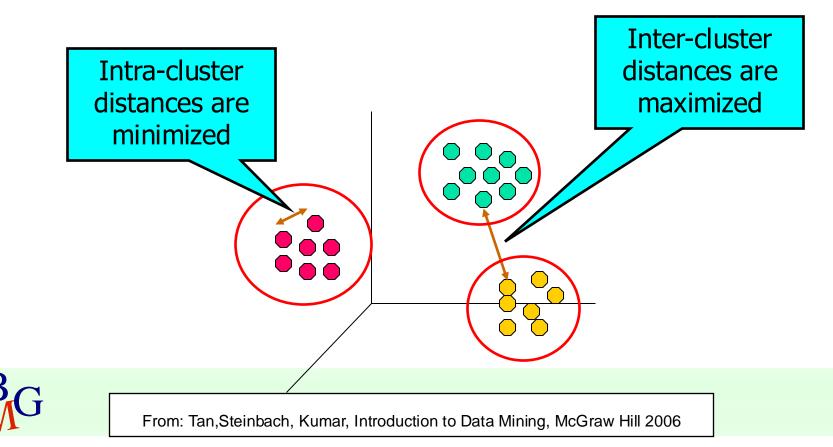
Clustering fundamentals

Elena Baralis, Tania Cerquitelli Politecnico di Torino

What is Cluster Analysis?

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



Applications of Cluster Analysis

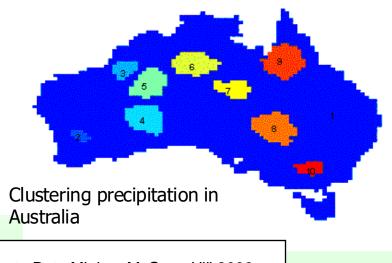
Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Summarization

 Reduce the size of large data sets





Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters

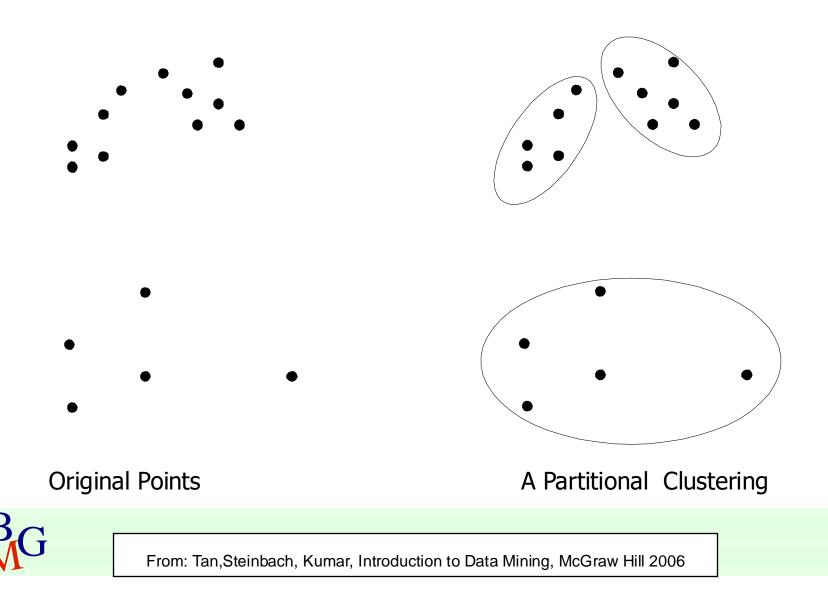
Partitional Clustering

 A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

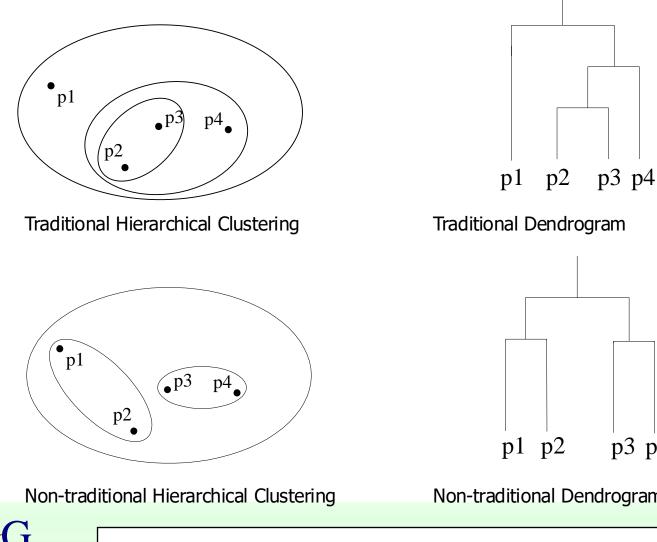
Hierarchical clustering

A set of nested clusters organized as a hierarchical tree

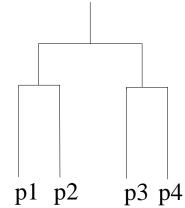
Partitional Clustering



Hierarchical Clustering



Traditional Dendrogram



Non-traditional Dendrogram

Other Distinctions Between Sets of Clusters

Exclusive versus non-exclusive

In non-exclusive clustering, points may belong to multiple clusters.

Fuzzy versus non-fuzzy

- In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
- Weights must sum to 1
- Probabilistic clustering has similar characteristics

Partial versus complete

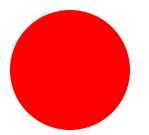
- In some cases, we only want to cluster some of the data
- Heterogeneous versus homogeneous
 - Cluster of widely different sizes, shapes, and densities

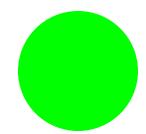
Types of Clusters

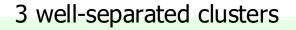
- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual
- Described by an Objective Function

Well-Separated Clusters:

 A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.







Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

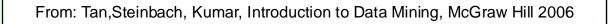
4 center-based clusters

Types of Clusters: Contiguity-Based

Contiguous Cluster (Nearest neighbor or Transitive)

 A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

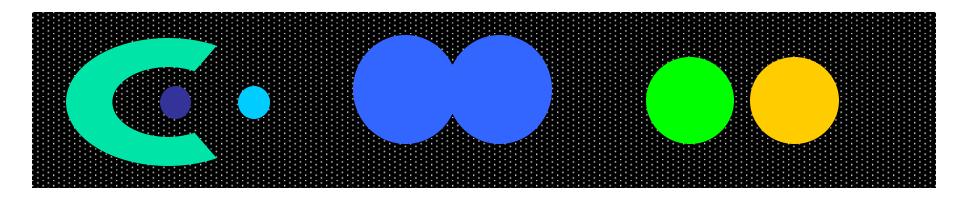
8 contiguous clusters



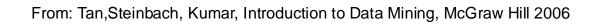
Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.



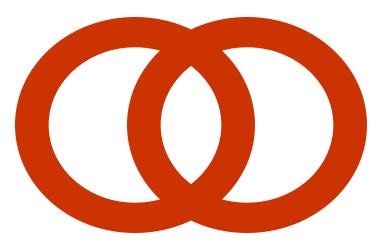
6 density-based clusters



Types of Clusters: Conceptual Clusters

Shared Property or Conceptual Clusters

 Finds clusters that share some common property or represent a particular concept.

