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Big data hype?
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User engagement

2005 Now
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Who generates big data?

n User Generated Content (Web & Mobile)
n E.g., Facebook, Instagram, Yelp, TripAdvisor, Twitter, YouTube

n Health and scientific computing
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Who generates big data?

n Log files
n Web server log files, machine syslog files

n Internet Of Things
n Sensor networks, RFID, smart meters
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What is big data?

n Many different definitions
“Data whose scale, diversity and complexity require new 

architectures, techniques, algorithms and analytics to manage it 
and extract value and hidden knowledge from it”
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The Vs of big data: Volume
n Data volume increases exponentially over time
n 44x increase from 2009 to 2020

n Digital data 35 ZB in 2020
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On the Internet…

n http://www.internetlivestats.com/

http://www.internetlivestats.com/
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Weather forecast
January 2020 May 2020
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The Vs of big data: Velocity
n Fast data generation rate

n Streaming data
n Very fast data processing to ensure timeliness
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(Near) Real time processing

Crowdsourcing

Sensing

Computing

Map data

Real time traffic info
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The Vs of big data: Variety

n Various formats, types and structures
n Numerical data, image data, audio, video, text, time series

n A single application may generate many different formats
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The Vs of big data: Veracity
n Data quality
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The most important V: Value
n Translate data into business advantage
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Big data challenges

n Technology & infrastructure
n New architectures, programming paradigms and techniques

Transfer the processing power to the data
n Apache Hadoop/Spark ecosystem

n Data management & analysis
n New emphasys on “data”
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Data science

“Extracting meaning from very large quantities of data”

D.J. Patil coined the 
word data scientist
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The data science process

AKA  KDD process
Knowledge Discovery in Databases

Generation Acquisition Storage Analysis
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Generation
n Passive recording

n Typically structured data
n Bank trading transactions, shopping records, government sector archives

n Active generation
n Semistructured or unstructured data
n User-generated content, e.g., social networks

n Automatic production
n Location-aware, context-dependent, highly mobile data
n Sensor-based Internet-enabled devices (IoT)

Generation Acquisition Storage Analysis
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Acquisition

n Collection
n Pull-based, e.g., web crawler
n Push-based, e.g., video surveillance, click stream

n Transmission
n Transfer to data center over high capacity links

n Preprocessing
n Integration, cleaning, redundancy elimination

Generation Acquisition Storage Analysis
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Storage

n Storage infrastructure
n Storage technology, e.g., HDD, SSD
n Networking architecture, e.g., DAS, NAS, SAN

n Data management
n File systems (HDFS), key-value stores (Memcached), column-oriented

databases (Cassandra), document databases (MongoDB)
n Programming models

n Map reduce, stream processing, graph processing

Generation Acquisition Storage Analysis
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Analysis

n Objectives
n Descriptive analytics, predictive analytics, prescriptive analytics

n Methods
n Statistical analysis, machine learning and data mining, text mining, network 

and graph data mining
n Association analysis, classification and regression, clustering

n Diverse domains call for customized techniques

Generation Acquisition Storage Analysis
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Machine learning and data mining
n Non trivial extraction of

n implicit
n previously unknown
n potentially useful
information from available data

n Extraction is automatic
n performed by appropriate algorithms

n Extracted information is represented by means of abstract models
n denoted as pattern
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Example: profiling

n Consumer behavior in e-commerce sites
n Selected products, requested information, …

n Search engines and portals
n Query keywords, searched topics and objects

n Social network data
n Profiles (Facebook, Instagram, …)
n Dynamic data: posts on blogs, FB, tweets

n Maps and georeferenced data
n Localization, interesting locations for users
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Example: profiling

n User/service profiling
n Recommendation systems, advertisements

n Market basket analysis
n Correlated objects for cross selling

n User registration, fidelity cards

n Context-aware data analysis
n Integration of different dimensions

n E.g., location, time of the day, user interest

n Text mining
n Brand reputation, sentiment analysis, topic trends
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Knowledge Discovery Process

data
selected 

data
preprocessed

data
transformed

data pattern
knowledge

selection

preprocessing

transformation

machine learning/data mining

interpretation

KDD = Knowledge Discovery from Data
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Preprocessing

selected 
data

preprocessed
data

preprocessing

data cleaning
• reduces the effect of noise
• identifies or removes outliers
• solves inconsistencies

data integration
• reconciles data extracted 

from different sources
• integrates metadata
• identifies and solves data 

value conflicts
• manages redundancy

Real world data is “dirty”
Without good quality data, no good quality 

pattern
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A word from practitioners
n At least 80-90% of their work involves not machine 

learning, but
n Working with experts to understand the domain, assumptions, 

questions
n Trying to catalog and make sense of the data sources
n Wrangling, extracting, and integrating the data
n Cleaning the wrangled data

