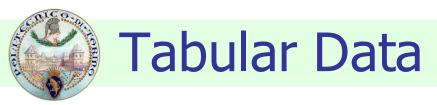
Data preprocessing

Danilo Giordano

Politecnico di Torino

Data set types

- Record
 - Tables
 - Document Data
 - Transaction Data
- Graph
 - World Wide Web
 - Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data



A collection of records

Each record is characterized by a fixed set of

attributes

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Document Data

- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

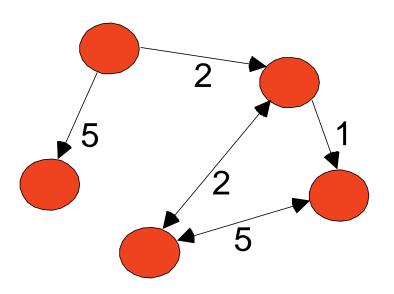
	team	coach	pla y	ball	score	game	n <u>vi</u> .	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

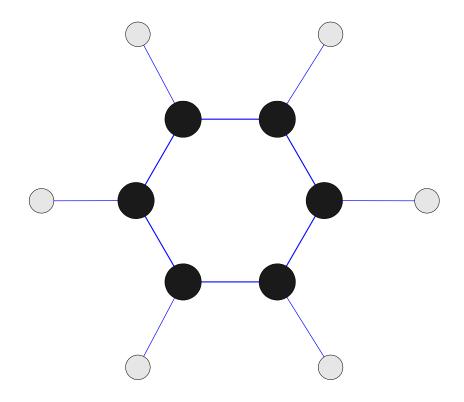
Examples: Generic graph and HTML Links



```
<a href="papers/papers.html#bbbb">
Data Mining </a>
<a href="papers/papers.html#aaaa">
Graph Partitioning </a>
<a href="papers/papers.html#aaaa">
Parallel Solution of Sparse Linear System of Equations </a>
<a href="papers/papers.html#ffff">
N-Body Computation and Dense Linear System Solvers
```


Graph Data (2)

Benzene Molecule: C₆H₆



Ordered Data

Sequences of transactions

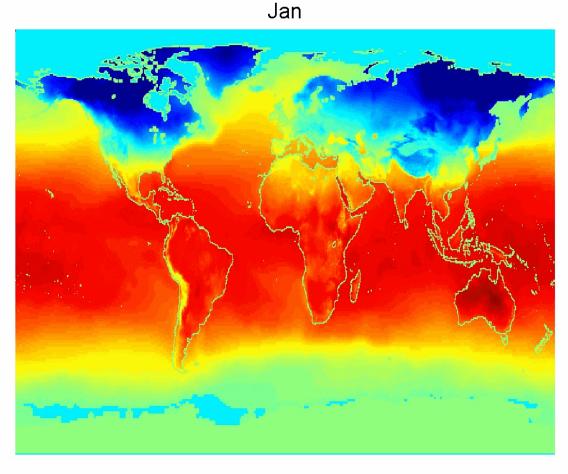
Items/Events (AB) (D) (CE) (BD) (C) (E) (CD) (B) (AE) An element of the sequence

Genomic sequence data

Ordered Data

Spatio-Temporal Data

Average Monthly Temperature of land and ocean



Attribute types

There are different types of attributes

- Nominal
 - Examples: ID numbers, eye color, zip codes
- Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
- Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Ratio
 - Examples: temperature in Kelvin, length, time, counts

Properties of Attribute Values

The type of an attribute depends on which of the following properties it possesses:

■ Distinctness: = ≠

Order: < >

Addition: + -

Multiplication: * /

Nominal attribute: distinctness

Ordinal attribute: distinctness & order

Interval attribute: distinctness, order & addition

Ratio attribute: all 4 properties

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

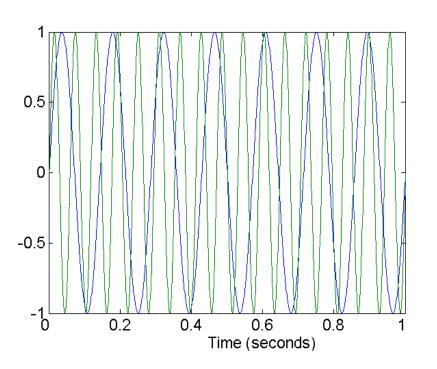
- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