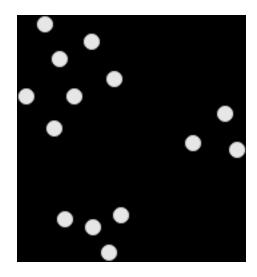


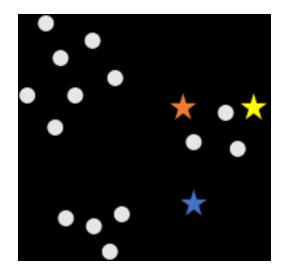
2 Overlapping Circles

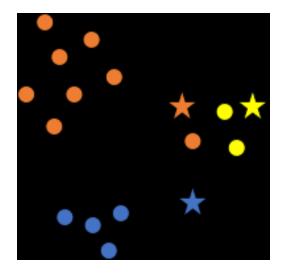
- K-means and its variants
- Hierarchical clustering
- Density-based clustering

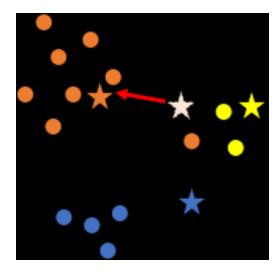
K-means Clustering

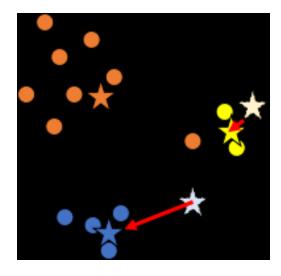
- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

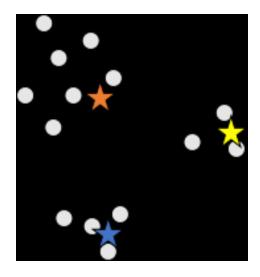


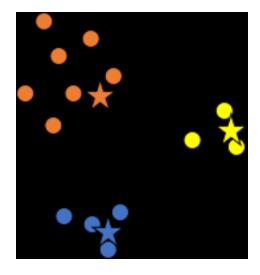


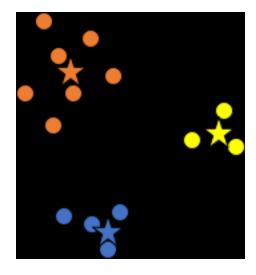








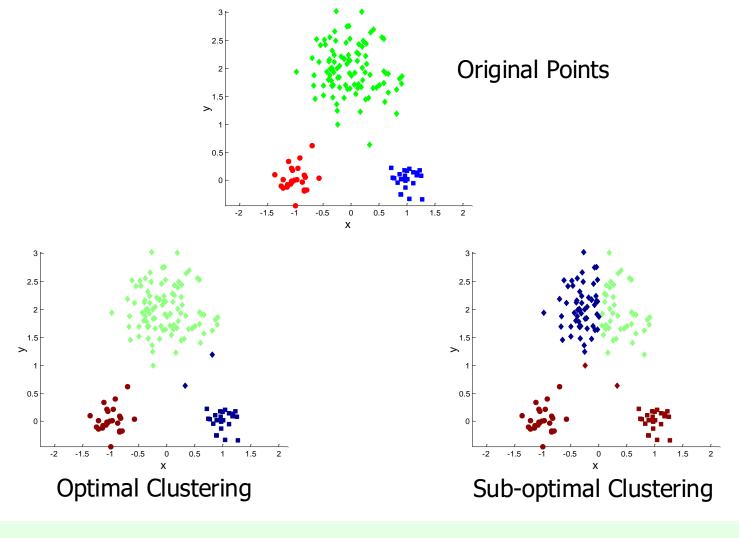


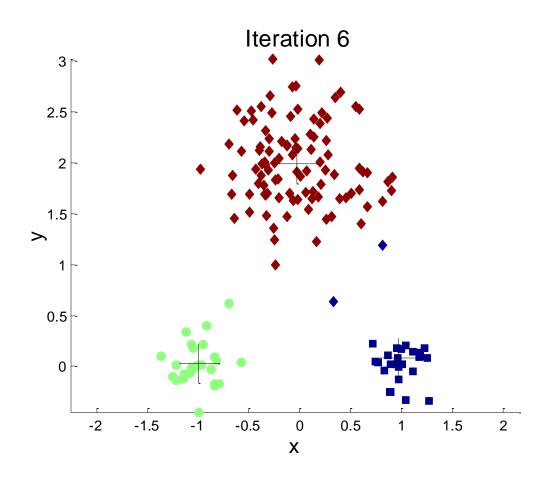


K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to `Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 - I = number of iterations, d = number of attributes

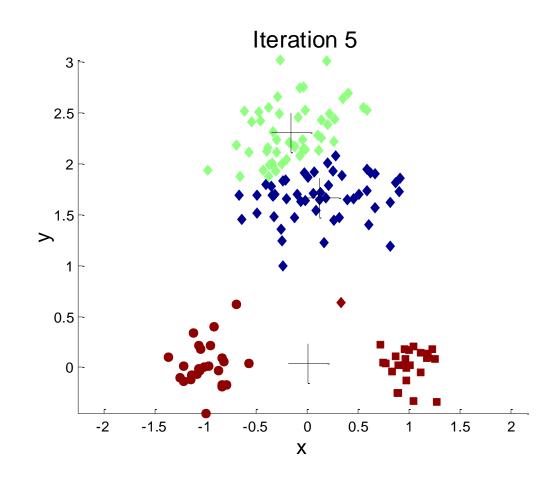
Two different K-means Clusterings

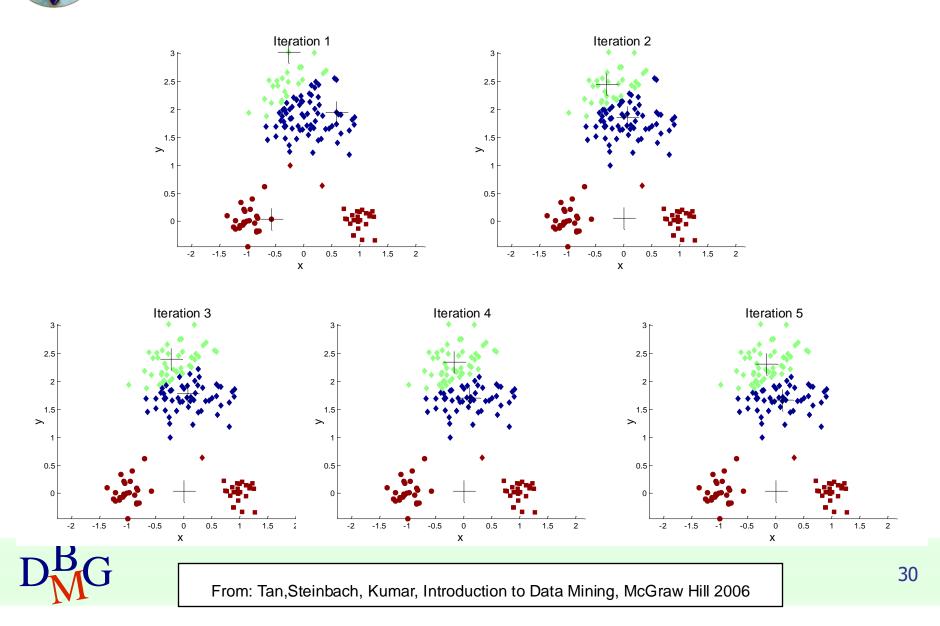




 $D_{M}^{B}G$







Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

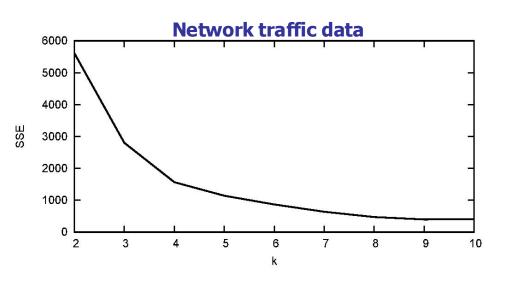
$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i
 - can show that *m_i* corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
 - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

