
Advanced topics
SQL language

SQL Language: Advanced Topics

➢Views

➢Transactions

➢Access control

➢Index management

➢Physical design

1

Views
Advanced Topics

2

The concept of view
• A view is a “virtual" table

• the content (tuples) is defined by means of an SQL query on the database
• the content of the view depends on the content of the other tables present in the

database

• the content is not memorized physically in the database

• it is recalculated every time the view is used by executing the query that
defines it

• A view is an object of the database
• it can be used in queries as if it were a table

• If the query refers to a view, it has to be reformulated by the DBMS
before execution

• This operation is carried out automatically
• the references to the view are substituted by its definition

3

Example n.1: definition of the view
• Definition of the view small suppliers

• the suppliers that have fewer than 3 employees are considered “small suppliers”

• The view “small suppliers”
• contains the code, name, number of employees and city of the

suppliers that have fewer than 3 employees.

4

Query associated with the view

CREATE VIEW SMALL_SUPPLIERS AS

SELECT SId, SName, #Employees, City
FROM S
WHERE #Employees<3;

Name of the views

Example n.1: query
• View the code, name, employee number and city of “small suppliers”

in London

• The query can be answered without using views

• The query can be answered using the view defined previously

• The view SMALL_SUPPLIERS is used like a table

5

SELECT *
FROM SMALL_SUPPLIERS
WHERE City=‘London’;

SELECT *
FROM S
WHERE #Employees<3 AND City=‘London’;

Example n.2: definition of the view
• Definition of the view number of suppliers per product

• The view contains the product code and
the number of different suppliers providing it

6

CREATE VIEW NUMSUPPLIERS_PER_PRODUCT

(PId, #Suppliers) AS
SELECT SId, COUNT(*)
FROM SP
GROUP BY PId;

Attributes of the view

Query associated with the view

Name of the view

Advantages of views
• Simplification of queries

• by breaking down a complex query into subqueries associated with the views

• Security management
• it is possible to introduce different privacy protection mechanisms for each

user or group
• access authorization is associated with the view

• each user, or group, accesses the database only via views that are appropriate for the
operation they are authorized to carry out

• Database mainteinance and evolution
• If a database is restructured, it is possible to change the views

• it is not necessary to re-formulate the queries written before the restructuring and
present in the applications that have already been developed

7

Creation of
views

CREATE VIEW ViewName [(AttributList)]

AS SQLquery;

• If the names of the attributes of a view are
not specified
• use those present in the SQL query SELECT

• Attribute names have to be specified if

• they represent the result of an internal function

• they represent the result of an expression

• they are constant

• two columns (from different tables) have the
same name

8

Cancelling
views

DROP VIEW ViewName;

• Cancelling a table that a view refers to can
have various effects

• automatic elimination of the associated views

• automatic invalidation of the associated views

• prohibition to execute the operation of cancelling the
table

• the effect depends on the specific DBMS

9

Updating views
• It is possible to update the data in a view only for some types of views

• Only views in which a single row of each table corresponds to a single row of
the view can be updated (Standard SQL-92)
• univocal correspondence between the tuple of the view and the tuple of the table on

which it is defined
• it is possibile to propagate without ambiguity the changes made to the view to each

table on which it is defined

• It is not possible to update a view which in the outermost block of the query
that defines it:
• does not contain the primary key of the table on which it is defined
• contains joins that represent one-to-many or many-to-many matches
• contains aggregated functions
• contains the DISTINCT keyword

• Some non-updatable views can become updatable by modifying the SQL
expression associated with the view
• it may be necessary to reduce the information content of the view

10

Example n.1
• View SUPPLIER_CITY

11

CREATE VIEW SUPPLIER_CITY AS
SELECT SId, City
FROM S;

Example n.1: insertion
• Insertion in SUPPLIER_CITY of

(‘S10’, ‘Rome’)

corresponds to the insertion in S of

(‘S10’,NULL,NULL,‘Rome’)

• the attributes SName, #Employees have to admit the value NULL

12

Example n.1: deletion
• Deletion from SUPPLIER_CITY of

(‘S1’, ‘London’)

corresponds to the deletion from S of

(‘S1’, ‘Smith’,20,‘London’)

• identification of the tuple to delete is enabled by the primary key

13

Example n.1: update
• update in SUPPLIER_CITY of

(‘S1’, ‘London’) to (‘S1’, ‘Milan’)

update in S of

(‘S1’, ‘Smith’,20,‘London’) to (‘S1’, ‘Smith’,20,‘Milan’)

• identification of the tuple to be updated is enabled by the primary key

14

Example n.1: updating
• The view SUPPLIER_CITY can be updated

• each tuple of the view corresponds to a single tuple of table S

• the changes carried out on the view can be propagated to
the table on which it is defined

15

Example n.2
• View NUMEMPLOYEE_CITY

16

CREATE VIEW NUMEMPLOYEE_CITY AS
SELECT DISTINCT #Employees, City
FROM S;

Esempio n.2: insertion
• Insertion in NUMEMPLOYEE_CITY of

(40, ‘Rome’)

it is impossible to insert in S

(NULL, NULL, 40, ‘Rome’)

• the value of the primary key is missing

17

Example n.2: deletion
• Deletion from NUMEMPLOYEE_CITY of

(20, ‘London’)

• several tuples are associated with the pair (20, ‘London’)

• Which tuple has to be deleted from S?

