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Introduction to the regression analysis

= Objectives
= Prediction of a numerical target variable
= Definition of an interpretable model of a given phenomenon
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Introduction to the regression analysis

= Approach discussed in this set of slides
=« Linear regression Other approaches
= SVMs (SVR) k-Nearest Neighbours

Decision trees
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Introduction to the regression analysis

= Requirements
= accuracy
= interpretability
= Sscalability
= hoise and outlier management
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Introduction to the regression analysis

= Applications
= Estimating the cost of a house
= Estimating the remaining useful life (RUL) of an industrial equipment
= Industrial Vehicle Usage Predictions
= Predicting the Number of Free Floating Car Sharing Vehicles within Urban

Al‘eaS training data
\ = model |
l new data with
new data predictions
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Introduction to regression

= The term "regression” was coined by Francis Galton in
1877 to describe a biological phenomenon

= the heights of descendants of tall ancestors tend to regress
down towards a normal average (i.e., regression toward the
mean)

= Father of regression Carl F. Gauss (17/77-1855)
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Definition

= Given
= A numerical target attribute

= A collection of data objects also characterized by the target
attribute

= The regression task finds a model that allows predicting
the target variable value of new objects through

n Y=F (Xq, X, ... X,)
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Regression analysis

= Regression analysis can be classified based on

= Number of explanatory variables
= Simple regression: single explanatory variable
= Multiple regression: includes any number of explanatory variables

= Types of relationship
= Linear regression: straight-line relationship
= Non-linear: implies curved relationships (e.g., logarithmic relationships)

= Temporal dimension
= Cross Sectional: data gathered from the same time period
= Time Series: involves data observed over equally spaced points in time
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Linear regression
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Simple linear regression

y= pot b1 X

= The regression line provides an interpretable model of the
phenomenon under analysis
=« J. estimated (or predicted) value
= f,: estimation of the regression intercept
= The intercept represents the estimated value of ywhen xassumes 0
= f,: estimation of the regression slope
= X: independent variable
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Simple linear regression

y= ot P X
= Least squares method

= S, and p, can be obtained by minimizing the Residual sum of
squares (RSS) that is the sum of the squared residuals

= differences between actual values (y) and estimated ones ()

min RSS = min },;(y; — y;)*=
min ) (vi = (Bo + Brx1) )?
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Estimation of the parameters by least squares =4

o e

y= ot P X

i)y —y)
5l —0)?

— 1 — 1
= Where y = ;Ziyi and x = ;Zixi are the sample means
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Simple linear regression: example

Size in feet? | Price (§) in 1000's = Goal of a real estate agency

2104 460 = Estimate the selling price of a home

1416 232 based on the value of size in square feet
1534 315

852 178

= Simple linear regression finds a linear
model of the problem
= X = Size in feet?
= Y = Price ($) in 1000’s
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Simple linear regression: example

Price $ (in 1000s)

1007 “ samples

— Current hypothesis

1000 2000 3000 4000
Size (feetz)

= B,. The intercept represents the
estimated value of ywhen x assumes 0

No house had 0 square feet, but g, is the
portion of house price not explained by
square feet

= p,: the slope measures the estimated
change in the y value as for every one-

unit change in x
The average value of a square foot of size

14



Multiple linear regression

y=1(X) = Bot B Xyt B Xot faXg+ oo + B X+ &

= Dependant variable ()): the single variable being explained/ predicted by
the regression model

= Independent or explanatory variables (x): The variables used to
predict/explain the dependant variable

= Coefficients (5): values, computed by the regression task, reflecting
explanatory to dependent variable relationships

= Residuals (&): the portion of the dependent variable that is not explained by
the model
= The model performs under or over predictions
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Interpretating regression coefficients

= Uncorrelated predictors
« Each coefficient can be estimated and tested separately

= Interpretation: a unit change in x; is associated with a . change in y, while
all the other variables stay fixed

= f;represents the average effect on y of a one unit increase in x;, holding all other
predictors fixed

= Correlation among predictors cause problems
= The variance of all coefficients tends to increase, sometimes dramatically
= Interpretations become complex: when x; changes, everything else changes

= The claim of causality should be avoided for the observational data
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Feature selection

= In case of a high dimensional data set, in terms of number of dependent
variables, some of the variables might provide redundant information.

