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Logical design 

Primary keys are underlined. 

 

Facts 
SURFACE (storehouseID, timeID, m2free, m2tot) 

PRODUCTS (storehouseID, timeID, typeID, totNumber, totValue) 

 

Dimensions 
TIME (timeID, date, month, trimester, 4month-period, semester, year)   shared both facts 

TYPES (typeID, type, category)        only for Products fact 

STOREHOUSES (storehouseID, storehouse, city, province, region)    shared both facts 

Query A 
select 

 storehouse, date, sum(totValue), 

 avg( sum(totValue) ) over (partition by storehouse order by date range between interval ‘6’ day preceding and current row) 

from 

 products p, storehouses sh, time t 

where 

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and 

 t.trimester=1/2003 and sh.city=’Turin’ 

group by 

 storehouseID, storehouse, date; 

 

Card: 5 x (30 x 3) = 450 << 7300k  a materialized view on this query is convenient. 

Removing the constraints on trimester and city, the view would be useful to answer query d and e too. 

 

NB: averaging the daily total value over the last week could be done using the sum(sum(totValue)/7) expression, which handles 

missing days as if their totValue were 0, while the proposed solution fills missing values with the week average; furthermore note 

that totValue is a level measure, thus there should be no missing values in the data warehouse. 

Query B 
select 

 city, date, 

 sum(m2free)/sum(m2tot)*100, 

 rank() over (order by sum(m2free)/sum(m2tot) asc) 

from 

 surface s, storehouses sh, time t 

where 

 s.storehouseID=sh.storehouseID and s.timeID=t.timeID and t.year=2004 

group by 

 city, date; 

 

Card: 90 x 365 = 32850 ≈ 73000  a materialized view on this query is NOT convenient. 

Query C 
select 

 storehouse, date, (m2free/m2tot)*100, 

from 

 products p, storehouses sh, time t 

where 

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and 

 t.month>=1/2004 and t.month<=6/2004 

group by 

 storehouseID, storehouse, date; 

 

Card: 100 x (30 x 6) = 18000 ≈ 73000  a materialized view on this query is NOT convenient. 

 

 



Query D 
select 

 storehouse, month, 

 sum(totValue)/count(distinct date) 

from 

 products p, storehouses sh, time t 

where 

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and t.year=2003 

group by 

 storehouseID, storehouse, month; 

 

Alternative solution: 

select distinct 

 storehouse, month, 

 avg( sum(totValue) ) over (partition by storehouse, month) 

from 

 products p, storehouses sh, time t 

where 

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and t.year=2003 

group by 

 storehouseID, storehouse, date, month; 

 

Card: 100 x 12 = 1200 << 7300k  a materialized view on this query is convenient and it helps to answer query e too. 

 

NB: the DISTINCT command does not remove rows with the same storehouse; it removes duplicate rows considering all attribute 

values of each row. 

Query E 
select  

 region, sum(totValue)/count(distinct date) 

from 

 products p, storehouses sh, time t 

where 

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and t.year=2003 

group by 

 region; 

 

Alternative solution: 

select distinct 

 region, avg(sum(totValue)) over (partition by region) 

from 

 products p, storehouses sh, time t 

where 

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and t.year=2003 

group by 

 region, date; 

 

Card: 40 << 7300k  a materialized view on this query is convenient. 

Query F 
select distinct 

 region, month, 

 avg(sum(m2free)/sum(m2tot)*100) over (partition by region, month) 

from 

 surface s, storehouses sh, time t 

where 

 s.storehouseID=sh.storehouseID and s.timeID=t.timeID and t.year=2004 

group by 

 region, month, date; 

 

Card: 40 x 12 = 480 << 7300k  a materialized view on this query is convenient. 

 

 


