

Version #1

Big data processing and analytics
February 21, 2025

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark application.

tempRDD = sc.textFile("Temperature.txt") \

 .map(lambda s: int(s))

Computes the number of lines of Temperature.txt

numLinesTemp = tempRDD.count()

Select medium temperature values

mediumTempRDD = tempRDD.filter(lambda v: v>16)\

 .filter(lambda v: v<25)

Cache mediumTempRDD

mediumTempRDDCached = mediumTempRDD.cache()

Computes the number of medium temperature values

numMediumTemp = mediumTempRDDCached.count()

Select the maximum medium temperature value

maxValue = mediumTempRDDCached.reduce(lambda v1, v2: max(v1, v2))

Store the content of mediumTempRDDCached in the output folder

mediumTempRDDCached.saveAsTextFile ("outputFolder/")

Print on the standard output the computed values

print("Num lines: " + str(numLinesTemp))

print("Num medium temperatures: " + str(numMediumTemp))

print("Max medium temperature: " + str(maxValue))

Version #1

 Suppose the input file Temperature.txt is read from HDFS. Suppose this Spark

application is executed only 1 time. Suppose mediumTempRDD is small enough to be

completely cached into mediumTempRDDCached. Which one of the following

statements is true?

 a) This application reads the content of Temperature.txt 1 time.

 b) This application reads the content of Temperature.txt 2 times.

 c) This application reads the content of Temperature.txt 3 times.

 d) This application reads the content of Temperature.txt 4 times.

 2. (2 points) Consider the following MapReduce application for Hadoop.

DriverBigData.java

/* Driver class */
package it.polito.bigdata.hadoop;
import ….;

/* Driver class */

public class DriverBigData extends Configured implements Tool {

 @Override

public int run(String[] args) throws Exception {

 int exitCode;

 Configuration conf = this.getConf();

 // Define a new job

 Job job = Job.getInstance(conf);

 // Assign a name to the job

 job.setJobName("MapReduce - Question");

 // Set path of the input file/folder for this job

 FileInputFormat.addInputPath(job, new Path("inputFolder/"));

 // Set path of the output folder for this job

 FileOutputFormat.setOutputPath(job, new Path("outputFolder/"));

 // Specify the class of the Driver for this job

 job.setJarByClass(DriverBigData.class);

 // Set job input format

 job.setInputFormatClass(TextInputFormat.class);

 // Set job output format

 job.setOutputFormatClass(TextOutputFormat.class);

 // Set map class

 job.setMapperClass(MapperBigData.class);

 // Set map output key and value classes

 job.setMapOutputKeyClass(Text.class);

 job.setMapOutputValueClass(NullWritable.class);

Version #1

 // Set reduce class

 job.setReducerClass(ReducerBigData.class);

 // Set reduce output key and value classes

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(NullWritable.class);

 // Set the number of reducers to 2

 job.setNumReduceTasks(2);

 // Execute the job and wait for completion

 if (job.waitForCompletion(true)==true)

 exitCode=0;

 else

 exitCode=1;

 return exitCode;

 }

 /* Main of the driver */
 public static void main(String args[]) throws Exception {
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
 System.exit(res);
 }

}

--

MapperBigData.java

/* Mapper class */

package it.polito.bigdata.hadoop;

import …;

class MapperBigData extends

 Mapper<LongWritable, // Input key type

 Text, // Input value type

 Text, // Output key type

 NullWritable> { // Output value type

 protected void map(LongWritable key, // Input key type

 Text value, // Input value type

 Context context) throws IOException, InterruptedException {

 // Emit the pair (value, NullWritable)

 context.write(new Text(value), NullWritable.get());

 }

}

Version #1

--

ReducerBigData.java

/* Reducer class */
package it.polito.bigdata.hadoop;

import …;

 // Define count

 int count;

 protected void setup(Context context) {

 // Initialize count

 count = 0;

 }

 protected void reduce(Text key, // Input key type

 Iterable<NullWritable> values, // Input value type

 Context context) throws IOException, InterruptedException {

 int sum;

 // Consider only the keys starting with "B"

 if (key.toString().startsWith("B")) {

 sum = 0;

 for (NullWritable value : values) {

 sum++;

 }

 if (sum >=3) {

 // Increment count

 count++;

 }

 }

 }

 protected void cleanup(Context context) throws IOException, InterruptedException {

 // Emit the pair (count, NullWritable)

 context.write(new IntWritable(count), NullWritable.get());

 }

}

Suppose that inputFolder contains the files Cities1.txt and Cities2.txt. Suppose the

HDFS block size is 512 MB.