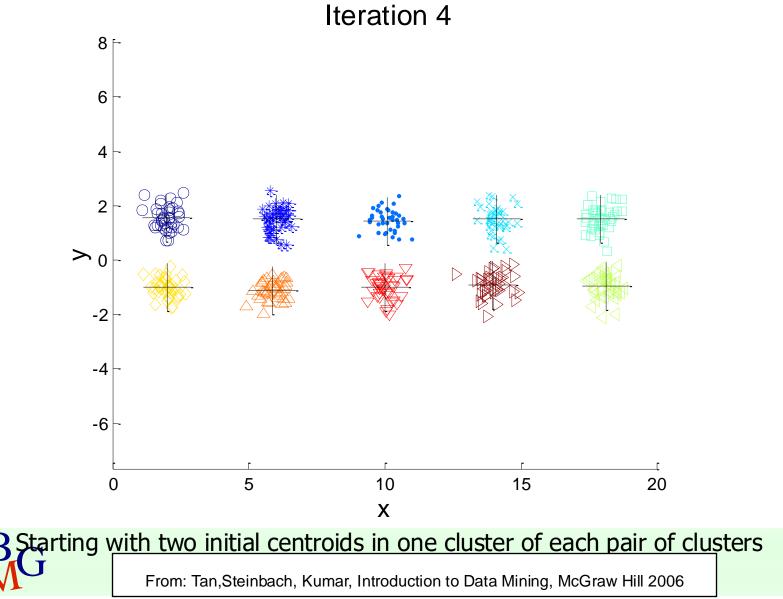
K-means parameter setting

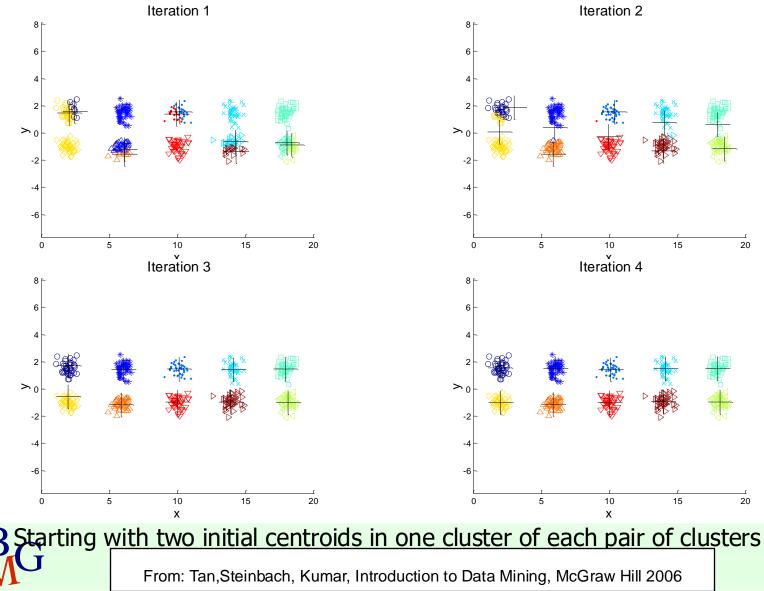
Elbow graph (Knee approach)

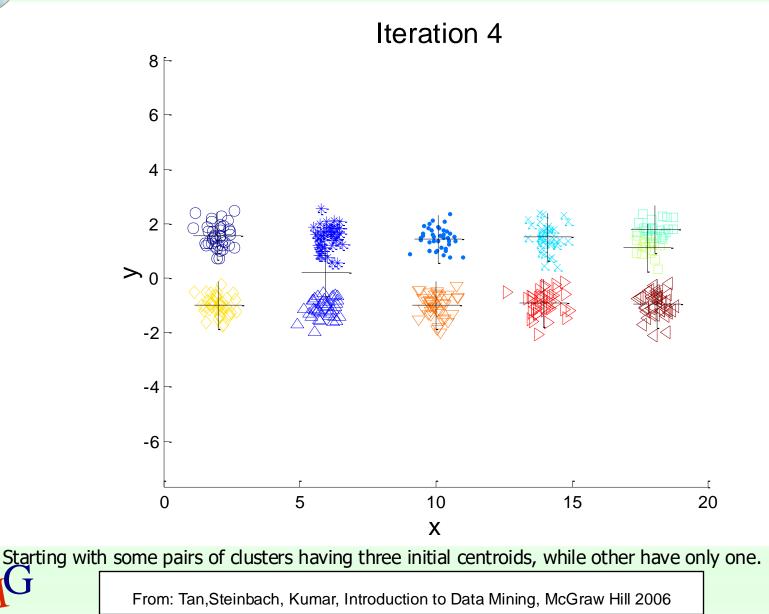
- Plotting the quality measure trend (e.g., SSE) against K
- Choosing the value of K
 - the gain from adding a centroid is negligible
 - The reduction of the quality measure is not interesting anymore

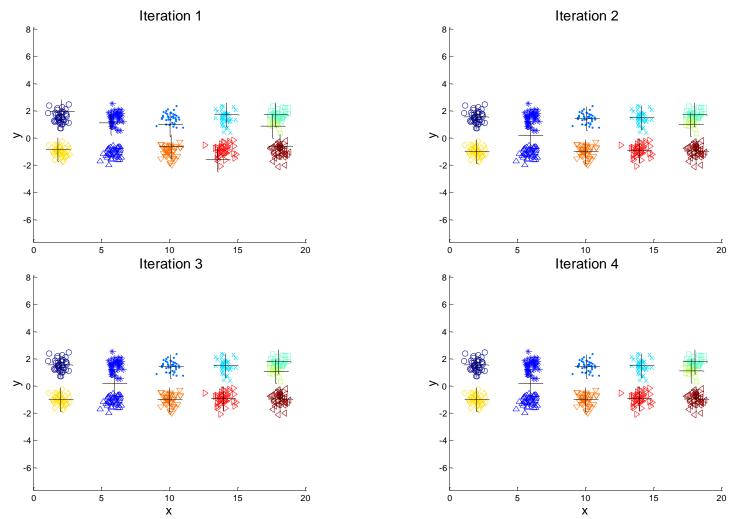


Medical records









B Starting with some pairs of clusters having three initial centroids, while other have only one.

Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters
- Several strategies
 - Choose the point that contributes most to SSE
 - Choose a point from the cluster with the highest SSE
 - If there are several empty clusters, the above can be repeated several times.

Pre-processing and Post-processing

Pre-processing

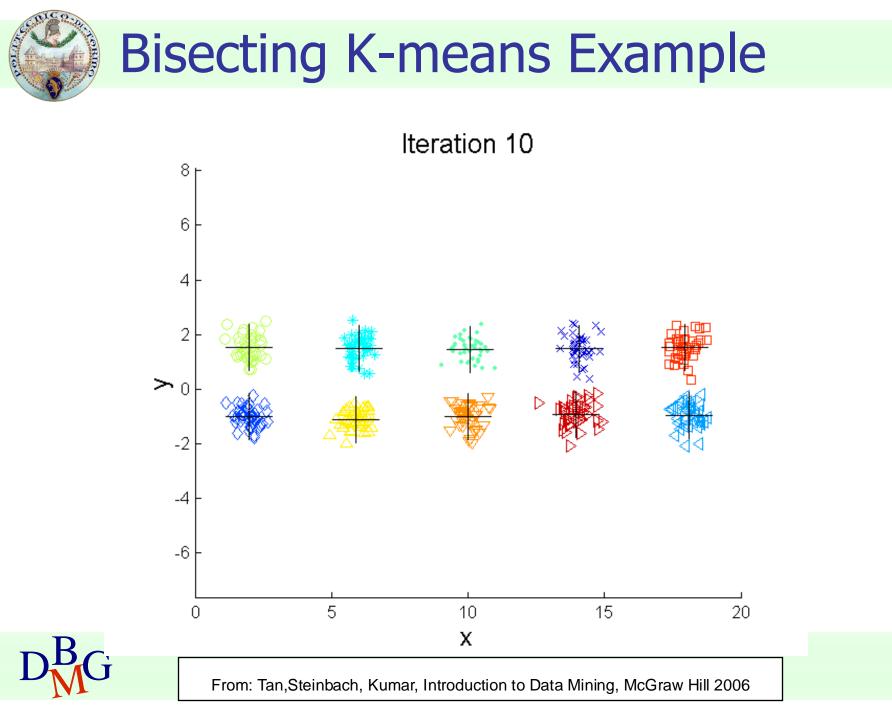
- Normalize the data
- Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE
 - Can use these steps during the clustering process