Content derived by material from the OpenDS4All project
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Association rules
n Objective

n extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket 
counter

n Association rule
diapers Þ beer

n 2% of transactions contains
both items

n 30% of transactions
containing diapers also
contain beer

TI
D

Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diapers, Milk
4 Beer, Bread, Diapers, Milk
5 Coke, Diapers, Milk
… …
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Association rules
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Clustering
n Objectives

n detecting groups of similar data objects
n identifying exceptions and outliers
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Clustering
n Objectives

n detecting groups of similar data objects
n identifying exceptions and outliers
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Clustering
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Classification
n Objectives

n prediction of a class label
n definition of an interpretable model of a given phenomenon

model

training data

unclassified data classified data
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Classification
n Test set 

n Collection of labeled data objects used to validate the 
classification model 

n New data with unknown class label 
n The data-driven model is exploited to predict the class label

model

training data

unclassified data classified data
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Classification techniques
n A plethora of different 

algorithms 
n Decision trees 
n Classification rules 
n Association rules 
n Neural Networks 
n Naïve Bayes and Bayesian 

Networks 
n k-Nearest Neighbours (k-

NN) 
n Support Vector Machines 

(SVM) 
n …

Evaluation dimensions
n Accuracy

n quality of the prediction

n Interpretability
n model interpretability
n model compactness

n Robustness
n noise, missing data

n Incrementality
n model update in presence 

of newly labelled record

n Efficiency
n model building 

time
n classification time

n Scalability
n training set size
n attribute number
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Artificial Neural Networks
n Inspired to the structure of the human brain

n Neurons as elaboration units
n Synapses as connection network
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Artificial Neural Networks

n Different tasks, different architectures

numerical vectors classification: feed forward NN (FFNN) image understanding: convolutional NN (CNN)

time series analysis: recurrent NN (RNN) denoising: auto-encoders
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Classification
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Other data mining techniques
n Sequence mining

n ordering criteria on analyzed data are taken into account
n example: motif detection in proteins

n Time series and geospatial data
n temporal and spatial information are considered
n example: sensor network data

n Regression
n prediction of a continuous value
n example: prediction of stock quotes

n Outlier detection
n example: intrusion detection in network traffic analysis

Sensor network
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The data science process

n What question are you answering?

n What is the right scope of the project?

n What data will you use?

n What techniques are you going to try?

n How will you evaluate your result?

n What maintenance will be required?

Content derived by material from the OpenDS4All project
Content derived by material from the OpenDS4All project
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The data science recipe

n Different ingredients needed
n Data expert

n Data processing, data structures
n Data analyst

n Data mining, statistics, machine learning
n Visualization expert

n Visual art design, storytelling skills
n Domain expert

n Provide understanding of the application domain
n Business expert

n Data driven decisions, new business models
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Open issues

n Social impact of analysis is very important
n Interpretability and transparency of the analysis process
n Bias in algorithms and data
n Privacy preservation

n AI-based systems are often «black boxes»
n It is unclear for humans why an AI system makes a certain decision 

based on some input data 
n Because of the opaqueness people cannot assess whether they were 

discriminated against on the basis of, e.g., racial origin
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Interpretability in machine learning

n Model explanation: global understanding of how a model works
n Prediction explanation: local understanding of why a prediction is made
n Interpretable feature selection: incorporating interpretability-based criteria 

into the model design

“The ability to explain or to present in 
understandable terms to a human”