Content of Cities1.txt and Cities2.txt:

Filename (size and number of lines) Content

Version #1

Cities1.txt (67 bytes – 10 lines) Bari

Bari

Bari

Bari

Beijing

Cairo

Mexico City

Mumbai

Mumbai

Mumbai

Cities2.txt (69 bytes – 8 lines) Beijing

Beijing

Buenos Aires

Chongqing

Delhi

Dortmund

Dortmund

Milan

Suppose we run the above MapReduce application (note that the input folder is set to

inputFolder/).

What is a possible output generated by running the above application?

a) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the two part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 2

part-r-00001 (1 line) 0

b) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the two part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 1

Version #1

part-r-00001 (1 line) 0

c) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the two part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 2

part-r-00001 (1 line) 2

d) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the two part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 3

part-r-00001 (1 line) 0

Part II

PolitoTV is an international company operating worldwide. PolitoTV is specialized in

streaming television series on demand. It manages several television series and has

millions of users. Statistics about the television series and the users are computed based

on the following input data files, which have been collected in the company's latest twenty

years of activity.

 Users.txt

o Users.txt is a textual file containing information about the users of PolitoTV.

There is one line for each user. The total number of users is greater than

200,000,000. Users.txt is large. Its content cannot be stored in one in-memory

Java/Python variable.

o Each line of Users.txt has the following format

 Username,Name,Surname,City,Country,PricingPlan

where Username is the user’s unique identifier, Name and Surname are

his/her name and surname, respectively, City and Country are the city

and country where he/she lives, respectively, and PricingPlan is the

pricing plan this user subscribed to.

 For example, the following line

Version #1

PG1976,Paolo,Garza,Carmagnola,Italy,Standard

means that the name and surname of the user with the username

PG1976 are Paolo and Garza, respectively, he lives in Carmagnola

(Italy), and he subscribed to a Standard pricing plan.

 TVSeries.txt

o TVSeries.txt is a textual file containing information about the television series

(TV series) streamed on PolitoTV. There is one line for each TV series. The total

number of television series stored in TVSeries.txt is greater than 200,000.

TVSeries.txt is large. Its content cannot be stored in one in-memory Java/Python

variable.

o Each line of TVSeries.txt has the following format

 TVSID,Title,TVGenre

where TVSID is the TV series’s unique identifier, Title is its title, and

TVGenre is its TV series genre.

 For example, the following line

TVS10,Friends,Comedy

means that the TV series with TVSID TVS10 is titled Friends and is a

Comedy television series.

Note that each television series is associated with one single TV series genre.

 Episodes.txt

o Episodes.txt is a textual file containing information about the episodes of the

television series. There is one line for each episode. The total number of

episodes stored in Episodes.txt is greater than 4,000,000. Episodes.txt is large.

Its content cannot be stored in one in-memory Java/Python variable.

o Each line of Episodes.txt has the following format

 TVSID,SeasonNumber,EpisodeNumber,Title

where TVSID is the identifier of the TV series the episode belongs to and

SeasonNumber is the number of the season this episode is part of.

EpisodeNumber is the number of this episode in the season

SeasonNumber of the TV series identified by TVSID. Each episode is

uniquely identified by the triplet (TVSID, SeasonNumber,

EpisodeNumber), i.e., the triplet (TVSID, SeasonNumber,

EpisodeNumber) is the “primary key” of this file. Finally, Title is the

episode's title.

 For example, the following line

TVS10,2,7,The One with the Blackout

means that the 7th episode of the 2nd season of the television series with

TVSID TVS10 is titled “The One with the Blackout”.

 UserWatched.txt

Version #1

o UserWatched.txt is a textual file containing information about who watched

which episodes. A new line is inserted in UserWatched.txt every time a user

watches an episode. UserWatched.txt contains the historical data about the last

15 years. UserWatched.txt is large and cannot be stored in one in-memory

Java/Python variable.

o Each line of UserWatched.txt has the following format

 Username,StartTimestamp,TVSID,SeasonNumber,EpisodeNumber

where Username is the identifier of the user who started watching the

episode identified by the triplet (TVSID, SeasonNumber,

EpisodeNumber) at the time StartTimestamp. StartTimestamp is a

timestamp in the format YYYY/MM/DD-HH:MM.

 For example, the following line

PG1976,2022/11/07-21:40,TVS10,1,7

means that the user PG1976 watched the episode identified by the triplet

(TVS10,1,7) on November 7, 2022 at 21:40.

