Data mining
Concepts &
Algorithms

Introduction to
deep learning

Flavio Giobergia

(slides from Large Language Models course)

o Bl Ny

LEN . B
YA LAY Politecnico 1
'E.M,L"' di Torino D'\'ICT
L |
SN

The perceptron

* The perceptron is the simplest unit of neural networks

* It takes an input with , and does the following:

* |t weights each input feature with a given weight,
* It produces a weighted sum of the inputs, and
* It applies a function to the output

:f(Wo‘l‘Wl +W2 ++Wn)

.E' [Data Mining Concepts & Algorithms] —— [Introduction to deep learning]

The perceptron

W

- @ — @ y o x = (xq,%9,...,%,) isthe input sample
Output

/
/
A
/
/

Xn=1!
: * vy represents the output of the perceptron.
Xn |
~emee- Z * f(-) represents a non-linear “activation” function
Inputs

w; (and wy) are weights (and bias), which are

Or, in other words, y = f(Xowix;) = f(wTx) and xq = 1 learned

. Note
Wlth the exception of f(-), this looks like the classic linear regression
And if f(-) = o(-) (sigmoid function), this looks like the (just as classic) logistic regression

A X . .
{M;ﬂ;mwng ——— [Data Mining Concepts & Algorithms] ——— [Introduction to deep learning]

W, wse
LY s
Rt g

The perceptron, in 2D

w1 0.00
w2 0.00
wO 0.00
2 10.0
7.5
P T 1 5.0
! Linear activation i 25
| . | < 0 0.0 >
. function, f(x) =x | .
T -1 -5.0
-71.5
Co 25 1 0 1 - S
X —_—> " y ,: N
Output The perceptron can be used to

represent a family of functions,
Yy =wiXq + Wy X> + Wo

Various values of wy, wq, w, define
Y = WiXq + WXy + Wy the different functions that can be
learned by the perceptron.

Activation functions

i%;ﬁﬁ?%m?]}%ﬁ} —— [Data Mining Concepts & Algorithms] [Introduction to deep learning]

e Activation functions are used for two main reasons:

1. Enforce properties on perceptron’s output
» E.g., sigmoid =» binds output to [0, 1] range
2. Introduce non-linearities in the model

+ some others (faster convergence, sparsity, ...

e Commonly adopted functions:
* RelU
e Sigmoid
* Leaky RelLU
e Tanh
e Softmax
* Linear
* GelLU

)

RelLU

Leaky RelLU

1.0 1

0.8 |

0.6 1

0.4 1

0.2 1

0.0 1

1.00 4
0.75 A
0.50 A
0.25 A
0.00 A
—0.25 A1
—0.50 A
—0.75 A

—1.00 A

Sigmoid

tanh

[y

T : :
{ﬁ%ﬁ%@ﬂ},ﬁf&“ﬂ&ﬁ ——— [Data Mining Concepts & Algorithms] [Introduction to deep learning]

1. Enforce properties on perceptron’s output

&

* Binary classification problem | ,.
* Separate positive (Y) and negative (@) samples a)
* For a point x € R?, the perceptron can predict p(Y¢| x) J
* For the binary case, this implies p(@| x) = 1 — p(Y¥| x) » £

* To get a valid probability, we must enforce p(%|x) € [0, 1]
* We already have p(@] x) + p(ﬁ(l x) = 1 by construction .

w2 0.00

* The Sigmoid maps any value in R to the range [0, 1]

* i.e., the perceptron’s output (in R) is squashed to [0, 1]
1

1+e—*

¢ g(x) =

AN . .
] P°"‘“""°DE'1G ——— [Data Mining Concepts & Algorithms] ——— [Introduction to deep learning]

uiie di Torino

Adding some perceptrons

4 \
1

=iy oy =FWT0 N

—

Output 1 Wy Wy

1
L=l =rdey o o] [xl)= fWTx)
X2

N

[

—>iys =1 7

Output 2

Note

When we refer to the “number of
parameters” in a model, we refer to the
total number of weights the model has.
This is a “6 parameters” model!

uiz di Torino

?b' P°"‘“"'°°D§ —— [Data Mining Concepts & Algorithms] ——— [Introduction to deep learning] 8

and adding other layers!