Bisecting K-means

Bisecting K-means algorithm

 Variant of K-means that can produce a partitional or a hierarchical clustering

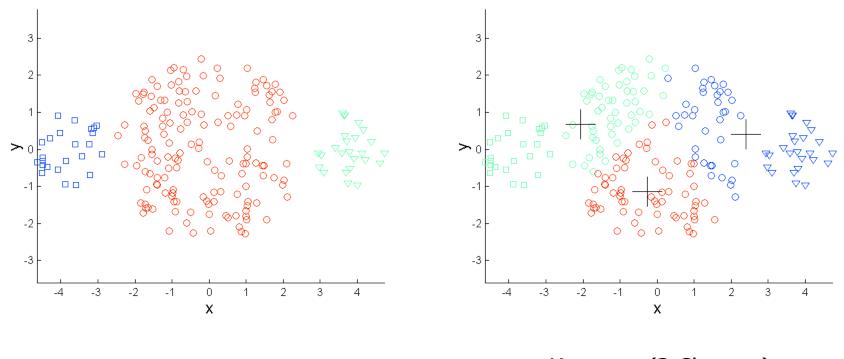
- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters
- 4: for i = 1 to number_of_iterations do
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters



Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.

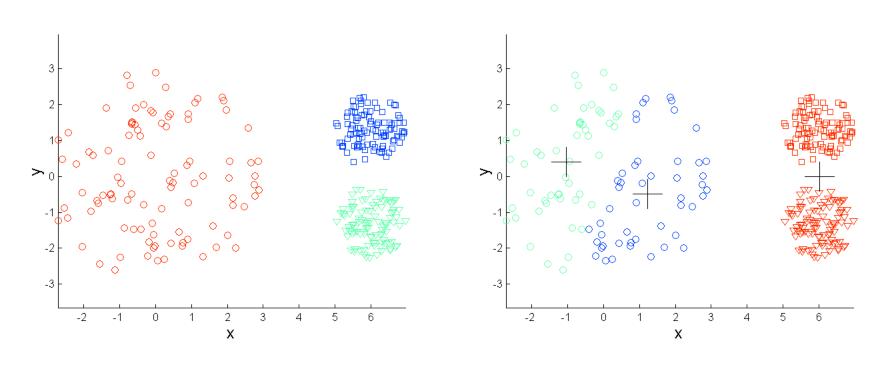
Limitations of K-means: Differing Sizes



Original Points

K-means (3 Clusters)

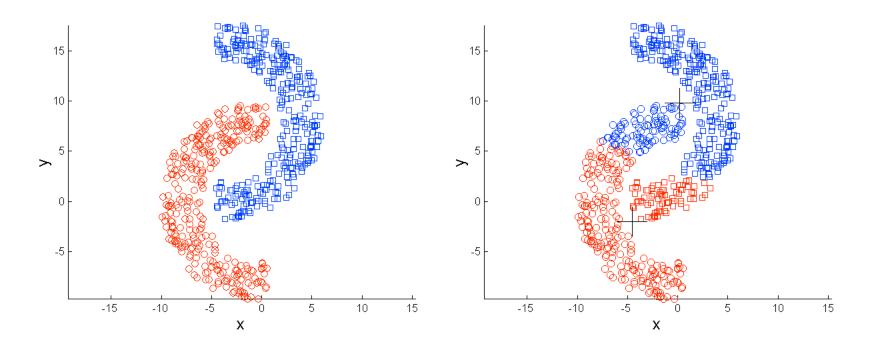
Limitations of K-means: Differing Density



Original Points

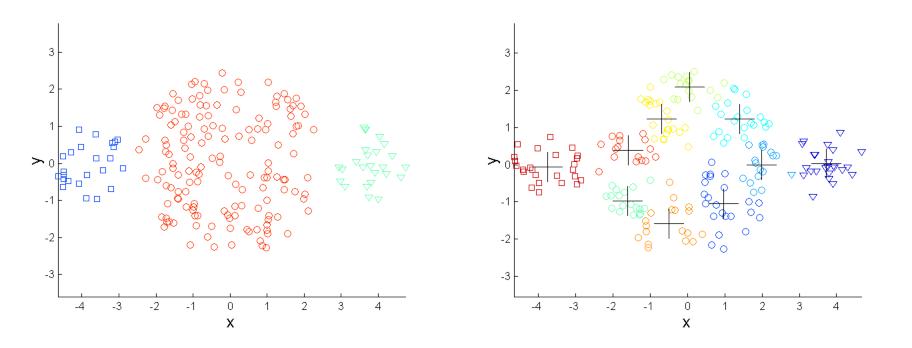
K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes



Original Points

K-means (2 Clusters)



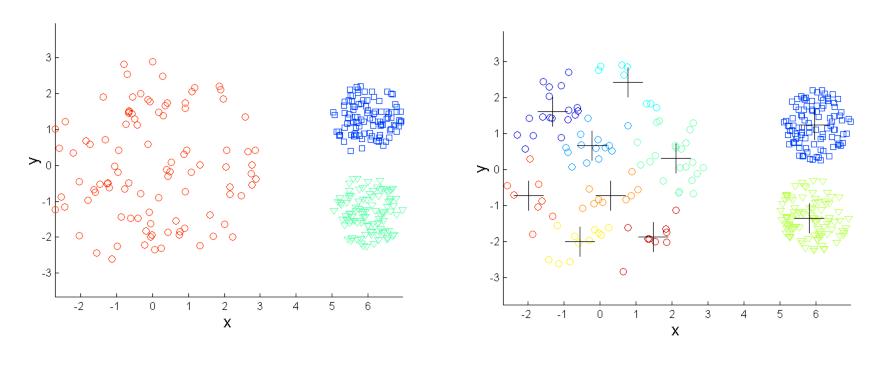
Original Points

K-means Clusters

One solution is to use many clusters.

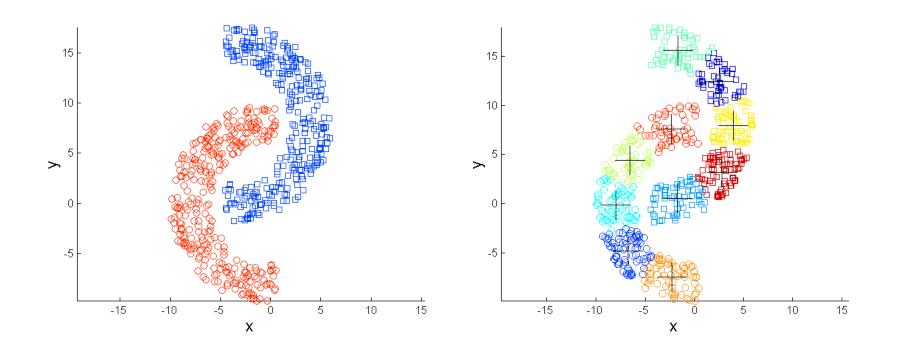
Find parts of clusters, but need to put together.