Note that each user can watch many episodes in different timestamps, and each

episode can be watched by many users. Moreover, the same user can watch

each episode several times (a new line associated with a different

StartTimestamp is inserted in UserWatched.txt for each visualization of the same

episode by the same user). Note that each pair (Username, StartTimestamp)

occurs at most one time in UserWatched.txt.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PolitoTV are interested in performing some analyses about the pricing

plans in France.

Design a single application, based on MapReduce and Hadoop, and write the

corresponding Java code, to address the following point:

1. French cities with more premium than standard users. The application considers only

the French cities and selects the French cities where the number of users who have

subscribed to a premium pricing plan (PricingPlan=‘Premium’) is greater than those

who have subscribed to a standard pricing plan (PricingPlan=‘Standard’). Please pay

attention that there are several pricing plans (specifically, there are five different pricing

plans, and Premium and Standard are only two of those pricing plans). The selected

French cities are stored in the output HDFS folder.

Output format (one line per each selected French city):

city

Version #1

Suppose that the input is Users.txt and has already been set. Suppose that also the name

of the output folder has already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce methods.

setup and cleanup if needed). The content of the Driver must not be reported.

 Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to

specify the number of instances of the reducer class for each job.

 If you need personalized classes, report for each of them:

o the name of the class
o attributes/fields of the class (data type and name)

o personalized methods (if any), e.g., the content of the toString() method if
you override it

o do not report the get and set methods. Suppose they are "automatically

defined"

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

 (a) 0

 (b) exactly 1

 (c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

 (a) One single job is needed

 (b) 0

 (c) exactly 1

 (d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark (19 points)

The managers of PolitoTV asked you to develop a single Spark-based application based

either on RDDs or Spark SQL to address the following tasks. The application takes the

paths of the input files and two output folders (associated with the outputs of the following

parts 1 and 2, respectively).

1. Number of long TV series for each TV series genre. The first part of this application

computes the number of long TV series for each TV series genre. A TV series is

classified as a long TV series if it lasts more than 10 seasons (i.e. if it is characterized

by more than 10 seasons). Store the result in the first HDFS output folder. Specifically,

store one TV series genre per output line with its number of long TV series. Consider

only the TV series genre with at least one long TV series.

Output format of each output line (first part):

TV series genre, Number of long TV series for this TV series genre

Version #1

2. The longest TV series each user has started watching. For each user, the second part

of this application selects the longest TV series in terms of number of seasons among

those the user has started watching. A user has started watching a TV series if he/she

has watched the first episode of the first season of that TV series (i.e., the episode of

TV series with SeasonNumber=1 and EpisodeNumber=1). Analogously to the first part,

the "length" of a TV series corresponds to the number of seasons of that TV series.

Store the result in the second HDFS output folder. Specifically, there is one output line

for each combination (username, TVSID of the longest TV series username has started

watching).

Output format of each output line (second part):

Username, TVSID of the longest TV series username has started watching

Note. Pay attention that there can be more than one TV series associated with the

same username (i.e., the user can have started watching more TV series associated

with the maximum number of seasons associated with that user).

Note. Consider only those users who have started watching at least one TV series.

Example for the second part.

In this small example, suppose there are only three users. The usernames of these

users are User1, User2, and User3.

Suppose that User1 has started watching the following three TV series

 TVS10. TVS10 is 10 seasons long.

 TVS20. TVS20 is 3 seasons long.

 TVS25. TVS25 is 2 seasons long.

Suppose that User2 has started watching the following four TV series

 TVS9. TVS9 is 6 seasons long.

 TVS11. TVS11 is 3 seasons long.

 TVS45. TVS45 is 6 seasons long.

 TVS100. TV100 is 5 seasons long.

Suppose that User3 has not started watching TV series so far.

The second output folder must contain the following lines in this case:

 User1,TVS10

 User2,TVS9

 User2,TVS45

Note that User2 is associated with two output lines because there are two TV series

User2 has started watching associated with 6 (and 6 is the number of seasons of the

longest TV series User2 has started watching).

Version #1

Note that User3 is not part of the output of the second part of this application because

User3 has not started watching TV series so far.

 You do not need to write imports. Focus on the content of the main method.

 Only if you use Spark SQL, suppose the first line of each file contains the header
information/the name of the attributes. Suppose, instead, there are no header lines if

you use RDDs.

 Suppose both Spark Context sc and SparkSession spark have already been set.

 Please comment your solution by stating the meaning of the fields you intend to

process with each instruction, e.g., key=(product id, date), value=(category, year)