4
1

1 zi z= f(sTA(WT))

Output

‘ Non- Non-
Linear layer 1 i linearity Linear layer 2 i linearity

Y Ry Ry Ry R . v EvEvEvEvEvEvEeE IRy S

e e e e e e e e e e e e e e ==

] \!‘
.y % . -
A : Polit:

; ”gmﬁljﬁﬁ} — [Data Mining Concepts & Algorithms]

[Introduction to deep learning]

2. Infroduce non-linearities in the model

* if f(x) = x (i.e., no non-linearity is added), we get
z= s'WTlx
* This implies:
1. We could have used W' = Ws and get the same
output
2. We wouldn’t have needed a second layer!
3. But our model is still linear

* So, we use non-linear activation functions to
model more complex functions

1.5

y = o(WIW]x) model

e
=]
P(pos|x)

o
s

P(pos|x)

Multi-layer perceptron models

* We can stack additional /ayers

* separated by (activation functions) to

prevent collapses Hidden layers

* Universal Approximation Theorem tells us that . fp—

N —

we can approximate “any” function with MLPs
e “For any continuous function g defined on a compact |2—>| £ 2 2 1 R
subset of R™ and for any € > 0, there exists a
feedforward neural network with a single hidden - JuULJU — U U
layer and a finite number of neurons that can M M

: L : tput |
approximate g to within an arbitrary degree of Input layer Output fayer
accuracy €”

* Asingle-layer MLP works ... but no information on the
number of neurons, or the weights’ values!

e Deeper, narrower networks are generally used

Cybenko, George. "Approximation by superpositions of a sigmoidal function." Mathematics of control, signals and systems 2.4 (1989): 303-314.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators." Neural networks 2, no.5 (1989): 359-366.

output

o Bl Ny

LEN . B
YA LAY Politecnico 1
'E.M,L"' di Torino D'\'ICT
L |
SN

Activation functions for classification models

* As argued, activation functions can be used to enforce properties on
the model’s output

* In classification problems, the output before the final activation is
treated as unnormalized probabilities (logits)

* We still need a step to convert logits into valid probabilities
* i.e., all probabilities should sum to 1, and be in [0, 1]

———————————————————————

Input
v

Logit
v
\ 4
tput

fakp

[Introduction to deep learning]

gﬁﬁﬁﬁ?&ﬂ?l]%ﬁ} — [Data Mining Concepts & Algorithms]

Binary classification

* The model predicts the probability of a single class for point x
* As a convention, the positive one P(pos|x)

* The model produces a logit z = model (x) . ool
* We use the sigmoid function on the output logit z 08
1

) J(Z) " 1teZ 061

* This guarantees P(pos|x) € [0, 1] 04
 We work out the probability of the negative class 02

* P(neglx) =1 — P(posl|x) 00-] |

* We can easily show that P(neg|x) € [0,1] om0

* By construction, P(pos|x) + P(neg|x) = 14

7 N : . . .
{Mjﬁf#};ﬂ;ﬂﬂgﬁ ——— [Data Mining Concepts & Algorithms] [Introduction to deep learning]

Multi-class classification

 The output class is one of many (c4, ¢y, ..., Cp,)

* The model produces n logits for a point x
* (i.e., the last layer will have n perceptrons)

o z = (24,2, ..., 2,) = model(x)

* We need to obtain, from the logits, valid probabilities
* P(cqlx), P(czlx), ..., P(cylx)

* The softmax function is applied:

* P(cilx) = 527
]

* |t can be easily shown that:
* P(c;lx) €[0,1]

model
logits z

'ZiP(Cil.X):l N U

Z-
el (\f N 1\

Dog
Cat
Bird
Turtle

13

Activation functions for regression models

* In regression, models generally predict real numbers
* Typically, there is no need to enforce properties

* Qutput activation function can be the identity function

IOEE

* Generally the only situation where it makes sense to use it!

