Association Rules
Fundamentals

Danilo Giordano
Politecnico di Torino

A% %55

Dk
o3

=% Association rules

= Objective

= extraction of frequent correlations or pattern from a
transactional database

Tickets at a supermarket
counter

TID | Items

1 Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diapers, Milk

Beer, Bread, Diapers, Milk

Ta| | W|N

Coke, Diapers, Milk

= Association rule

diapers = beer

= 2% of transactions contains
both items

= 30% of transactions
containing diapers also
contains beer

(=4} Association rule mining

N

= A collection of transactions is given
= a transaction is a set of items

= items in a transaction are

Items

not ordered

Bread, Coke, Milk

= Association rule

Beer, Bread

A B=C

Beer, Coke, Diapers, Milk

=« A, B = items in the rule body

Beer, Bread, Diapers, Milk

gl | W N

= C = item in the rule head

Coke, Diapers, Milk

= [he = means co-occurrence

= ot causality

= Example
= coke, diapers = milk

¥ -\
“gs Transactional formats

= Association rule extraction is an exploratory
technigue that can be applied to any data

type
= A transaction can be any set of items
= Market basket data
= Textual data
= Structured data

= Textual data
= A document is a transaction —
=« Words in a document are items in the transaction
= Data example
= Docl: algorithm analysis customer data mining relationship
= Doc2: customer data management relationship
= Doc3: analysis customer data mining relationship social
= Rule example
customer, relationship = data, mining

o do)

g, X

.~} Transactional formats

= Structured data
= A table row is a transaction
= Pairs (attribute, value) are items in the transaction

= Data example

Refund Marital Taxable

Status Income Cheat

No Married |< 80K No

= [ransaction
Refund=no, MaritalStatus=married, TaxableIncome<80K, Cheat=No

= Rule example
Refund=No, MaritalStatus=Married = Cheat = No

DMG Example from: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 6

O\
~
%2y, ,q’("\
% %:
i
K

k- \

: Definition
=2t Definitions
Y ’a‘;;,;'; ,,4; /

= [temsetis a set including one or more
items

= Example: {Beer, Diapers}
m k-itemsetis an itemset that contains k
items

= Support count (#) is the frequency of
occurrence of an itemset
= Example: #{Beer,Diapers} = 2
= Supportis the fraction of transactions
that contain an itemset
« Example: sup({Beer, Diapers}) = 2/5
= fFrequent itemsetis an itemset whose

support is greater than or equal to a
minsup threshold

DG

TID | Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diapers, Milk
4 Beer, Bread, Diapers, Milk
5 Coke, Diapers, Milk

W TN

i Rule quality metrics

QD -, W&
%05, 000

= Given the association rule

A=1B
= A, B are itemsets

= Supportis the fraction of transactions containing
both A and B

#{A,B}
I T]
« |T| is the cardinality of the transactional database
= a priori probability of itemset AB
= rule frequency in the database
= Confidence is the frequency of B in transactions
containing A

Sup(A,B)
sup(A)
= conditional probability of finding B having found A
= strength” of the "="

DG

= From itemset {Milk, Diapers} the
following rules may be derived

= Rule: Milk = Diapers
= Support
sup=#{Milk,Diapers}/#trans. =3/5=60%
= confidence
conf=#{Milk,Diapers}/#{Milk}=3/4=75%
= Rule: Diapers = Milk
= Same support
s=60%
= confidence
conf=#{Milk,Diapers}/#{Diapers}=3/3
=100%

TID

Items

Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diapers, Milk

Beer, Bread, Diapers, Milk

| | W N

Coke, Diapers, Milk

.y
~
%050

=4} Association rule extraction

Oy R
N0 oo
N~ p 3

= Given a set of transactions T, association rule
mining is the extraction of the rules satisfying the
constraints
= support = minsup threshold
= confidence = minconfthreshold
= The result is
= complete (a//rules satisfying both constraints)
= correct (on/y the rules satisfying both constraints)

= May add other more complex constraints

D“B,\G .

(=4} Association rule extraction

= Brute-force approach
= enumerate all possible permutations (i.e., association rules)
= compute support and confidence for each rule

= prune the rules that do not satisfy the minsup and minconf
constraints

= Computationally unfeasible
= Given an itemset, the extraction process may be split

= first generate frequent itemsets
= next generate rules from each frequent itemset

= Example
= Jtemset
{Milk, Diapers} sup=60%
= Rules
Milk = Diapers (conf=75%)
Diapers = Milk (conf=100%)

DG

11

BN
~
o 1 i)

=4} Association rule extraction

R N

(1) Extraction of frequent itemsets

= many different techniques
= level-wise approaches (Apriori, ...)
= approaches without candidate generation (FP-growth, ...)
= other approaches

= most computationally expensive step
= limit extraction time by means of support threshold
(2) Extraction of association rules

= generation of all possible binary partitioning of each
frequent itemset
= possibly enforcing a confidence threshold

-} Frequent Itemset Generation

Given d items, there
are 249 possible
candidate itemsets

From: Tan,Steinbach, Kumar, Introduction
to Data Mining, McGraw Hill 2006

D“B,\G 5

(=4} Frequent Itemset Generation

= Brute-force approach

= each itemset in the lattice is a candidate
frequent itemset

= Scan the database to count the support of each
candidate

= match each transaction against every candidate
= Complexity ~ O(|T| 29w)
= |T| is number of transactions

