
Lab 8
In this lab, we analyze historical data about the stations of the bike sharing system of
Barcelona. The data are the same you already analyzed during the previous practice, as well
as the main goal of your task: computing the “criticality” for the pairs (station, timeslot) and
select the most critical ones. However, in this practice you are requested to use the Spark
SQL APIs and the final selection process is slightly different with respect to the one you
implemented during the previous practice.

The analysis is based on 2 files available in the HFDS shared folder of the BigData@Polito
cluster:

1. /data/students/bigdata-01QYD/Lab7/register.csv
2. /data/students/bigdata-01QYD/Lab7/stations.csv

1) register.csv contains the historical information about the number of used and free slots

for ~3000 stations from May 2008 to September 2008. Each line of register.csv
corresponds to one reading about the situation of one station at a specific timestamp.
Each line has the following format:
• station\ttimestamp\tused_slots\tfree_slots

For example, the line

23 2008-05-15 19:01:00 5 13

means that there were 5 used slots and 13 free slots at station 23 on May 15, 2008 at
19:01:00.

The first line of register.csv contains the header of the file.

Pay attention that some of the lines of register.csv contain wrong data due to
temporary problems of the monitoring system. Specifically, some lines are characterized
by used_slots = 0 and free_slots = 0. Those lines must be filtered before performing the
analysis.

2) stations.csv contains the description of the stations. Each line of registers.csv has the
following format:
• id\tlongitude\tlatitude\tname

For example, the line

1 2.180019 41.397978 Gran Via Corts Catalanes

contains the information about station 1. The coordinates of station 1 are
2.180019,41.397978 and its name is Gran Via Corts Catalanes.

TASK 1
Write a single Spark application that selects the pairs (station, timeslot) that are
characterized by a high “criticality” value. The first part of this practice is similar to the one

that you already solved during the previous practice. However, in this case you are
requested to solve the problem by using two different sets of Spark SQL APIs.

(i) Implement a first version of the application based on Dataframes and the
associated APIs

(ii) Implement a second version of the application based on the use of SQL
queries in the Spark application, i.e., use SparkSession.sql(“SELECT …”).

In this practice, each pair “day of the week – hour” is a timeslot and is associated with all the
readings associated with that pair, independently of the date. For instance, the timeslot
“Wednesday - 15” corresponds to all the readings made on Wednesday from 15:00:00 to
15:59:59.

A station Si is in the critical state if the number of free slots is equal to 0 (i.e., the station if
full).

The “criticality” of a station Si in the timeslot Tj is defined as

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠	𝑤𝑖𝑡ℎ	𝑛𝑢𝑚. 𝑜𝑓	𝑓𝑟𝑒𝑒	𝑠𝑙𝑜𝑡	𝑒𝑞𝑢𝑎𝑙	𝑡𝑜	0	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑝𝑎𝑖𝑟	(𝑆𝑖, 𝑇𝑗)
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑝𝑎𝑖𝑟	(𝑆𝑖, 𝑇𝑗)

Write an application, based on the Spark SQL APIs, that:

• Removes the lines with used_slots = 0 and free_slots = 0.
• Computes the criticality value for each pair (Si,Tj).
• Selects only the combinations having a criticality value greater than a minimum

criticality threshold. The minimum criticality threshold is an argument of the
application.

• Join the content of the previous selected combinations with the content of
stations.csv to retrieve the coordinates of the stations.

• Store in the output folder the selected records, by using csv files (with header).
Store only the following attributes:

o station
o day of week
o hour
o criticality
o station longitude
o station latitude

• Store the results by decreasing criticality. If there are two or more records
characterized by the same criticality value, consider the station (in ascending order).
If also the station is the same, consider the weekday (ascending) and finally the hour
(ascending).

Hints

• The SQL-like language available in Spark SQL is characterized by a predefined
function called hour(timestamp) that can be used in the SQL queries, or in the
selectExpr transformation, to select the “hour part” of a given timestamp. The

date_format(timestamp,'EE') is another predefined SQL function available in Spark
SQL that can be used to extract the weekday from a timestamp column.

o Example
…
resDF= myDataframe.selectExpr("date_format(timestamp,'EE') as weekday",\

 "hour(timestamp) as hour")
…

• In order to specify that the separator of the input CSV files is “tab”, set the delimiter

option to \\t, i.e., invoke .option("delimiter", "\\t") during the reading of the input
data.

How to access logs files
If you are connecting from outside Polito and you submit your application on the cluster by
using spark-submit you can proceed as follows to retrieve the log files from the command
line:
1. Open a Terminal on the gateway jupyter.polito.it
2. Execute the following command in the Terminal:

yarn logs -applicationId application_1521819176307_2195

The last parameter is the application/job ID. You can retrieve the job ID of your
application on the HUE interface: https://hue.polito.it/hue/jobbrowser/#!jobs
Otherwise, you can retrieve the job ID of your
application with the following command on the terminal, substituting sXXXXX with
your username

yarn application -list -appStates ALL|grep 'sXXXXXX'

⚠⚠⚠ Shut down JupyterHub container ⚠⚠⚠
As soon as you complete all the tasks and activities on JupyterHub environment,
please remember to shut down the container to let all your colleagues in all the sessions
connect on JupyterHub and do all the lab activities.

1. Go into File -> Hub Control Panel menu

https://hue.polito.it/hue/jobbrowser/#!jobs

2. A new browser tab opens with the “Stop My Server” button. Click on it and wait till it
disappears.

1.

2.

Click the “Stop My
Server” button