Overcoming K-means Limitations



Original Points

K-means Clusters

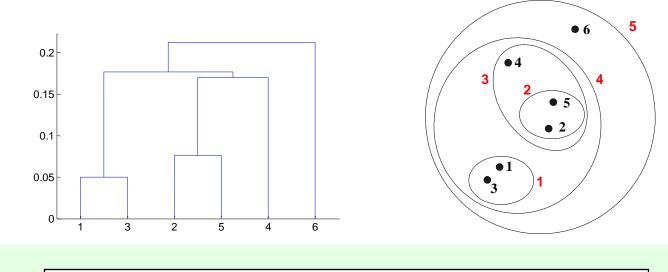


Original Points

K-means Clusters

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits



Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by `cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

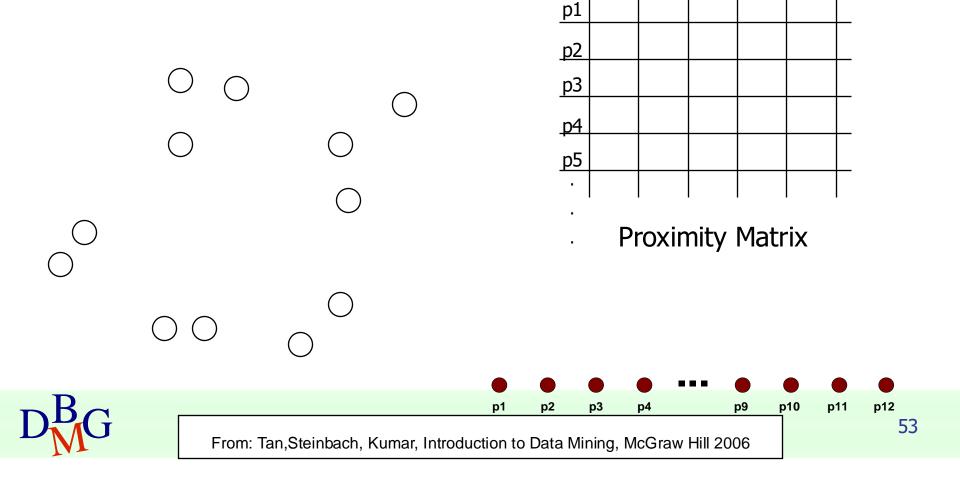
- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. **Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

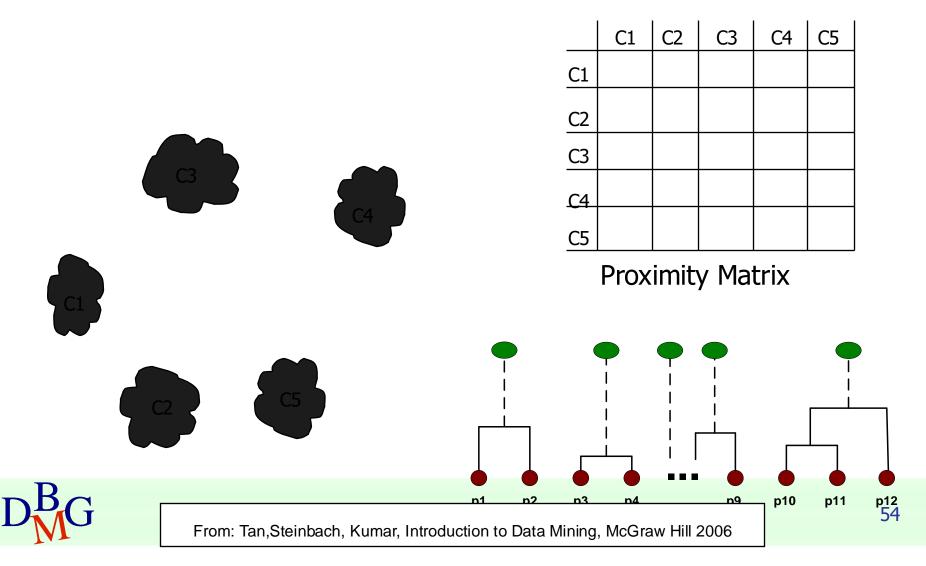
Starting Situation

Start with clusters of individual points and a proximity matrix p1 p2 p3 p4 p5 p1



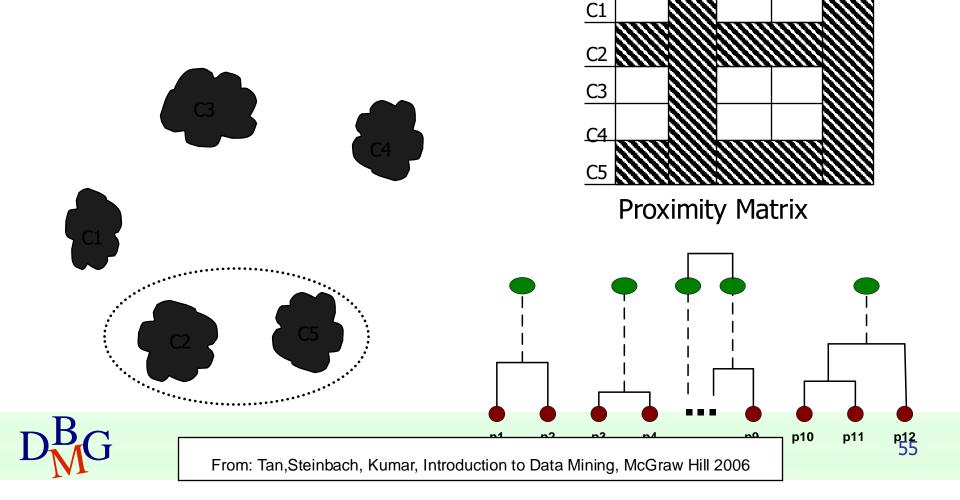
Intermediate Situation

• After some merging steps, we have some clusters

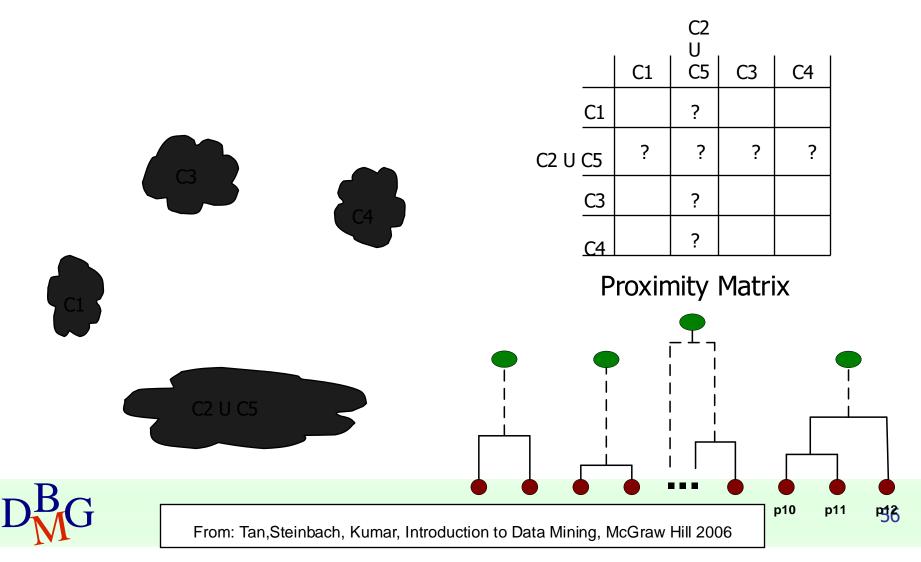


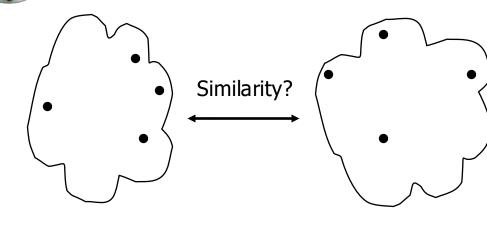
We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

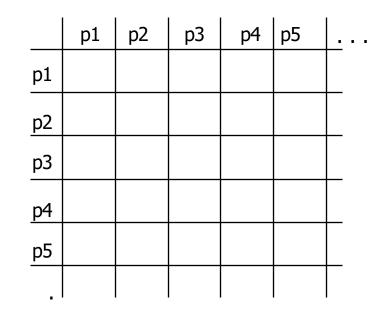
 | c1 | c2 | c3 | c4 | c5



The question is "How do we update the proximity matrix?"