- 'i=; ~,
YA AY Politecnico B
LREFELE di Torino D\.'_L_CT
Wl

Defining weights (parameters)

* So far, we assumed all weights and biases (let’s call them 6) to be
known
* But, we still need to figure out how we find them!

* We pick a function (objective, or loss), L(8), that we want to minimize

e e.g., in Linear Regression we minimize the Mean Squared Error

+ £(0) = MSE(0) = - 3(i — 07x)?
Note

L also depends on the training points x;, v;, so we should

* Then, we pick & that minimizes it refer to it as £(6, X,).

However, the training set X, v is generally fixed. Thus, we
~ only have control over 6, so we use the notation L(6).

Linear regression

* For models, we can find the optimal weights in closed form
, 0L(8) _ OMSE(9) _ 0
06 90

e Quadraticin @, can be solved easily!

* Or, we can evaluate the loss function for a bunch of @’s, and find the

«“ ”
best” one ° ; 7
y =6x MSE = 32 (y - y)
1000
50
Note w0 | 800 4
For linear regression, we don’t try a bunch of & o
since we can easily find the best value in closed . 6007
form. ™ 201 2
400 -
10
However, this provides the intuition for what we 0 200 4
will do next with more complex loss
functions/models. ; -0 , '] ' ' ol T LS
00 02 04 06 0.8 1.0 0 20 40 60

80

- 'i=; ~,
YA AY Politecnico B
LREFELE di Torino D\.'_L_CT
Wl

More complex losses/models

* For more complex loss functions/models, we may not be able to solve
the problem in closed form

e But we can evaluate L£(0) for various values of 6

* We can iteratively update 6 to reach a local minimum:
* We start from a random value 6, then o —® 20

* we “move around” according to “some policy” 20

1.0 A

Loss

0.5 A

0.0 A

FRUN)

Yt AtV Politecnico B |
":l,',"' :.":i:u'\;.r' di 'I!orimI) D'\'ICT
W T

We “move around” according to

“some policy”

 Move around = update 6 incrementally, based on its current value
 The new value of & at any step depends on the previous step’s value

* 0,1 := 0; + update

* Some policy = we take a small step in the direction where the

function decreases locally

* i.e.in the opposite direction of the
L(6;)

* for 1-dimensional 68, we have ;.1 = 0; —a ——

* 0i41 =0 —«

* «:learning rate, controls the “size” of the step

 Gradient Descent!

Loss

2.0 4

1.8 4

1.6

1.4 4

1.2

1.0 4

0.8 A

0.6 A

0.4 4

Note

: : . Different initializations will lead to the global minimum
O I I I € 3 I I I I I O IO nS O for convex loss functions. However, that represents a

trivial situation we typically do not encounter.

209 |

\
1

1.8 A \

L}

1.6 A
b
1.4 *]
A

* GD is sensitive to weight initialization \
e Different initializations can lead to different solutions! :

0.8 L !

* GD can get stuck in local minima

0.6 1

1.2

Loss
|

041

 Various solutions to help prevent local minima: 207

* Adding momentum .
* Adaptive learning rates 141 i

1.2

e Learning rate schedules

1.0 A A I
%

Loss

\
0.8 b I
A\

0.6 1

0.4 -

Backpropagation
* So far, we assumed we were able to compute 'V, L(0)

* However, any loss/model combination would need a different
gradient computation!

