

Database Management Systems

Politecnico di Torino - School of Information Engineering

Master of Science in Computer Engineering

Conceptual design

Total number

Total value

PRODUCTS

month

date

4-month-period

year

trimester

semester

storehouse

city

province

region
type

category

Number of free m
2

Number of total m
2

SURFACE

month

date

4-month-period

year

trimester

semester

storehouse

city

province

region

Logical design

Primary keys are underlined.

Facts
SURFACE (storehouseID, timeID, m2free, m2tot)

PRODUCTS (storehouseID, timeID, typeID, totNumber, totValue)

Dimensions
TIME (timeID, date, month, trimester, 4month-period, semester, year)  shared both facts

TYPES (typeID, type, category)  only for Products fact

STOREHOUSES (storehouseID, storehouse, city, province, region)  shared both facts

Query A
select

 storehouse, date, sum(totValue),

 avg(sum(totValue)) over (partition by storehouse order by date range between interval ‘6’ day preceding and current row)

from

 products p, storehouses sh, time t

where

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and

 t.trimester=1/2003 and sh.city=’Turin’

group by

 storehouseID, storehouse, date;

Card: 5 x (30 x 3) = 450 << 7300k  a materialized view on this query is convenient.

Removing the constraints on trimester and city, the view would be useful to answer query d and e too.

NB: averaging the daily total value over the last week could be done using the sum(sum(totValue)/7) expression, which handles

missing days as if their totValue were 0, while the proposed solution fills missing values with the week average; furthermore note

that totValue is a level measure, thus there should be no missing values in the data warehouse.

Query B
select

 city, date,

 sum(m2free)/sum(m2tot)*100,

 rank() over (order by sum(m2free)/sum(m2tot) asc)

from

 surface s, storehouses sh, time t

where

 s.storehouseID=sh.storehouseID and s.timeID=t.timeID and t.year=2004

group by

 city, date;

Card: 90 x 365 = 32850 ≈ 73000  a materialized view on this query is NOT convenient.

Query C
select

 storehouse, date, (m2free/m2tot)*100,

from

 products p, storehouses sh, time t

where

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and

 t.month>=1/2004 and t.month<=6/2004

group by

 storehouseID, storehouse, date;

Card: 100 x (30 x 6) = 18000 ≈ 73000  a materialized view on this query is NOT convenient.

Query D
select

 storehouse, month,

 sum(totValue)/count(distinct date)

from

 products p, storehouses sh, time t

where

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and t.year=2003

group by

 storehouseID, storehouse, month;

Alternative solution:

select distinct

 storehouse, month,

 avg(sum(totValue)) over (partition by storehouse, month)

from

 products p, storehouses sh, time t

where

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and t.year=2003

group by

 storehouseID, storehouse, date, month;

Card: 100 x 12 = 1200 << 7300k  a materialized view on this query is convenient and it helps to answer query e too.

NB: the DISTINCT command does not remove rows with the same storehouse; it removes duplicate rows considering all attribute

values of each row.

Query E
select

 region, sum(totValue)/count(distinct date)

from

 products p, storehouses sh, time t

where

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and t.year=2003

group by

 region;

Alternative solution:

select distinct

 region, avg(sum(totValue)) over (partition by region)

from

 products p, storehouses sh, time t

where

 p.storehouseID=sh.storehouseID and p.timeID=t.timeID and t.year=2003

group by

 region, date;

Card: 40 << 7300k  a materialized view on this query is convenient.

Query F
select distinct

 region, month,

 avg(sum(m2free)/sum(m2tot)*100) over (partition by region, month)

from

 surface s, storehouses sh, time t

where

 s.storehouseID=sh.storehouseID and s.timeID=t.timeID and t.year=2004

group by

 region, month, date;

Card: 40 x 12 = 480 << 7300k  a materialized view on this query is convenient.