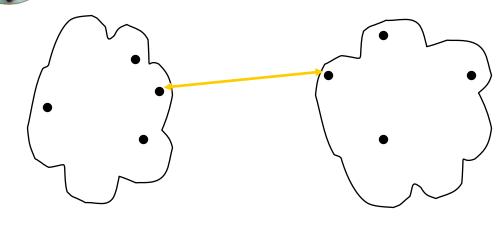


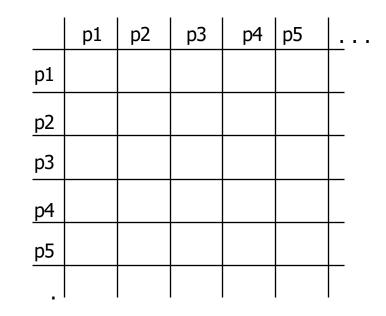




- D MIN
- D MAX
- Group Average
- Distance Between Centroids

- Proximity Matrix
- Other methods driven by an objective function
 - Ward's Method uses squared error

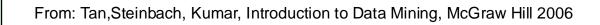


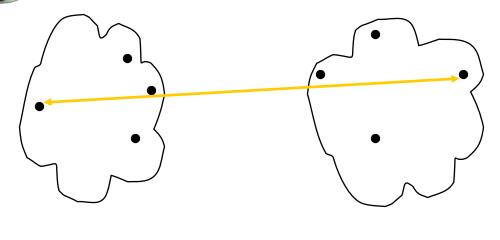


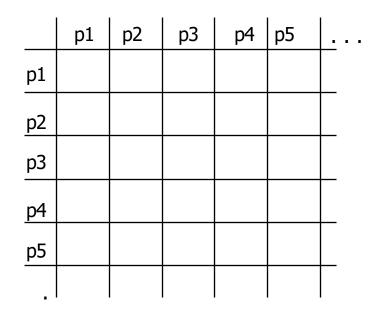
D MIN

- □ MAX
- Group Average
- Distance Between Centroids

- Proximity Matrix
- Other methods driven by an objective function
 - Ward's Method uses squared error

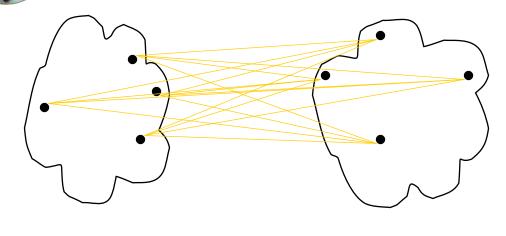






- D MIN
- D MAX
- Group Average
- Distance Between Centroids

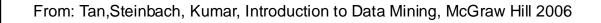
- Proximity Matrix
- Other methods driven by an objective function
 - Ward's Method uses squared error

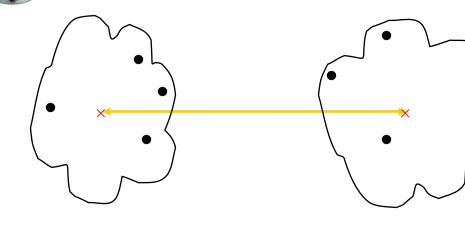


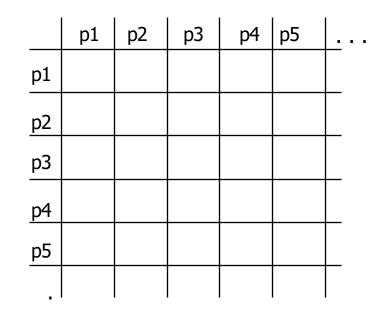
	p1	p2	р3	p4	р5	<u> </u>
p1						
p2						
<u>р2</u> р3						
<u>р4</u> р5						

- D MIN
- MAX
- Group Average
- Distance Between Centroids

- Proximity Matrix
- Other methods driven by an objective function
 - Ward's Method uses squared error







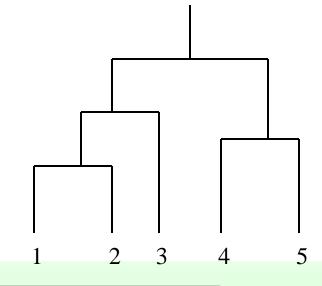
- D MIN
- □ MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Proximity Matrix

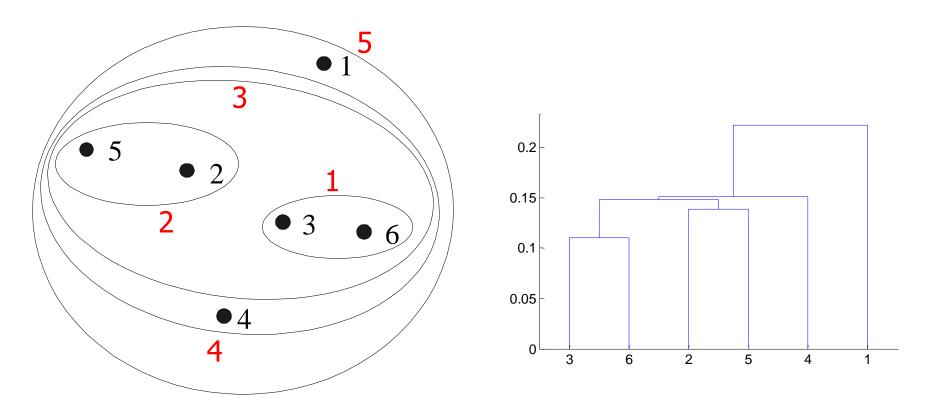
Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	11				
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00