* We can use backpropagation to compute the gradient of the loss w.r.t.
any weight!
e Backpropagation is just a fancy word for “using the chain rule”

~,

A% Ppolitecnico B~

Y :::i:i;'r' di 'Ilorincl) D'\'IG
Wt

Using the chain rule

9f _ 9199
'9x dg dx

* Sometimes known as f(g(x))’ =f'(g(x)-g'(x)

 We use the chain rule from calculus

* And apply it from the end of the computational graph, backwards
* (hence the name, backpropagation)

' o) \}‘
- v ., -
¥ Ay Politecnico DB G
3 i i !
.Ln\uu = :\Ey di Torino '\'1
s

Computational graph

* A computational graph is a directed graph

* Each node corresponds to an operation

* Each edge represents the flow of data
between nodes

* For instance, we may want to compute
y=wx+q
* We start from three variables, w,x and y

* The computational graph performs one
operation at a time
* First, compute the intermediate variable a = wx

* Then, compute the output variabley = a + q =
wx + q

r &y

:,AA. " A% Politecnico DBG

J Te f

=T Jw di Torino '_1
o

Backpropagation example

* Let’s say:
* Our dataset has one point, (x, V)
* Our (weird) model has two parameters, 6; and 6,, and predicts 6,6,
* Our loss function will be £ = (8,6,x — v)?

* We build a computational graph with all operations and intermediate
variables

°a:9192
°b=ax=3192
*c=b —y=ax —y=0,0,x —

* L=c*=((b—-y)=(ax —y)* =(0,0,x —y)*

AN o .
f%#ﬁﬁ?%m&]}ﬁﬁ} ——— [Data Mining Concepts & Algorithms]

[Introduction to deep learning] 24

L g

0L B dL da _
96, dado, -
6£_6L6b_2 aax_2
da _ dbda ““aa
dL JLJdc d(b—y)
= = =2—— =2
a =0, ab ~ acob T ab ‘
b = ax oL dc?
0L 0L da ()2 L=c?]
06, 0adf, 2ex = (610,x —y)*
Forward step
* The loss L is computed starting from the “inputs” 84,05, x,y
Backward step (backpropagation)
* The loss L is used to compute the derivative w.r.t. ¢ = g—f (’)_01 = 2(010,x —y)x0,
* The derivative g—i is used to compute the derivative w.r.t. b = % or
* The derivative Z_ﬁ is used to compute the derivative w.r.t. a = % 8_92 = 2(6102x —y)x6;
 The derivative 9L is used to compute the derivative w.r.t. 6,6, = ﬁ,ﬁ
da 060, 00,

Loss functions

* Regression

* Mean Squared Error, Mean Absolute Error

* Binary

* Binary Cross-Entropy (BCE)
* y = {0, 1} =» ground truth

« ¥ = model(x) € [0,1] = predicted value

L=—

* y (ground truth) acts as a “selector” of the loss term

to be applied
cy=1=2>L=-

- (1 -y)log(1—-9)

e y=0=>L=—-log(1—-79)

y=1, £=—logly)

Targetvalue:y =1

* Lowloss values when
predictiony = 1
High loss value when
predictiony = 0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

y=0,°r Iogil y)

i Target value:y =1

Low loss values when
predictiony = 1
High loss value when
prediction y = 0

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Loss functions

e Multi-class classification
* Cross-Entropy
* Generalization to multiple classes of BCE
* y; = 1 when ground truth is the ith class, 0 otherwise
* y; plays the same “selector” mechanism as in BCE

L==) ylogs)
[

	Slide 1
	Slide 2: The perceptron
	Slide 3: The perceptron
	Slide 4: The perceptron, in 2D
	Slide 5: Activation functions
	Slide 6: 1. Enforce properties on perceptron’s output
	Slide 7: Adding some perceptrons
	Slide 8: and adding other layers!
	Slide 9: 2. Introduce non-linearities in the model
	Slide 10: Multi-layer perceptron models
	Slide 11: Activation functions for classification models
	Slide 12: Binary classification
	Slide 13: Multi-class classification
	Slide 14: Activation functions for regression models
	Slide 15: Defining weights (parameters)
	Slide 16: Linear regression
	Slide 17: More complex losses/models
	Slide 18: We “move around” according to “some policy”
	Slide 19: Some limitations of GD
	Slide 20: Backpropagation
	Slide 21: Using the chain rule
	Slide 22: Computational graph
	Slide 23: Backpropagation example
	Slide 24
	Slide 25: Loss functions
	Slide 26: Loss functions