Trade-off Accuracy-InterpretabilityOpen the black box
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Interpretability

n Learned decision rule in pneumonia patient dataset from USA hospital
history of asthma → lower chance of dying from pneumonia

n MD consider asthma as a serious risk factor
n Analysis

n asthmatics probably notice earlier the symptoms of pneumonia
n a healthcare professional is going to provide earlier pneumonia diagnosis
n as high-risk patients, they’re going to get high-quality treatment sooner than 

other people
n asthmatics actually have almost half the chance of dying than non asthmatics

n Using a neural network, this model issue would never have been 
uncovered
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Algorithmic and data bias

n Task: predict likelihood of an individual committing a future crime
n Risk scores used by US criminal justice system

n Scores computed from
n Questions answered by the defendants
n Information pulled by criminal records

n Race was not among the questions
n … however other items may be correlated (e.g., poverty, joblessness)

n Software product flagged black defendants as future criminals 
more frequently than white defendants

Training data was biased by a larger black defendant population
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CV-scanning tool
n In 2014, Amazon's data scientists simplified employee 

recruitment 
n an AI algorithm to automatically identify the most qualified candidates 

from a vast pool of resumes. 
n Issue: the algorithm discriminated against women. 

n The data-driven model was derived from analysis of resumes submitted 
in the past, which were dominated by male applicants 

n The algorithm learned that men would be better applicants than women
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Privacy
Strava released their global heatmap. 13 trillion GPS points from their users 
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How AI can lead to discrimination
n Definition of the label to be predicted 

n Objective: Selection of the best employees of a company
n Method: What criteria are used to define a good employee
n Issue: It is easy to discriminate against protected categories 

(even if this is done unintentionally) 
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How AI can lead to discrimination
n The data used to train the model contains biases 

n The data model created by an AI algorithm reflects the biases in 
the data 

n Examples: Datasets with only male resumes, datasets with only 
crimes committed by foreign nationals
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How AI can lead to discrimination
n Attributes used to create the data-driven model 

n Objective: Automatic selection of the best resumes for specific 
leadership positions 

n Interesting attributes: University Name, Disciplines, Graduation 
grade 

n Issue: The company could consider individuals who have studied 
at famous and prestigious (expensive) universities 

n This would discriminate against individuals with strong 
backgrounds who have not studied at famous universities.
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How AI can lead to discrimination
n Proxies 

n Variables that are 'neutral' and not directly discriminatory (e.g., 
zip code) 

n These variables may be indirectly correlated with a minority 
category (e.g., zip code only for certain geographic areas)
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Responsible Artificial Intelligence 
n Ethical principles 

n Mandatory for fully-integrating AI systems in our society
n Enforced throughout the 

n development 
n implementation 
n operation stages 

n of new AI solutions 
n Companies need to adopt clear processes and practices that 

ensure AI systems comply with strict responsible AI principles
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Responsible AI
n Fairness 

n AI systems must be designed in ways that maximize fairness, non-discrimination and 
accessibility. 

n All AI designs should promote inclusivity by correcting both unwanted data biases and 
unwanted algorithmic biases. 

n Reliability, Safety, and Security 
n AI systems should cause no direct harm and always aim to minimize indirect harmful 

behavior. 
n AI systems must be reliable in that they should always perform as from unauthorized parties. 

n Privacy 
n By design, AI systems must respect privacy by providing individuals with agency over their 

data and the decisions made with it. 
n AI systems must also respect the integrity of the data they use.

Content derived by material from Nokia’s 6 Pillars of Responsible AI
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Responsible AI
n Transparency  

n AI-based systems must be explainable and understandable. 
n AI systems should produce outputs that are easily comprehensible to the stakeholder

n Sustainability 
n AI-based systems should attempt to be societally sustainable by empowering society and 

democracy 
n Environmentally sustainable, by reducing the amount of power required to train and run them

n Accountability 
n AI systems should be developed and deployed through consultation and collaboration with all 

stakeholders such that true accountability becomes possible. 
n The long-term effects of any AI application should be understandable by all stakeholders 
n If an AI system deviates from its intended results, then we need to have policies in place to 

ensure those deviations are detected, reported and remedied.

Content derived by material from Nokia’s 6 Pillars of Responsible AI
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Humans in the loop (HITL)

Data 
Processing Learning Models Results and 

Inference

Experts
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Open issues

n Social impact of analysis is very important
n Towards responsible AI systems

n Many technical issues are not solved
n Data dimensionality
n Complex data structures, heterogeneous data formats
n Data quality