= d is number of items
= W is transaction length

DG)

(4 Improving Efficiency

. Reduce the number of candidates
= Prune the search space
= complete set of candidates is 24
s Reduce the number of transactions
= Prune transactions as the size of itemsets increases
= reduce |T|
= Reduce the number of comparisons
= Equal to |T| 2¢

= Use efficient data structures to store the candidates
or transactions

15

.. The Apriori Principle
"If an itemset is frequent, then all of its

subsets must also be frequent”

= The support of an itemset can never exceed
the support of any of its subsets

= [t holds due to the antimonotone property
of the support measure

= Given two arbitrary itemsets A and B
if A <€ B then sup(A) = sup(B)

s [t reduces the number of candidates

D“B,\G ;

From: Tan,Steinbach, Kumar, Introduction
to Data Mining, McGraw Hill 2006

Found to be !
Infrequent \

Pruned

N\
- /
B supersets ~ TT~<__ /

sy : ()\'h

=21 Apriori Algorithm [Agro4]

= Level-based approach
= at each iteration extracts itemsets of a given length k

= [Two main steps for each level

= (1) Candidate generation

= Join Step

generate candidates of length k+1 by joining frequent itemsets
of length k

= Prune Step

apply Apriori principle: prune length k+1 candidate itemsets
that contain at least one k-itemset that is not frequent

= (2) Freguent itemset generation
= scan DB to count support for k+1 candidates
= prune candidates below minsup

s Pseudo-code

C,. Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items};
for(k=1, L, '=0; k++) do
begin
Ci.; = candidates generated from L;;

for each transaction ¢in database do
increment the count of all candidates in C,.;
that are contained in ¢

L.., = candidates in C,; satisfying minsup
end
return v, L,

19

=4} Generating Candidates

OGOy

= Sort L, candidates in lexicographical order

= For each candidate of length k
« Self-join with each candidate sharing same L,_; prefix
=« Prune candidates by applying Apriori principle
= Example: given L;={abc, abd, acd, ace, bcdy
« Self-join
» abcd from abcand abd

= dcde from acd and ace
= Prune by applying Apriori principle
= dcdeis removed because ade, cde are not in L;

[C4= {ade}

DG

20

ALE O
A S
15
~

=4t Apriori Algorithm: Example
Example DB

TID ltems
{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B,C,E}

minsup>1

DG

=

O© 0 NO OB WNDN

=
o

21

Example DB

TID ltems
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 | {AB,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 | {B,C,E}
minsup>1

DG

1t DB
scan

¢

itemsets

A}
{B}
1C}
{D}
{E}

W 01 N 00 N|C

22

ALE O
‘Q‘ s,

.4 Prune infrequent candidates in C,

0 N %
& /:
N 4
~

éxample DB

TID ltems
1 {A,B} C;
2 {B,C,D} ot itemsets| sup
3 | {AC,D,E} 1SC£nB A} | 7
4 {A,D,E} {B} |8 _
5 | {AB,C) ‘ cr |7 ‘ Li= G
6 | {AB,C,D} D} | 5
7 {B.C} {E} |3
8 {A,B,C}
9 | {ABD} | « All itemsets in set C, are frequent
10 | {B.C.E} according to minsup>1
minsup>1

D“B,\G .

-} Generate candidates from £,

G

itemsets

L {A,B}
itemsets|sup {A,C}
{Ab | 7 {A,D}
{B} | 8 {A.E}
{C+ |7 {B,C}
{D} 5 {B,D}
{E} |3 {B,E}
{C,D}

{C,E}

{D,E}

Ly

¢

itemsets

itemsets

A}
1B}
{C}
{D}
{E}

{A,B}
{AC}
{A,D}
{AE}
{B,C}
{B,D}
{B,E}
{C.D}
{C,E}
{D.E}

znd
DB
SCan

G

itemsets

{A,B}
{AC}
{AD}
{AE}
{B,C}
{B,D}
{B,E}
{C.D}
{C,E}
{D.E}

(0]
wapwmmhhm%

4} Count support for candidates in C,

25

Ly

¢

itemsets

itemsets

A}
1B}
{C}
{D}
{E}

{A,B}
{AC}
{A,D}
{AE}
{B,C}
{B,D}
{B,E}
{C.D}
{C,E}
{D.E}

2nd
DB
SCan

G

itemsets

L,

2} Prune infrequent candidates in C,

{A,B}
{AC}
{AD}
{AE}
{B,C}
{B,D}

wn
C
OOCDI\J-b-bU'I_O

itemsets

{C.D}
{C,E}
{D.E}

N W

{A,B}
{A,C}
{AD}
{AE}
{B,C}
{B,D}
{C.D}
{C,E}
{D.E}

(7))
NI\)OOOOO)I\JL-ACH%

26

~4; Generate candidates from £,

/ LZ C3
itemsets| sup itemsets
{AB} | 5 {A,B,C}
{AC} | 4 {A,B,D}
EA,D; 4 {A,B,E}
AE 2
, {A,C,D}
{BC} | 6 ‘ {A,C,E}
{BD} | 3 {A,D,E}
{CD} | 3 {B,C,D}
[CE} | 2 {C,D,E}
{D.E} | 2

