] [440] [465]

Software management Effort estimation 2 [11] [240]
Software tool configuration 1 [187]
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