= Feature selection and removal (correlation-based approach)
= simplifying the model computation
= improving the model performance

= Enhancing the model interpretation (i.e., better explainability of the dependent
variables)

= Variable/feature selection
= Driven by the business understanding and domain knowledge

= Feature selection based on correlation test
= Features highly-correlated with other attributes could be discarded from the analysis
= having dependence or association in any statistical relationship, whether causal or not
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Polynomial regression

= The polynomial models can be used in those situations where the relationship
between dependent and explanatory variables is curvilinear.

= Polynomial regression consists of:
= Computing new features that are power functions of the input features

= Applying linear regression on these new features
y=p+pix+pox’+e
v = Bo + B1x1 + Baxz + Pr1xf + Baox + Praxix, + €
= The above models are also linear (i.e., A model is linear when it is linear in parameters)
= They are the second order polynomials in one and two variables respectively.

= Sometimes a nonlinear relationship in a small range of explanatory variables can also
be modeled by polynomials.
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Polynomial model in one variable

= The kt" order polynomial model in one variable is given by
Y = Bo+ frx + Box? + o+ Prx + e

= Itis included in the linear regression model below
y=Xf +¢

. Teccrlmliques for fitting linear model can be used for fitting the polynomial regression
mode

= For example, y = By + B1x + fox?

= Is a polynomial regression model in one variable and is called as second order model or
quadratic model, where the coefficients

= f3; is the linear effect parameter
= [, is the quadratic effect parameter

= The polynomial models can be used to approximate a complex nonlinear relationship
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Polynomial model in one variable

Example.

Second order model or quadratic model

YA

Simple linear model

YA

Polynomial model




Polynomial regression: considerations in case of one variable

= Order of the model

= Keep the order of the polynomial model as low as possible
= Up to the second order polynomial
= If necessary, you should apply some data transformations

= Arbitrary fitting of higher order polynomials can be a serious abuse of regression analysis.
= Data overfitting issue

= Different model building strategies do not necessarily lead to the same model

= Forward selection procedure: to successively fit the models in increasing order and
test the significance of regression coefficients at each step of model fitting.
= Keep the order increasing until t-test for the highest order term is nonsignificant
= The significance of highest order term is tested through the null hypothesis
= Backward elimination: to fit the appropriate highest order model and then delete terms

one at a time starting with highest order. This is continued until the highest order
remaining term has a significant t-test

= The first and second order polynomials are mostly used in practice.
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Polynomial models in two or more variables =

S

= The techniques of fitting of polynomial model in one
variable can be extended to fitting of polynomial models in
two or more variables.

= A second order polynomial is more used in practice and its
model is specified by

Y = Bo + Bixy + Baxy + B11XF + Bozxs + Braxix, + €

= This is also called response surface.

B
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Strong and weak points of Polynomial Regression &=

1859 2b
S

= Advantages of using Polynomial Regression:
=« Broad range of function can be fit under it.
= Polynomial basically fits wide range of curvature.

= Polynomial usually provides the best approximation of the relationship between
dependent and independent variable.

= Disadvantages of using Polynomial Regression

= They are too sensitive to the outliers.
= The presence of a few outliers in the data can seriously affect the results of a nonlinear analysis.

= Higher polynomial degree means higher flexibility of your model, but also data
overfitting
= Overfitting occurs in those cases when you have a few samples and a model that has high flexibility

= It is always possible for a polynomial of order (n-1) to pass through n points so that a polynomial of
sufficiently high degree can always be found that provides a “good” fit to the data.

= Those models never enhance the understanding of the unknown function and they are never
good predictors.
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To avoid data overfitting

Jse more training data (if possible)
Jse lower model complexity

Jse regularization techniques
= €.g., Ridge and Lasso

24



RIDGE and LASSO

f’ 'ﬁ\i Yy
y & AV Politecnico

LN s b g .
‘{.lmlium wame di Torino
"W 1859 ,‘

e T 'ﬁ;“"‘

Tania Cerquitelli and Elena Baralis
Politecnico di Torino



RIDGE and LASSO

= Regression analysis methods that perform both variable selection and
regularization in order to enhance the prediction accuracy and
interpretability of the statistical model it produces.