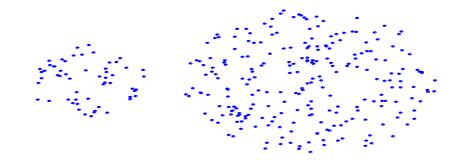
Hierarchical Clustering: MIN

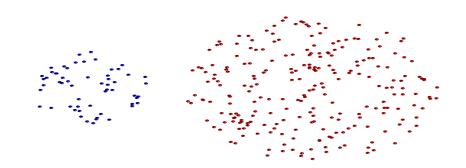


Nested Clusters

Dendrogram

Strength of MIN





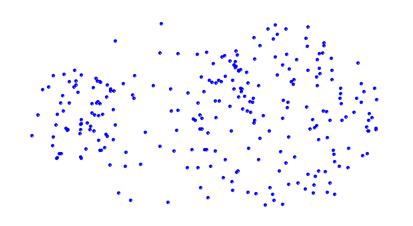
Original Points

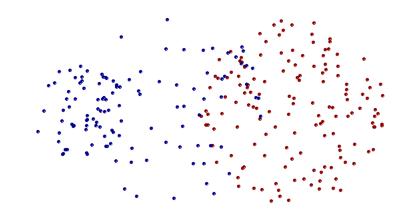
Two Clusters

• Can handle non-elliptical shapes

 $D_{M}^{B}G$

Limitations of MIN



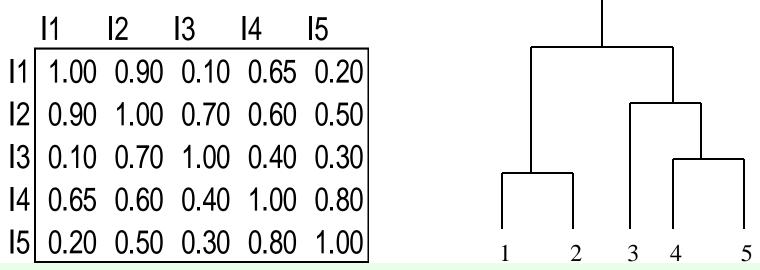


Original Points

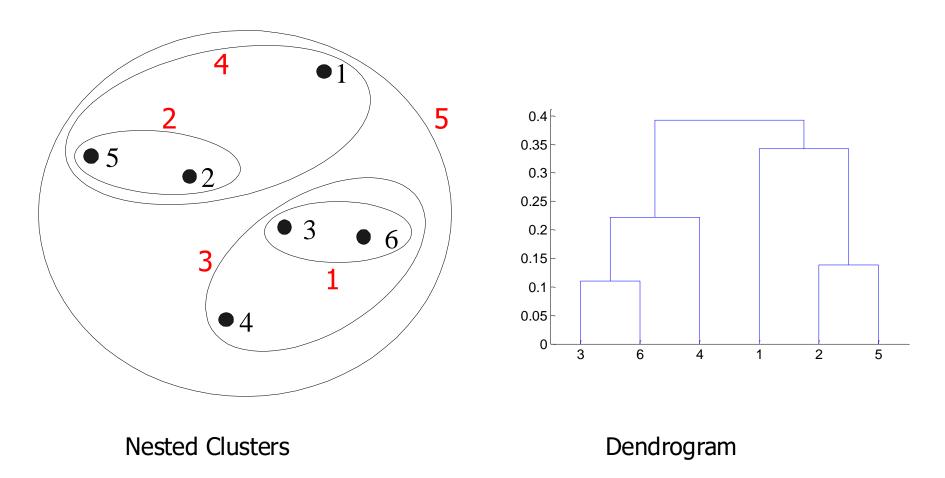
Two Clusters

• Sensitive to noise and outliers

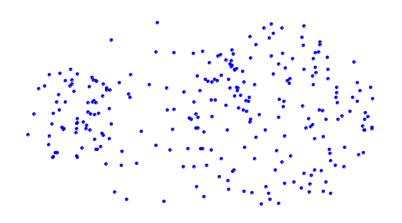
- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

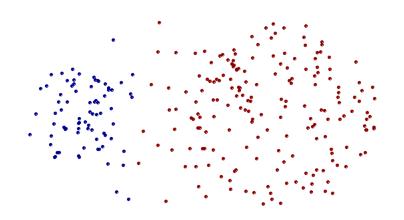


Hierarchical Clustering: MAX



Strength of MAX



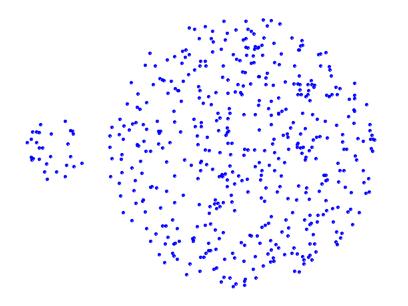


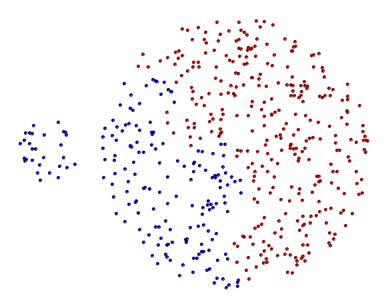
Original Points

Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX





Original Points

Two Clusters

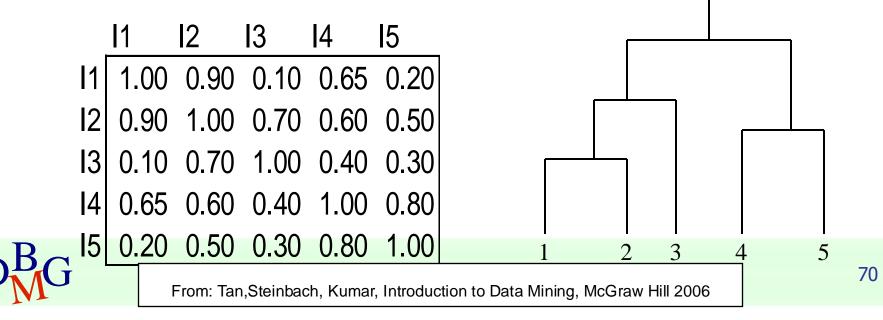
- •Tends to break large clusters
- •Biased towards globular clusters

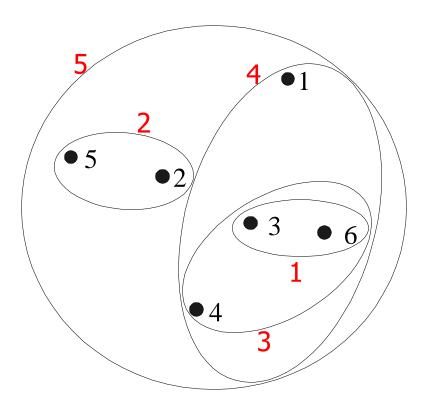
Cluster Similarity: Group Average

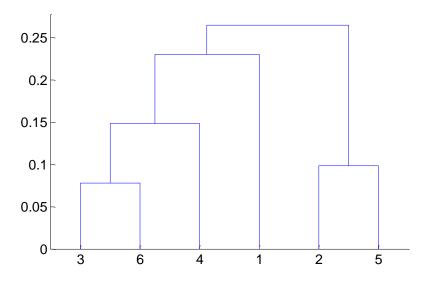
 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}}{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} | * | Cluster_{i} | *$$

 Need to use average connectivity for scalability since total proximity favors large clusters





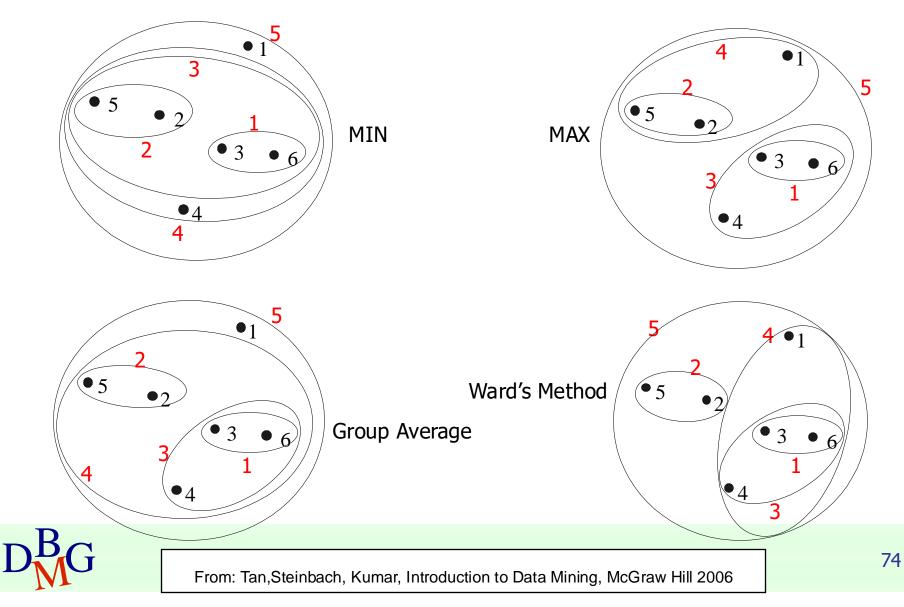


Nested Clusters

Dendrogram

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
 - Limitations
 - Biased towards globular clusters

Hierarchical Clustering: Comparison



- O(N²) space since it uses the proximity matrix.
 - N is the number of points.