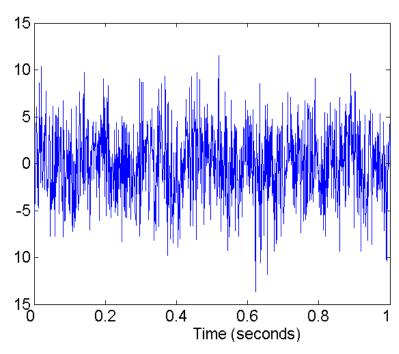
Data Quality

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - missing values
 - duplicate data

- Noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen



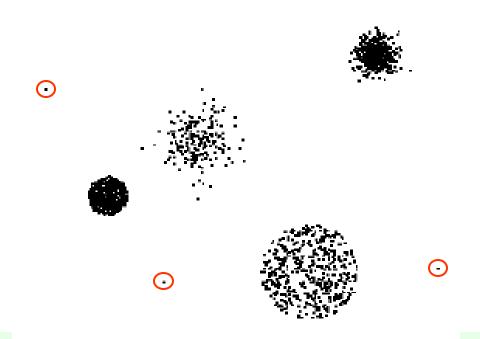


Two Sine Waves

Two Sine Waves + Noise

Outliers

 Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set



Missing Values

- Reasons for missing values
 - Information is not collected
 (e.g., people decline to give their age and weight)
 - Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate Data Objects
 - Estimate Missing Values
 - Ignore the Missing Value During Analysis
 - Replace with all possible values (weighted by their probabilities)

Data Preprocessing

- Aggregation
- Sampling
- Dimensionality Reduction
- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

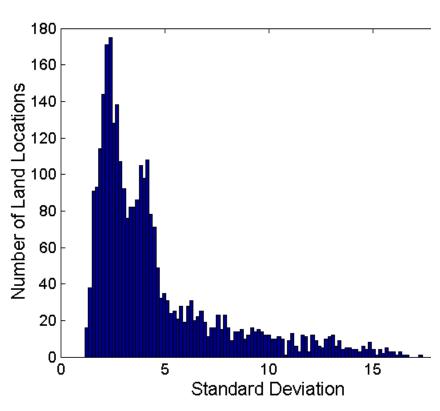
Aggregation

 Combining two or more attributes (or objects) into a single attribute (or object)

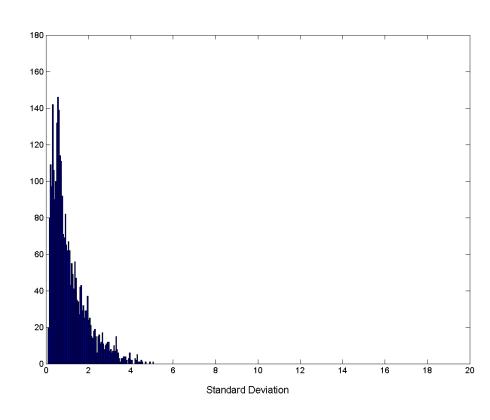
Purpose

- Data reduction
 - Reduce the number of attributes or objects
- Change of scale
 - Cities aggregated into regions, states, countries, etc
- More "stable" data
 - Aggregated data tends to have less variability

Variation of Precipitation in Australia



Standard Deviation of Average Monthly Precipitation



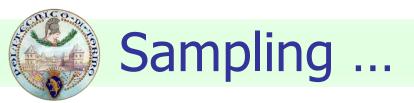
Standard Deviation of Average Yearly Precipitation

Data reduction

- It generates a reduced representation of the dataset. This representation is smaller in volume, but it can provide similar analytical results
 - sampling
 - It reduces the cardinality of the set
 - feature selection
 - It reduces the number of attributes
 - discretization
 - It reduces the cardinality of the attribute domain

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is used in data mining because processing the entire set of data of interest is too expensive or time consuming.