= Useful to reduce model complexity and prevent overfitting when

= The number of variables describing each observation exceeds the number of
observations

= The number of variables does not exceed the number of observations, but the
learned model suffers from poor generalization.

= Techniques of training a linear regression (or a linear regression with
polynomial features)

= They try to assign values closer to zero (RIDGE) or zero (LASSO) to the
coefficients assigned to features that are not useful for the regression

= The effect is the decreasing of the complexity of the model

B
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Reqularization: RIDGE and LASSO

Cost function
Linear regression

RSS = X;(yi —¥1)°= %, (yi —Bo — X5_Bjxij )2

Ridge regression

b
RSS + AZ B7
j=1

Lasso regression
p
RSS + A Z 181
j=1

Penalty term A = amount of shrinkage (or constraint)

B .
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Regularization

Ridge regression
= It adds L2 as the penalty
= L2 is the sum of the square of the magnitude of beta coefficients

p
RSS + Azjzl g
This is equivalent to minimizing the RSS under the condition
p
For c > O,ijl[)’]? <c

= Penalty term A = amount of shrinkage (or constraint)

m Regularizes the coefficients, penalizing coefficients taking large values

B
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LASSO

= LASSO means Least Absolute Shrinkage and Selection Operator
= Term coined by Robert Tibshirani in 1996, but it was originally introduced
in geophysics literature 10 years before

= Lasso regularization was originally defined for least squares, but it is
easily extended to a wide variety of statistical models in a straightforward

fashion
= E.qg., generalized linear models
= The Lasso’s variable selection relies on the form of the constraint

= It forces the sum of the absolute value of the regression coefficients to be less
than a fixed constraint, which forces some coefficients to be set to zero

= The selected model is simpler since it does not include coefficients set to zero.

= [t is similar to RIDGE regression but usually identifier a simpler model

= RIDGE simplifies the model by shrinking the size of some coefficients, while
LASSO sets some coefficients to zero.

B
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Regularization

Lasso regression

= It adds L1 the penalty
s L1 is the sum of the absolute value of the beta coefficients

p
RSS + Azjzl I
This is equivalent to minimizing the RSS under the condition

p
Forc>0,2 1Bj] <c¢
j=1

The regularization (L1) can lead to zero coefficients

= i.e., some of the features are completely neglected for the evaluation. It not
only helps in reducing overfitting but also in feature selection

B
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Support Vector Regression
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Simple linear regression vs Support Vector Regression s

1
S

Recall that for linear regression, the parameters and the model can be derived by
minimizing the Residual sum of squares (RSS)

min RSS = min Y;(y; — 7;)?

We can instead be interested in reducing error to a certain degree
= errors within an acceptable range

Support Vector Regression
= define how much error is acceptable in our model
= find an appropriate hyperplane to fit the data
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Support Vector Machine - Regression

= Find a function, f(x), that performs a prediction of the
target attribute y with a maximum error equal to ¢

We do not care about
errors aslong as they
are lessthan ¢

Income

0 -Xx +b + ¢

\
L4y =6-x+b

’
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Support Vector Regression: linear model

= The (training) problem can be formulated as a convex
optimization problem

0-x +b + ¢

min= o |7
2
st. y—-0-xi-b<g;
e . xi + b . yi S g Constraints

J = value of the target attribute of the i training object

x' = value of the predictive attributes of the i training object

O and b = parameter of the regression model
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Support Vector Regression: Soft margin

= Given a specific value of ¢, the problem is not always feasible

= Soft margin

= Reformulate the problem by considering the errors related to the
predictions that do not satisfy the ¢ maximum distance
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Support Vector Regression: Soft margin

Assume linear model Only the point outside f(xX,0)=6-x+b

the ¢-region contribute
to thefinal cost

Loss

X -€ £ y - f(x,0)

For any value that falls outside of ¢, we can denote its deviation from the margin as &

B
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Support Vector Regression: Soft margin

= The (training) problem can be formulated as a convex optimization
problem

min % || o]+ C Z(f. + &)

st. y-0-xi-b<eg+§;
0-xi+b- yi<g+§i*
&6 20,1=1...m

We minimize the deviation ¢ from the margin

C: additional hyperparameter.
= As C increases, also the tolerance for points outside of ¢decreases

B
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How about a non-linear case?