O(N³) time in many cases

- There are N steps and at each step the size, N², proximity matrix must be updated and searched
- Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes

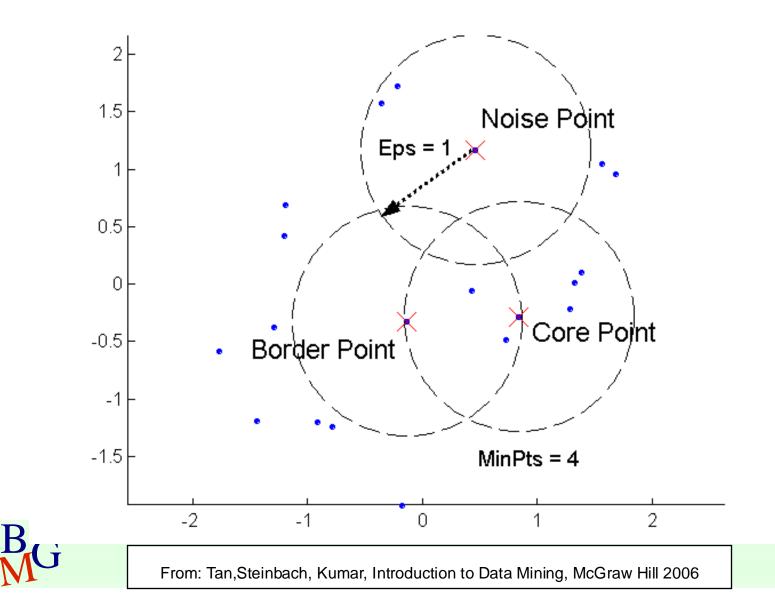
Breaking large clusters

DBSCAN

DBSCAN is a density-based algorithm

- Density = number of points within a specified radius (Eps)
- A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
- A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points



78

DBSCAN Algorithm

Eliminate noise points

Perform clustering on the remaining points

 $current_cluster_label \gets 1$

 $\mathbf{for} \ \mathrm{all} \ \mathrm{core} \ \mathrm{points} \ \mathbf{do}$

 ${\bf if}$ the core point has no cluster label ${\bf then}$

 $current_cluster_label \gets current_cluster_label + 1$

Label the current core point with cluster label $current_cluster_label$ end if

for all points in the *Eps*-neighborhood, except i^{th} the point itself do if the point does not have a cluster label then

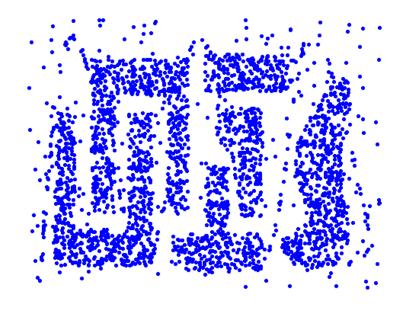
Label the point with cluster label *current_cluster_label*

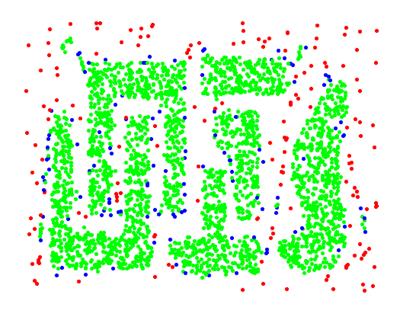
end if

end for

end f<u>or</u>

DBSCAN: Core, Border, and Noise Points



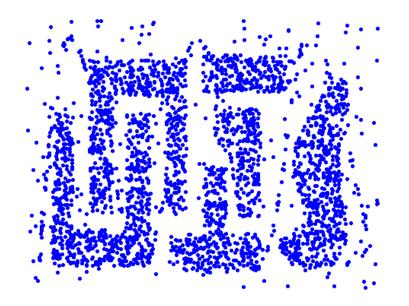


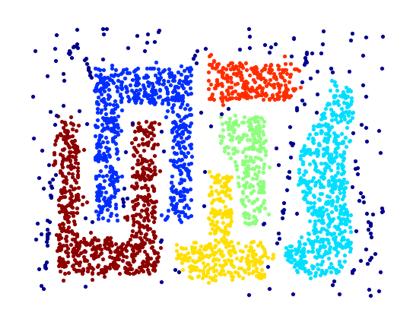
Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well



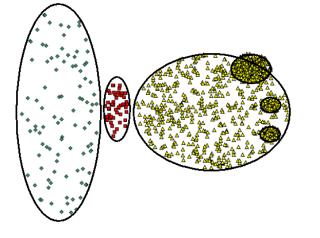


Original Points

Clusters

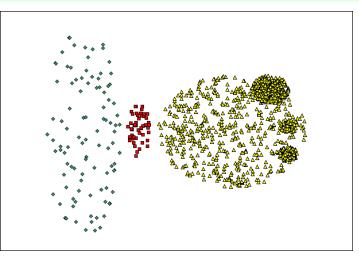
- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

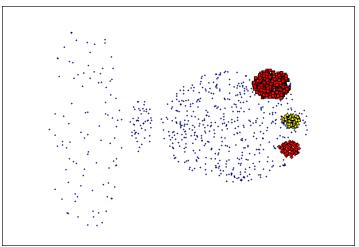


Original Points

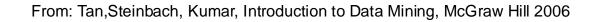
- Varying densities
- High-dimensional data



(MinPts=4, Eps=9.75).

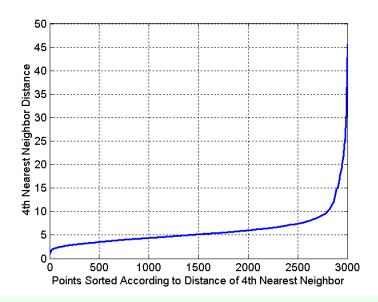


(MinPts=4, Eps=9.62)



DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor



Measures of Cluster Validity

- The validation of clustering structures is the most difficult task
- To evaluate the "goodness" of the resulting clusters, some numerical measures can be exploited
- Numerical measures are classified into two main classes
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.
 - e.g., entropy, purity
 - Internal Index: Used to measure the goodness of a clustering structure *without* respect to external information.
 - e.g., Sum of Squared Error (SSE), cluster cohesion, cluster separation, Rand-Index, adjusted rand-index, Silhouette index

Internal Measures: Cohesion and Separation

 Cluster Cohesion: Measures how closely related are objects in a cluster

Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

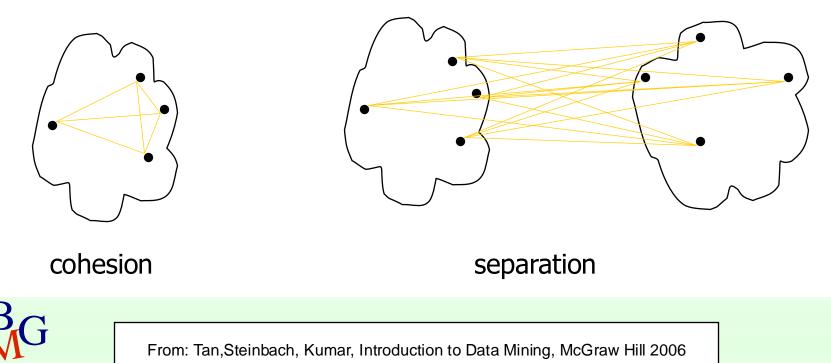
 Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters

 Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_i| (m - m_i)^2$$

Internal Measures: Cohesion and Separation

- A proximity graph based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.



Evaluating cluster quality: Silhouette

- To ease the interpretation and validation of consistency within clusters of data
 - a succinct measure to evaluate how well each object lies within its cluster
- For each object *i*
 - a(i): the average dissimilarity of i with all other data within the same cluster (the smaller the value, the better the assignment)
 - b(i): is the lowest average dissimilarity of i to any other cluster, of which
 i is not a member

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$s(i) = \begin{cases} 1 - a(i) / b(i), & a(i) < b(i) \\ 0, & a(i) = b(i) \\ b(i) / a(i) - 1 & a(i) > b(i) \end{cases}$$

- The average s(i) over all data of the dataset measures how appropriately the data has been clustered
- The average s(i) over all data of a cluster measures how tightly grouped all the data in the cluster are

Final Comment on Cluster Validity

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes