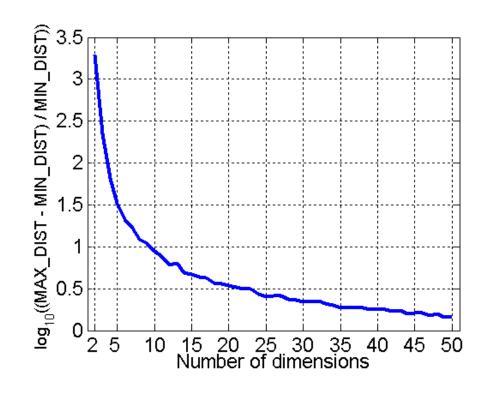
- The key principle for effective sampling is the following:
 - using a sample will work almost as well as using the entire data set, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Types of Sampling

- Simple Random Sampling
 - There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful



- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Dimensionality Reduction

Purpose

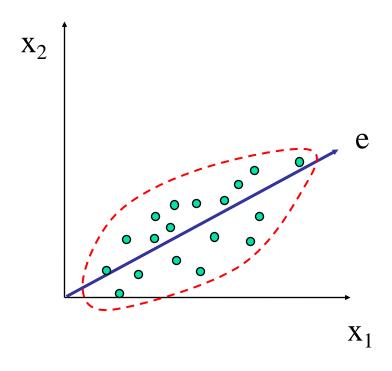
- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principal Component Analysis
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Dimensionality Reduction: PCA

 Goal is to find a projection that captures the largest amount of variation in data



Feature Subset Selection

- Another way to reduce dimensionality of data
- Redundant features
 - duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid
- Irrelevant features
 - contain no information that is useful for the data mining task at hand
 - Example: students' ID is often irrelevant to the task of predicting students' GPA

Feature Subset Selection

Techniques

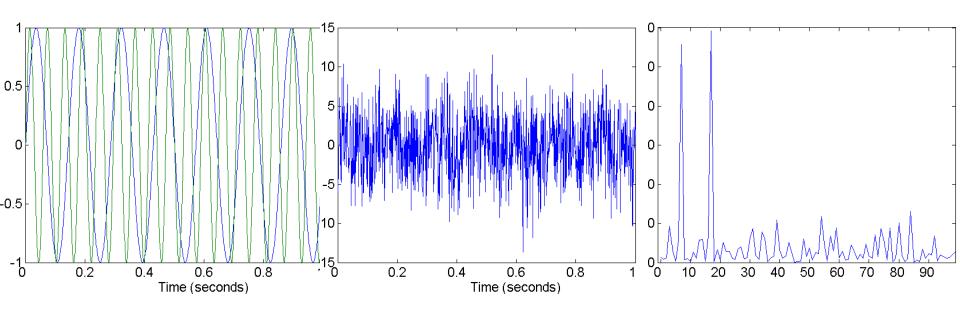
- Brute-force approach
 - Try all possible feature subsets as input to data mining algorithm
- Embedded approaches
 - Feature selection occurs naturally as part of the data mining algorithm
- Filter approaches
 - Features are selected before data mining algorithm is run
- Wrapper approaches
 - Use the data mining algorithm as a black box to find best subset of attributes

Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies
 - Feature Extraction
 - domain-specific
 - Mapping Data to New Space
 - Feature Construction
 - combining features

