
Lab 10
In this lab, we analyze a streaming of tweets to analyze the appearing hashtags and
compute the number of occurrences of each of them over a sliding window. Your task
consists of extracting the hashtags appearing in the input tweets and computing their
occurrences every 10 seconds by considering the last 30 seconds of data.
The stream of tweet data is simulated by uploading, during the execution of your application,
a set of files in an input HDFS folder. Each input file contains one tweet per line. Each line of
the input files has the following format:

• userId\ttext_of_the_tweet
o the two fields are separated by a tab

For example, the line

26976263 Gym time!!!! #fitness

means that user 26976263 tweeted the text “Gym time!!!! #fitness”. The text of this
tweet contains also a hashtag: #fitness

EX. 1
Write a Spark streaming application, based on DStreams, that counts the number of
occurrences of each hashtag appearing in the input data streaming. Specifically, every 10
seconds, your application must

• extract the hashtags appearing in the last 30 seconds of the input data stream
• count the number of occurrences of each (extracted) hashtag by considering only the

last 30 seconds of data (i.e., the last 30 seconds of data of the input data stream)
• store in the output HDFS folders, sorted by number of occurrences, the pairs

(number of occurrences , hashtag) related to the last 30 seconds of data
• print on the standard output the first 10 hashtags in terms of number of occurrences,

related to the last 30 seconds of data

The application performs the analysis every 10 seconds by considering the last 30 seconds
of streaming data (i.e., window length = 30 seconds and sliding interval = 10 seconds).

The input data stream is based on the content of an input HDFS folder in which, during the
execution of the application, you will upload files formatted according to the format specified
in the first part of this problem specification. Upload the input files one at a time to simulate a
stream on data. Specifically:

1. Create a local input folder on the local file system of jupyter.polito.it and upload the
files you want to use in that folder

2. Create an empty HDFS folder (the folder associated with the input of your
application)

3. Copy, one at a time, the input files from the local input folder to the HDFS input
folder of your application by using the command line hdfs

E.g., hdfs dfs -put input_local_folder/tweets_blockaa input_HDFS_folder/
4. Pay attention that if a file is already in the input HDFS folder and you copy other

version of the same file the system will not consider the new version of the file
5. Pay attention to stop your streaming context after your tests by invoking

ssc.stop(stopSparkContext=False)

A set of example input files are available on the web site of the course (Lab11Data.zip)

Note. If you run this application locally on your PC:

1. Create the input files in a folder and then copy them in the input folder of your
application (one file at a time in order to simulate the stream of data)

2. Copy the files in the input folder of your application by using the command line cp
E.g., cp tweets_blockaa input_folder/

3. Do not use the graphical interface to copy the file in the input folder of your
application otherwise the output of your application will be empty

4. If you update the content of a file that is already in the input folder of your
application, the updated version of the file will not be considered by the Spark
streaming engine

EX. 2
We are interested in implementing a simple alert system that prints on the standard output
only “relevant” hashtags. A hashtag is defined as relevant if it occurred at least 100 times in
the last 30 seconds.
Extend your application to print on the standard output, and write in the output HDFS folders,
only the hashtags that occurred at least 100 times in the last 30 seconds. The returned
hashtags must be sorted by number of occurrences.
Also this application must perform the analysis every 10 seconds by considering the last 30
seconds of streaming data (i.e., window length = 30 seconds and sliding interval = 10
seconds).

How to access logs files
If you are connecting from outside Polito and you submit your application on the cluster by
using spark-submit you can proceed as follows to retrieve the log files from the command
line:
1. Open a Terminal on the gateway jupyter.polito.it
2. Execute the following command in the Terminal:

yarn logs -applicationId application_1521819176307_2195

The last parameter is the application/job ID. You can retrieve the job ID of your
application on the HUE interface: https://hue.polito.it/hue/jobbrowser/#!jobs
Otherwise, you can retrieve the job ID of your
application with the following command on the terminal, substituting sXXXXX with
your username

yarn application -list -appStates ALL|grep 'sXXXXXX'

https://hue.polito.it/hue/jobbrowser/#!jobs

⚠⚠⚠ Shut down JupyterHub container ⚠⚠⚠
As soon as you complete all the tasks and activities on JupyterHub environment,
please remember to shut down the container to let all your colleagues in all the sessions
connect on JupyterHub and do all the lab activities.

1. Go into File -> Hub Control Panel menu
2. A new browser tab opens with the “Stop My Server” button. Click on it and wait till it

disappears.

	

1.

2.

Click the “Stop My
Server” button