L, C;
itemsets| sup itemsets
{AB} | 5 {A,B,C}
{AC} | 4 {A,B,D}
{AD} | 4
{AE} | 2 {A,C,D}
©.C} | 6)| (aCr)
{BD} | 3 {A,D,E}
{CD} | 3 {B,C,D}
[CE} | 2 {C,D,E}
{D.E} | 2

= Prune {A,B,E}
= Its subset {B,E} is infrequent ({B,E} is not in L))

D“B,\G "

L

itemsets

G

{A,B}
{AC}
{A,D}
{AE}
{B,C}
{B,D}
{C,D}
{C.E}
{D.E}

wm
wawmmhhm%

itemsets

{A,B,C}
{A,B,D}

{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

3rd
DB
SCan

G

itemsets

{A,B,C}
{A,B,D}
{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

w
HI\JI\)"‘I\JI\)OO%

Count support for candidates in C;

29

L

itemsets

{A,B}
{AC}
{A,D}
{AE}
{B,C}
{B,D}
{C,D}
{C.E}
{D.E}

wm
wawmmhhm%

=

G

itemsets

{A,B,C}
{A,B,D}

{A,C,D}
IA,C,E}
{A,D,E}
{B,C,D}
{C,D,E}

3rd
DB
SCan

=

G

itemsets

{A,B,C}
{A,B,D}
{A,C,D}

sup
3
2
2

Ls

.t Prune infrequent candidates in C;

itemsets

{A,D,E}
{B,C,D}

NN

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

)
c
l\)l\.)l\.)l\)()\)U

= {A,C,E} and {C,D,E} are actually infrequent
= They are discarded from C;

DG

30

Ls

itemsets

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}

{B,C,D}

wn
-
I\)I\)I\)I\JOOU

-

=} Generate candidates from £;

Cy

itemsets

{A,B,C,D}

31

ALE O
oS aON

=4 Apply Apriori principle on C,

L;
itemsets
{A.B.C}
{A,B,D}
{A.C.D}
{A,D,E}
{B,C.D)

C

‘ itemsets
{A,B,C,D}

wn
-
I\)I\)I\)I\J(MT3

= Check if {A,C,D} and {B,C,D} belong to L;
= L;contains all 3-itemset subsets of {A,B,C,D}
= {A,B,C,D} is potentially frequent

DG

itemsets

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}

{B,C,D}

wn
-
I\)I\)I\)I\JOOU

-

itemsets

{A,B,C,D}

G
itemsets |sup
{A,B,C,D}| 1

33

Ls

itemsets

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

itemsets |sup

‘ itemsets
{A,B,C,D}

wn
-
I\)I\)I\)I\JOOU

= {A,B,C,D} is actually infrequent
= {A,B,C,D} is discarded from C,

DG

- -0

34

| Example DB

Ly

itemsets| sup

1A}
{B}
1C}
1D}
{E}

W 01N 00 N|C

TID ltems
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
S {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}
minsup>1

DG

Ls

L,

itemsets| sup

itemsets

7))
c
O

{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

NN NN W

{A,B}
{AC}
{A.D}
{AE}
{B,C}
{B,D}
{C,D}
{C.E}
{D.E}

ol

NN W WO DN

35

=4 Counting Support of Candidates

Q Scan transaction database to count support of
each itemset

= total number of candidates may be large
= one transaction may contain many candidates

= Approach [Agro94]

= candidate itemsets are stored in a fash-tree
= /eaf node of hash-tree contains a list of itemsets and counts
= /nterior node contains a hash table
= subset function finds all candidates contained in a
transaction
= match transaction subsets to candidates in hash tree

DG

Performance Issues in Apriori

= Candidate generation

= Candidate sets may be huge

= 2-itemset candidate generation is the most critical
step

= extracting long frequent intemsets requires
generating all frequent subsets

= Multiple database scans

= 11 +1 scans when longest frequent pattern length
IS n

G "> o)\

=g
%%,

2\
,
3‘ -
H

.4 Factors Affecting Performance

\ IS

= Minimum support threshold

= lower support threshold increases number of frequent itemsets
= larger number of candidates

= larger (max) length of frequent itemsets
= Dimensionality (number of items) of the data set
= Mmore space is heeded to store support count of each item

= if number of frequent items also increases, both computation and
I/O costs may also increase

» Size of database

= since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions

= Average transaction width
= transaction width increases in dense data sets

= Mmay increase max length of frequent itemsets and traversals of
hash tree

= number of subsets in a transaction increases with its width

D“B,\G .

Improving Apriori Efficiency

= Hash-based itemset counting [Yu95]

= A k-itemset whose corresponding hashing bucket count is
below the threshold cannot be frequent

= Transaction reduction [Yu95]

= A transaction that does not contain any frequent k-itemset is
useless in subsequent scans

= Partitioning [Savo6]

= Any itemset that is potentially frequent in DB must be frequent
in at least one of the partitions of DB

Improving Apriori Efficiency

= Sampling [Toi96]

= mining on a subset of given data, lower support threshold + a
method to determine the completeness

= Dynamic Itemset Counting [Motw98]

=« add new candidate itemsets only when all of their subsets are
estimated to be frequent

40

CF Sl B\

%% FP-growth Algorithm [Han00]

‘.n‘l‘ P ¥
=N R
oog, A

= EXploits @ main memory compressed representation
of the database, the FP-tree

= high compression for dense data distributions
= less so for sparse data distributions

= complete representation for frequent pattern mining
= enforces support constraint

= Frequent pattern mining by means of FP-growth
= recursive visit of FP-tree

= applies divide-and-conquer approach
= decomposes mining task into smaller subtasks

= Only two database scans
= count item supports + build FP-tree

DG .

S
~
%00)

DG

S

w4 FP-tree construction
Example DB
= (1) Count item support and prune
LI items below minsup threshold
; éA(’:B[}) = (2) Build Header Table by sorting
{B,C,D} items in decreasing support order
3 | {AC,D,E}
4 {A,D,E} Header Tab
5 {A,B,C} ltem| sup
6 {A,B,C,D} {B}| 8
7 {B.C} A} | 7
8 {A,B,C} C}| 7
9 {A,B,D} {D}| 5
10 {B,C,E} E}| 3
minsup>1

42

Example DB
TID ltems
1 {A B}
2 {B,C,D}
3 | {AC,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}
minsup>1

ALE G
,‘,k;},a = ,}
(e SO -
N e, %)
; U I l
\ Q3 S it . £
Gl TRy
AN/

= (1) Count item support and prune
items below minsup threshold

= (2) Build Header Table by sorting
items in decreasing support order

= (3) Create FP-tree

For each transaction £in DB

= order transaction fitems in
decreasing support order
= Same order as Header Table
= insert transaction £in FP-tree
= use existing path for common prefix

= Create new branch when path
becomes different

43

& FP-tree construction

Tfénsaction Sorted transaction

TID | Iltems ‘ TID | Items
1 {A,B} 1 | {B,A}

FP-tree

Header Table 1)

ltem | sup
{B}| 8

{A} | 7
{C}| 7
{D}| 5
{E} | 3

A\

)
|
Z

)

TID

ltems

2

1B,C,D}

Header Tab

ltem

sup

{B}
A}
{C}
1D}
{E}

8

7
7
S
3

S

Sorted transaction

=

FP-tree construction

Transaction

TID

ltems

2

1B,C,D}

FP-tree

45

~4: FP-tree construction
Transaction Sorted transaction

TID | Iltems ‘ TID | Iltems
3 |{ACDE} 3_[{ACDE;S

Header Table } A
ltem | sup B:2
{B}| 8
()8 /\
(cy| 7 A:l C:1
{D}| 5
0] » /
D:1

=4} FP-tree construction

Tfénsaction Sorted transaction

TID | ltems ‘ TID | Items
4 | {AD,E} 4 | {ADE}

FP-tree

Header Table -

ltem | sup
{B} | 8
{A} | 7
{C}| 7
{D}| 5
{E} | 3

FP-tree construction

Transaction

TID

ltems

S

1A,B,C}

Header Tab

ltem

sup

{B}
A}
{C}
1D}
{E}

8

7
7
S
3

S

Sorted transaction

=

TID

ltems

S

1B,A,C}

FP-tree
\
A:2
C:1 D:1
D:1 E:1
E:l 48

%9002
N
P
1)\
)

5>/

TID

ltems

6 [{AB,CD}

Header Tab
ltem | sup
{B} | 8
{Ab] 7
{C}| 7
{D}| 5
{E} | 3

S

Sorted transaction

=

FP-tree construction

Transaction

TID

ltems

6

1B/A,C,D}

FP-tree
\
A:2
C:1 D:1
D:1 E:1
E:l 49

TID ltems

7 | {BC}

Header Tab

ltem | sup
{B} | 8

A} | 7
C}| 7
D}| 5
{E} | 3

S

Sorted transaction

=

=4} FP-tree construction

Transaction

TID

ltems

-

1B,.C}

D:1

{}| FP-tree
\A:Z
C:1/\D:1
D:1 E:1
E:l 50

FP-tree construction

Transaction

TID

ltems

8

1A,B,C}

Header Tab

ltem

sup

{B}
A}
{C}
1D}
{E}

8

7
7
S
3

S

Sorted transaction

=

TID

ltems

8

1B,A,C}

FP-tree
\
A:2
C:1 D:1
D:1 E:1
E:l 51

TID

ltems

9

1A,B,D}

Header Tab

ltem

sup

{B}
A}
{C}
1D}
{E}

8

7
7
S
3

S

Sorted transaction

=

FP-tree construction

Transaction

TID

ltems

9

1B,A,D}

D:1

FP-tree
\
A:2
C:1 D:1
D:1 E:1
E:l 5

FP-tree construction

Transaction

TID

ltems

10

1B,C,E}

Header Tab

ltem

sup

{B}
A}
{C}
1D}
{E}

8

7
7
S
3

S

Sorted transaction

TID | Iltems
10 | {B,C,E}

=

A:5

C:3

D:1

{}| FP-tree

\

A:2

C:1

E:1

RN

D:1

E:1

53

o N
o e
\\?“}:'{";' oy -,,a}

S 24

N A

3

Header Tab

ltem

sup

1B}
A}
1C}
1D}
{E}

(00)

SIS, RENREN

-
————_——

\~~
—
—
e —

: Final FP-tree

0 FP-tree

~~~ -
e - -

| |
n
/
\ ,’ /
\ V4
\ \ - !
- -~ -~ 1
S0 ] - Sa
7 1
AN / N
N,V N y I' /l
\ \ Ve
\ ~ L] - D 1__ [ ] "4 Ell‘ 7
\ \ ’Cl3 >Dl1 [ \ D'l' ,
1 \
Yoy ~ A \ /
| I /
) / I ! I
1 \ / / | |
1 \ / / \
\ ’ \ /
\ / /
\ \\ // / \ /7
.. MD:1r- , »E:1r
S P
S -,
S o P
\\ //
SN o -

Item pointers are used to assist
frequent itemset generation

D:1

E:1

54



y %050

=2t FP-growth Algorithm

P Ceron

Ui :
P iR

= Scan Header Table from lowest support item up

= For each item i in Header Table extract frequent
itemsets including item i and items preceding it in
Header Table
= (1) build Conditional Pattern Base for item i (i-CPB)
= Select prefix-paths of item i from FP-tree
= (2) recursive invocation of FP-growth on i-CPB



= Consider item D and extract frequent itemsets including

= D and supported combinations of items A, B, C

Header Tab

ltem

1B}
A}
1C}

{E}




= (1) Build D-CPB

= Select prefix-paths of item D from FP-tree

Header Table //{%
ltem | sup :
B} | 8
A 7

1C}

{E}

Frequent
itemset:
D, sup(D) =5

DG

57



:
ALY
2
)\
LY
¢

=

ltem | sup

{A} | 7

D-CPB \

‘ Items ‘sup “‘.

-

Header Table

B} 8 -

\~~
—
—
e — —

{E}Y| 3 v

:Conditional Pattern Base of D

{}| FP-tree

58



<
0y
5,
ALY
O\

%
%

- Conditional Pattern Base of D

0 e
Header Tab FP-tree
\
tem|sup| ______ I8l 00— » A2
{B}| 8
(A} N
———————— nC:1|  D:l
i aEid
S E1H
BG 59



<
0y
5,
ALY
O\

%
%

o
S

> /

Hea/der Tab

ltem

1B}
A}

S

——
————
—_——
—-—
-
-

:Conditional Pattern Base of D

60



<
0y
5,
ALY
O\

P
%

. Conditional Pattern Base of D
FP-tree

> /

Hea/der Tab

ltem | sup
{B} | 8
{A}

DEAG .



. '.\3‘

%
%

- Conditional Pattern Base of D

Header Tab FP-tree

ltem| sup
B} 8
{A}

62



+ Conditional Pattern Base of D

09°

(1) Build D-CPB

= Select prefix-paths of item D from FP-tree

D-CPB

Items |sup

{B,AC}
{BA}
1B,C}
1AC}

{A}

[ O O S T

B

o D-conditional
D-conditional {3 Fp-tree
Header Table T~

Item | sup oA - » B:1
Ay 4 -7 T

{B}| 3 B2 . »Cl--%C1
] 3 | 1

= (2) Recursive invocation of FP-growth on D-CPB

DG

63



Conditional Pattern Base of DC
= (1) Build DC-CPB

= Select prefix-paths of item C from D-conditional FP-tree

D-CPB 5-conditional 0 D-conditional

Items |sup Header Table

{BAC} | 1 Item | sup

BAr |1 {A}| 4

BCr | 1 ‘ {B}

wo |1 | [

{Ay |1 R

1

Frequent itemset: {A} 1
DC, sup(DC) = 3 {B} 1

64



ALY 0.

(=4} Conditional Pattern Base of DC

09°

(1) Build DC-CPB

= Select prefix-paths of item C from D-conditional FP-tree

DC-CPB

Items |sup

{AB) | 1
{A} |1
{B} | 1

-

DC-conditional

DC-conditional

Header Table /\ FP-tree
Item | sup - A2 » B:1

(A 2 [---

Br] 2 joo--- +{ B:1

= (2) Recursive invocation of FP-growth on DC-CPB

DG

65



= (1) Build DCB-CPB

= Select prefix-paths of item B from DC-conditional FP-tree

DC-CPB DC-conditional {3y DC-conditional

Items |sup Header Table FP-tree
_ i
/

{AB} | 1 Item | sup
{Ay |1 ‘ {A}| 2 |
® |1 | e - -
l ’ DCB-CPB
Items |sup

Frequent itemset: {A} 1
DCB, sup(DCB) = 2




~ZConditional Pattern Base of DCB

« (1) Build DCB-CPB

= Select prefix-paths of item B from DC-conditional FP-tree

DCB-CPB

Items

sup

{A}

1

-

= Item A is infrequent in DCB-CPB

= A is removed from DCB-CPB
= DCB-CPB is empty

= (2) The search backtracks to DC-CBP

DG

67



= (1) Build DCA-CPB

= Select prefix-paths of item A from DC-conditional FP-tree

DC-CPB

Items

sup

{AB}
1A}
1B}

1
1
1

= (2) The search backtracks to D-CBP

DG

DC-conditional
Header Table

Item

- ¢
{B} |

0 DC-conditional

Frequent itemset:
DCA, sup(DCA) = 2

FP-tree
\

.-¥ B:1

DCA-CPB is empty
(no transactions)

o

68



= (1) Build DB-CPB

= Select prefix-paths of item B from D-conditional FP-tree

D-CPB D-conditional 1} Dclggfchrgcemal
Items |sup Header Table
{BAC} | 1 Item | sup )
{B,A} 1 {A} -
G0 | 1| e -
{A,C} 1 {C}
{A} 1

Frequent itemset:

DB, sup(DB) = 3

69



09°

(1) Build DB-CPB

= Select prefix-paths of item B from D-conditional FP-tree

DB-CPB

Items

sup

1A}

-

DB-conditional
Header Table

Items

sup

1A}

2

1)

A:2

b £ Conditional Pattern Base of DB

DB-conditional
FP-tree

= (2) Recursive invocation of FP-growth on DB-CPB

DG

70



““iConditional Pattern Base of DBA

/\ S
s/
ooo®*
_ g

= (1) Build DBA-CPB

= Select prefix-paths of item A from DB-conditional FP-tree

DB-conditional
DB-CPB Header Table

Items |sup Items |sup DB-conditional
{A} 2 ‘ - FP-tree

_ DBA-CPB is empty
Frequent itemset: (no transactions)

DBA, sup(DBA) = 2 I

= (2) The search backtracks to D-CBP
DG .




<% Conditional Pattern Base of DA
« (1) Build DA-CPB

= Select prefix-paths of item A from D-conditional FP-tree

D-CPB

Items |sup

{BA,C}
{BA}
1B,C}
{AC}

{A}

|—L|—L|_L|_L|—I-

D-conditional
Header Table

0 D-conditional

FP-tree

4—

\

---% Bl

---% C:1

Frequent itemset:
DA, sup(DA) =4

DA-CPB is empty
(no transactions)

: ]

The search ends

72



Frequent itemsets with prefix D

,.//('); Y 3 ‘.\‘;4\

g Frequent itemsets including D and supported
combinations of items B,A,C

Example DB
TID ltems
1 {A,B} itemsets| sup
2 {B,C,D} {D} 5
3 | {AC,D,E} Eg,gi ;1
4 {A,D,E} ,
5 | {AB,C} ‘ iCéD[}; ;v
6 | {AB,C,D} EA,C,D}} :
7 {B,C} C,
8 {A,B,C} {B,C,D}| 2
9 {A,B,D} :

D“B/\G 10| (BCE) minsup>1



Pasy SR
é

%05, 000

= Many other approaches to frequent itemset extraction
= May exploit a different database representation

~Z: Other approaches

= represent the tidset of each item [Zak00]

Horizontal

Data Layout

Items

Vertical Data Layout

- —
5O®NDUNWN KRG

A,B,E
B,C,D
C.E
A,C,D
A,B,C,D
AE
AB
A,B,C
A,C,D
B

A B C D E
1 1 2 2 1
4 2 3 4 3
) 5 4 ) 6
6 4 8 9

4 8 9

8 10

9

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

74



10NS

4
O
i’
-
Q
0p)
),
l
Q.
),
Y
4
@
O
Q.
=
@)
@

= Some itemsets are redundant because they have

identical support as their supersets

TID |A1|A2[A3[A4[A5| A6 | A7| A8| A9|A10[B1|[B2|B3|B4|B5|B6|B7[B8[B9|B10] C1|C2|C3|[ca|[cC5|cC6]|C7]|C8]|C9o[C10

O O0OO0OO0OO0DO0DO0DO0OO0OO dAd -
OO OO0 O0OO0O0O0O0O ™ dd
OO0 O0OO0OO0O0DO0ODO0OO0OO dAd -
OO OO0 O0OO0O0O0O0O ™ dd -
O OO0 O0O0DO0DO0OO0OO dd -
OO OO0 O0OO0OO0O0O0O ™ dd o
O OO0 O0O0DO0DO0O0OO0 -

OCOO0OO0O0O0O0O0O0O oo ]

0000000000111111

\
OO0 00000000 dAdAdAdAd

OO0 00O ddddd OO0OO0OO0OO0O

OO0 0O ddddd OOOO0OO0O

OO0 0O ddddd OO0OO0OO0OO0O

OCO0OO0OO0OO0OdddddOOOO0OO0O

OC OO0 0O ddddd OO0OO0OO0OO0o

OCO0OO0OO0O0OdddddOOOO0OO0O

OC OO0 0O ddcddd OO0OO0OO0O0O

OCO0OO0OO0OO0OdddddOOOO0OO0O

OC OO0 0O ddcddd OO0OO0OO0OO0O

OCO0OO0OO0OO0OdddddO0OOOO0OO0O

A A A A 100000000 O0O0o

oA 100000000 O0O0o

A A A dd0 0000000 O0O0o

oA 1O 00000000 O0o

A A A dd0 0000000 O0O0o

oA O 00000000 O0o

A A A A 400000000 O0O0o

oA O 00000000 O0o

oA A0 0000000 O0O0o

A A1 O 00000000 O0o

oo |w|o|~|o|(o SN2 SN

)

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

O

K

N

10
2
k=1

= Number of frequent itemsets = 3x

75

= A compact representation is needed

DG



An itemset is frequent maximal if none of its immediate supersets
Is frequent

Maximal
ltemsets

Infrequent
ltemsets <+—

DG

76

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




e A
/&%ﬁ el ‘{ﬁ’“:;
=%t Close emse

s An itemset is closed if none of its immediate
supersets has the same support as the itemset

itemset | sup
TID ltems 1A} 4 itemset sup
1 {A.B} {B} S {A.B.C} 2
2 {B,C,D} {C} 3 {A,B,D} 3
3 | {AB,C,D} D} A {A,C,D} 2
4 {A,B,D} (A B} 4 {B,C,D} 3
5 | {AB,C,D} ! {A,B,C,D} 2

{AC}H | 2

{AD} | 3

{B,C} | 3

{BD} | 4

{CD} | 3

DMG From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 77




TID

ltems

ABC

ABCD

BCE

ACDE

oD (w [N

DE

Not supported by _.--=""

any transactions =~ 777U oo =

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

/8



=4 Maximal vs Closed Frequent Itemsets

Closed but
not maximal

Closed and
maximal

# Closed =9

# Maximal = 4

D“B,\G .

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006




Maximal vs Closed Itemsets

Frequent
Itemsets

Closed
Frequent
Itemsets

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

80



P SN
i.: Effect of Support Threshold

= Selection of the appropriate minsup
threshold is not obvious

« If minsup is too high

= itemsets including rare but interesting items may
be lost

example: pieces of jewellery (or other expensive
products)

« If minsup is too low
= it may become computationally very expensive

= the number of frequent itemsets becomes very
large



s,

(4} Interestingness Measures

R O
L0 S “”g‘l\

= A large number of pattern may be extracted
= rank patterns by their interestingness

= Objective measures
= rank patterns based on statistics computed from data

= initial framework [Agr94] only considered support and
confidence
= Other statistical measures available

= Subjective measures

= rank patterns according to user interpretation [Silb98]
= interesting if it contradicts the expectation of a user
= interesting if it is actionable

D“B,\G .



.4} Confidence measure: always reliable?

AV n,'.:‘,_- e
s 00°"

sy SN

= 5000 high school students are given
= 3750 eat cereals
= 3000 play basket
= 2000 eat cereals and play basket

= Rule
play basket = eat cereals
sup = 40%, conf = 66,7%
is misleading because eat cereals has sup 75% (>66,7%)

= Problem caused by

high frequency of basket |not basket [total

rule head cereals 2000 1750 3750

= negative not cereals| 1000 250 1250
correlation total 3000 2000 5000

D“B,\G .



prasy ’%\
{::E’ ‘:" i L oggv:”“.‘ O r re a tI O O r I t
o W me gt oy

7 s NS
R /‘ /
Y

rrA= 1B
P(A,B)

conf(r)

Correlation = P(A)P(B) =

= Statistical independence
= Correlation =1

s Positive correlation
= Correlation > 1

= Negative correlation
= Correlation < 1

DG

sup(B)

84



S SIN

11 1"'%;‘#&
A N ¢
RS 6 /\

o\
) >\
n)
Exa||| Ie
l..‘ .33"'
s

= Association rule

play basket = eat cereals
has corr = 0.89

= negative correlation
= but rule

play basket = not (eat cereals)
has corr = 1,32

85



o

(e ,\z\

A g s 25\ 1
<4 Rule Neagation
g

D ./\
s ) R
~ b

= 5000 high school students are given

= 3750 eat cereals
= 3000 play basket
= 2000 eat cereals and play basket

= Rule

play basket = not(eat cereals)
sup = 1000/5000 = 20%, conf = 1000/3000 = 33,3%
Lift = 33,3%/(1250/5000) = 33.3%/25% = 1,32

basket |not basket |total
cereals 2000 1750 3750
not cereals| 1000 250 1250
total 3000 2000 5000




# | Measure Formmnla
1 | ¢coefficient P(A,B)-_P(AIP(B)
s PUApy DR L Son g B UAgyBa)—maxs PUA) P(5:)
. ; MAXE i B maxq e —maxg ] —maEk 1
2 | Goodman-Kruskal’s {A) : ) (__’) Tomax; PUA,)omaxs P(B)
: P(4,B)P(A,B
3 Ddds ratio (ﬂ] WP(E_,B} . _
, P(A,BP(AB)_P(A,BIP(A,B) _ a—1
4 | Yule'’s @ P(A,B)P(AB){ P(A,B)P(4,B) _ afl
, /' P(A,B)P(AB)—+/P(A,B)P(A,B) _ Ja-1
5 | Yules Y \/P(A,B)P(AB)+/P(A,B)P(A,B) _ vetl
P{4,B)LP(A,B)_P({4)P(B)_P(AP(B)
6 | Kappa {«) 1—P(A}P(B}—P(Z}P(EA i
. 2 Ly P(ALB5) log praypiE 5
7 | Mutual Information (M} | =504, viog P(a; = &, P(B,)log P(E;)
P(B|a - P(B|A
8 | J-Measure {J) max ( P(4, B) log( 554 ) + P(AB) log( Z22),
P(A|B - P(A|B
P(A, B)log(5) + P(AB) log( 520 )
9 | Gini index {G) max (P(fl) [P(B|A)" + P(B|A)'] + P(A)[P(B[A)* + P(B|4)"]
—P(B)* - P{B)’,
P(B)[P(A|B)" + P(A|B)"] + P(B)[P{A|B)" + P(4|B)"]
—P(4)* - P(A)")
10 | Support (s} P{A, B)
11 | Confidence {¢) max{P{B|A)}), P{A|B))
NP{A,B)t1 NP{A,B)41