Mapping Data to a New Space

- Fourier transform
- Wavelet transform



Two Sine Waves

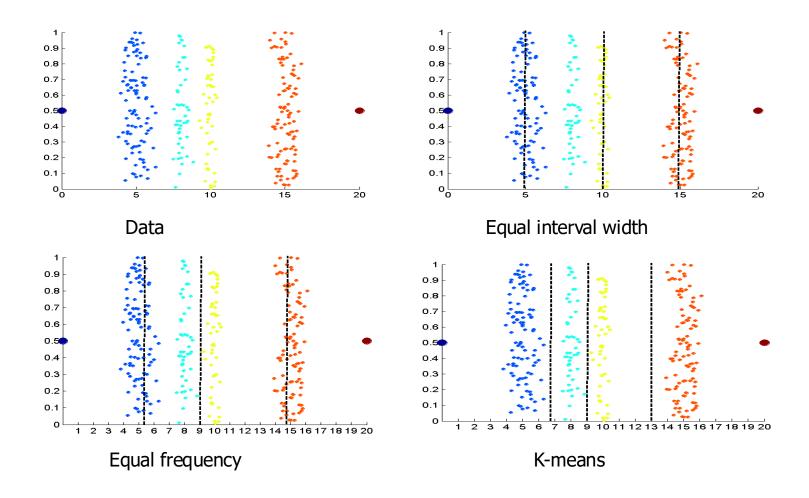
Two Sine Waves + Noise

Frequency

Discretization

- It splits the domain of a continuous attribute in a set of intervals
 - It reduces the cardinality of the attribute domain
- Techniques
 - N intervals with the same width $W=(v_{max} v_{min})/N$
 - Easy to implement
 - It can be badly affected by outliers and sparse data
 - Incremental approach
 - N intervals with (approximately) the same cardinality
 - It better fits sparse data and outliers
 - Non incremental approach
 - clustering
 - It fits well sparse data and outliers

Discretization

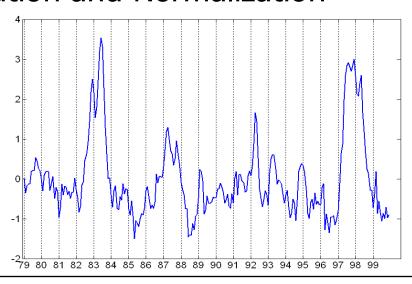


One-hot encoding

- We may wish to encode categorical data as numbers
 - Why? Algorithms typically work with numerical representations, not symbols!
- For instance, colors: red, green, blue
- It may be tempting to map categories to natural numbers
 - red = 0, green = 1, blue = 2
 - This introduces a fictitious order among items
 - Semantically, it makes no sense to say "red < blue",
 - But with this encoding, we are saying just that!
- Solution: One-hot encoding
 - For N values, use N-dimensional binary vectors
 - Position of the corresponding value set to 1, everything else 0)
 - red = [1, 0, 0], green = [0, 1, 0], blue = [0, 0, 1]
 - All vectors are orthogonal no unintended order introduced!

Attribute Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k, log(x), e^x, |x|
 - Standardization and Normalization



Normalization

- It is a type of data transformation
 - The values of an attribute are scaled so as to fall within a small specified range, typically [-1,+1] or [0,+1]
- Techniques
 - min-max normalization

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

z-score normalization $v' = \frac{v - mean_A}{stand_dev_A}$

$$v' = \frac{v - mean_A}{stand dev_A}$$

decimal scaling

$$v' = \frac{v}{10^{j}}$$
 j is the smallest integer such that max($|v'|$) < 1

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$	
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$	
Interval or Ratio	d = p - q	$s = -d, s = \frac{1}{1+d}$ or	
		$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d - min - d}{max - d - min - d}$	

Table 5.1. Similarity and dissimilarity for simple attributes

Euclidean Distance

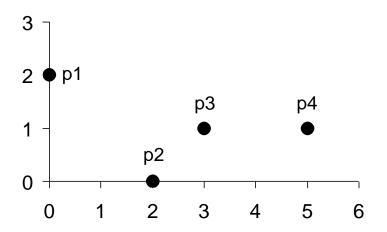
Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

Normalization is necessary, if scales differ.

Euclidean Distance



point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) of data objects p and q.

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L_1 norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for any number of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p 4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

\mathbf{L}_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - d(p, q) = d(q, p) for all p and q. (Symmetry)
 - d $(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)
 - where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.
- A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities also have some well known properties.
 - s(p, q) = 1 (or maximum similarity) only if p = q.
 - s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities

 M_{01} = the number of attributes where p was 0 and q was 1

 M_{10} = the number of attributes where p was 1 and q was 0

 M_{00} = the number of attributes where p was 0 and q was 0

 M_{11} = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients

```
SMC = number of matches / number of attributes
= (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})
```

J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard: Example

$$p = 10000000000
 q = 0000001001$$

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1)

 $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 7$ (the number of attributes where p was 0 and q was 0)

 $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC =
$$(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

Cosine Similarity

- If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where indicates vector dot product and ||d|| is the norm of vector d.
- Example:

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$d_{1} \bullet d_{2} = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5$$

$$||d_{1}|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{\mathbf{0.5}} = (42)^{\mathbf{0.5}} = 6.481$$

$$||d_{2}|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{\mathbf{0.5}} = (6)^{\mathbf{0.5}} = 2.245$$

$$\cos(d_{1}, d_{2}) = .3150$$