1.2 T T T T T
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Linear versus Non-linear SVR

= Map the original features into a higher order dimensional
space
= Apply a kernel transformation

= Polynomial
= Gaussian radial

= Transform the input data by means of the kernel function
¢ and then solve the previous problem

B
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Linear versus Non-linear SVR

= ¢ maps the input data into a new dimensional space

min 311 61F+ C X (& +&)

st. y—-0-0(x)-b<e+&;
0 @(x)) +h-yi<e+§
fi,fiZO,iZJ. ..... m
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Evaluating regression
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Evaluating regression

= Evaluation metrics for regression:
= MAE (Mean Absolute Error)
= MSE (Mean Squared Error)
= RSE: Residual Standard Error
= R?
= Adjusted R?

= The evaluation is performed by comparing
= y: the actual value (ground truth)
= y: the predicted value through the regression model
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Evaluating regression

= MAE (Mean Absolute Error)
= the average vertical distance between each real value and the predicted one

1
MAEz—E . P
- 'Iyl Vil

l

= MSE (Mean Squared Error)
« the average of the squares of the errors
« the average squared difference between the estimated values and the actual value.

= MSE tends to penalize less errors close to 0
1 o 2
MSE = EE(YL' — Vi)
[

= MAE and MSE always > 0
= The lower the values of MAE and MSE the better the model
« It is mainly affected by the domains of data sample

B
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Evaluating regression

= Overall accuracy of the model
= RSE: Residual Standard Error

n
1 1
RSE=Jn_2RSS= —— > i = 9)?
\‘ =1

= N is the number of samples
= RSS is the residual sum of squares

= RSE is always greater than O
= The lower the RSE value the better the regression model

B 44
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Evaluating regression

= RZ: R-squared measures the goodness of fit of a model
= how well the regression predictions approximate the real data points.
» It estimates a normalized error

5 TSS — RSS RSS
R = = 1 —_—
TSS TSS
= RSS is the residual sum of squares RSS = Z(Yi — ¥1)?

= 1SS is the total sum of squares
with 7 = 3, , TSS = ) 0= 3)?
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Evaluating regression: R?

R*=1 R3S _ 1 — FVU
B TSS
=1 — Z?=1(yi_37i)2 1 % Z;;l(Yi_yi)z - _ MSE
Z?=1(yi_y_i)2 % Zil()’i—y_i)z o’

= R? represents the proportion of variance of y explained by
variation in x

= FVU means the fraction of variance unexplained

= Ratio between the unexplained variance (variance of the model's errors) and
the total variance

B
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Evaluating regression: R?

= R?value
m R2 — 1
= A perfect linear relationship between x and y
= 100% of the Y variation is explained by variation in x
= RZcloseto 1
= A very good linear relationship between x and y
= Good predictions
= 0<R2<<1

= Weaker linear relationship between x and y
= A portion of the variation in y is not explained by variation in x

m R2 =0
= No linear relationship between x and y
= The value of y does not depend on the value of x

B
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Evaluating regression: RZ adjusted

= Drawback of R2

= In the context of multiple linear regression, if new predictors (X;) are added to the model, R?
only increases or remains constant but it never decreases.

= However, it is not always true that by increasing the complexity of regression model, the latter
will be more accurate

= The Adjusted R- Squared is the modified form of R-Squared that has been adjusted to
incorporate model’s degree of freedom.

= It should be used to evaluate the quality of a multiple linear regression model

R?=1-(1-R) 7~

= p = number of explanatory variables
= N = number of samples

= The adjusted R-Squared only increases if the new term improves the model accuracy.
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