12 | Laplace {L) max ( ¥rtalebl NELADL )
. P(AIP(B) P(B)P(A)
13 | Conviction (V) max | =L T pinay )
P(4,B)
14 | Interest {I) Pfﬁ’ﬂ‘g
15 | cosine {(15) P(A;P(B}
16 | Piatetsky-Shapiro’s (PS) | P{A,B) — P{A)P{B)
17 | Certainty factor (F) max ( 2EIA-E0) PAIBLE(A))
18 | Added Value {AV) max{P{B|A) — P{B), P{A|B) — P{A))
. P(A,B)}+P(AB) 1—P{AP(BI—P(A\P(B)
19 | Collective strength {S) P(A)P(B()+P§E)P[E) - P(A.B) _P(A5)
P(4,B
20 | Jaccard (() P(A) L P(B)—P(A,B)
21 | Klosgen {K) + P{A, By max{P{B|A}) — P(B), P{A|B) — P(A))




	Slide 1: Association Rules Fundamentals
	Slide 2: Association rules
	Slide 3: Association rule mining
	Slide 4: Transactional formats
	Slide 5: Transactional formats
	Slide 6: Transactional formats
	Slide 7: Definitions
	Slide 8: Rule quality metrics
	Slide 9: Rule quality metrics: example
	Slide 10: Association rule extraction
	Slide 11: Association rule extraction
	Slide 12: Association rule extraction
	Slide 13: Frequent Itemset Generation
	Slide 14: Frequent Itemset Generation
	Slide 15: Improving Efficiency
	Slide 16: The Apriori Principle
	Slide 17: The Apriori Principle
	Slide 18: Apriori Algorithm [Agr94]
	Slide 19: Apriori Algorithm [Agr94]
	Slide 20: Generating Candidates
	Slide 21: Apriori Algorithm: Example
	Slide 22: Generate candidate 1-itemsets
	Slide 23: Prune infrequent candidates in C1
	Slide 24: Generate candidates from L1
	Slide 25: Count support for candidates in C2
	Slide 26: Prune infrequent candidates in C2 
	Slide 27: Generate candidates from L2
	Slide 28: Apply Apriori principle on C3
	Slide 29: Count support for candidates in C3
	Slide 30: Prune infrequent candidates in C3
	Slide 31: Generate candidates from L3
	Slide 32: Apply Apriori principle on C4
	Slide 33: Count support for candidates in C4
	Slide 34: Prune infrequent candidates in C4
	Slide 35: Final set of frequent itemsets
	Slide 36: Counting Support of Candidates
	Slide 37: Performance Issues in Apriori
	Slide 38: Factors Affecting Performance
	Slide 39: Improving Apriori Efficiency
	Slide 40: Improving Apriori Efficiency
	Slide 41: FP-growth Algorithm [Han00]
	Slide 42: FP-tree construction
	Slide 43: FP-tree construction
	Slide 44: FP-tree construction
	Slide 45: FP-tree construction
	Slide 46: FP-tree construction
	Slide 47: FP-tree construction
	Slide 48: FP-tree construction
	Slide 49: FP-tree construction
	Slide 50: FP-tree construction
	Slide 51: FP-tree construction
	Slide 52: FP-tree construction
	Slide 53: FP-tree construction
	Slide 54: Final FP-tree
	Slide 55: FP-growth Algorithm
	Slide 56: Example
	Slide 57: Conditional Pattern Base of D
	Slide 58: Conditional Pattern Base of D
	Slide 59: Conditional Pattern Base of D
	Slide 60: Conditional Pattern Base of D
	Slide 61: Conditional Pattern Base of D
	Slide 62: Conditional Pattern Base of D
	Slide 63: Conditional Pattern Base of D
	Slide 64: Conditional Pattern Base of DC
	Slide 65: Conditional Pattern Base of DC
	Slide 66: Conditional Pattern Base of DCB
	Slide 67: Conditional Pattern Base of DCB
	Slide 68: Conditional Pattern Base of DCA
	Slide 69: Conditional Pattern Base of DB
	Slide 70: Conditional Pattern Base of DB
	Slide 71: Conditional Pattern Base of DBA
	Slide 72: Conditional Pattern Base of DA
	Slide 73: Frequent itemsets with prefix D
	Slide 74: Other approaches
	Slide 75: Compact Representations
	Slide 76: Maximal Frequent Itemset
	Slide 77: Closed Itemset
	Slide 78: Maximal vs Closed Itemsets
	Slide 79: Maximal vs Closed Frequent Itemsets
	Slide 80: Maximal vs Closed Itemsets
	Slide 81: Effect of Support Threshold
	Slide 82: Interestingness Measures
	Slide 83: Confidence measure: always reliable?
	Slide 84: Correlation or lift
	Slide 85: Example
	Slide 86: Rule Neagation
	Slide 87