18

Example n.2: update
• Update in NUMEMPLOYEE_CITY of

(20, ‘London’) to (30, ‘Rome’)

Several tuples are associated with the pair (20, ‘London’)

• Which tuple has to be updated in S?

19

Example n.2: updating
• The view NUMEMPLOYEE_CITY cannot be updated

• the primary key of table S is not present in the view
• the insertion of new tuples in the view cannot be propagated to S

• some tuples of the view correspond to several tuples in the table S
• the association between the tuples in the view and the tuples in the table is ambiguous

• it is not possible to propagate the changes carried out on the tuples of the view to
the tuples of the table on which it is defined

20

Example n.3: non-updatable view

• The view is non-updatable
• it does not explicitly select the primary key of table S

• It is sufficient to replace the symbol “*” with the name of the attributes

21

CREATE VIEW SUPPLIER_LONDON AS
SELECT *
FROM S
WHERE City=‘London’;

Example 4: non-updatable view

• The view is not updatable
• there is a join

• the DISTINCT keyword is present

22

CREATE VIEW BEST_SUPPLIER (SId, SName) AS
SELECT DISTINCT SId, SName
FROM S, SP
WHERE S.SId = SP.SId AND Qty >100;

Example n.4: changed view

• The view is updatable
• the join was removed using the IN operator

• the keyword DISTINCT is no longer necessary

23

CREATE VIEW BEST_SUPPLIER (SId, SName) AS
SELECT SId, SName
FROM S
WHERE SId IN (SELECT SId

FROM SP
WHERE Qty>100);

It is not always possible to rewrite the query to make the view updatable

Transaction
Advanced Topics

24

Transaction

• A transaction is necessary when several users
can simultaneously access the data

• It provides efficient mechanisms to
• manage competing access to data

• recovery after a malfunction

• It is a logical unit of work, which cannot be further
broken down
• a sequence of data modification operations (SQL

statements) that takes the database from one consistent
state to another consistent state

• there is no need to maintain consistency in intermediate
states

• A system that makes a mechanism available for the
definition and execution of transactions is called a
transactional system

• The DBMS contains architecture blocks that offer
transaction management services

25

Beginning a transaction
• To define the beginning of a transaction, the SQL language uses the

instruction
• START TRANSACTION

• Usually the instruction to begin a transaction is omitted
• the beginning is implicit for

• the first SQL instruction of the programme that accesses the database

• the first SQL instruction following the instruction ending the previous transaction

26

Ending a transaction
• The SQL language has instructions for defining the end of

a transaction
• Transaction successful

• COMMIT [WORK]

• the action associated with the instruction is called commit

• Transaction failed
• ROLLBACK [WORK]

• the action associated with the instruction is called abort

27

Commit
• Action executed when a transaction ends with success

• The database is in a new (final) correct state

• The changes to the data executed by the transaction become

• permanent

• visibile to other users

28

Rollback
• Action executed when a transaction ends because of an error

• for example, an error in application

• All the operations modifying the
data executed during the transaction are “cancelled”

• The database returns to the state prior to the beginning of
the transaction
• the data is visible again to the other users

29

Example
• Transfer the sum of 100

• from current account number IT92X0108201004300000322229

• to current account number IT32L0201601002410000278976

30

START TRANSACTION;

UPDATE Account
SET Balance= Balance - 100
WHERE IBAN='IT92X0108201004300000322229';

UPDATE Account
SET Balance = Balance + 100
WHERE IBAN= 'IT32L0201601002410000278976';

COMMIT;

Properties of transactions
• The principal properties of transactions are

• Atomicity

• Consistency

• Isolation

• Durability

• They are summarized by the English acronym ACID

31

Atomicity

• A transaction is an indivisible unit (atom) of work

• all the operations contained in the transaction have to
be executed

• or none of the operations contained in
the transaction have to be executed
• the transaction has no effect on the database

• The database cannot remain in an
intermediate state during the processing of
a transaction

32

Consistency

• The execution of a transaction has to take
the database

• from an initial state of consistency (correct)

• to a final state of consistency

• Correctness is verified by integrity constraints
defined on the database

• When there is a violation of
the integrity constraint the system intervenes

• to abort the transaction

• or to modify the state of the database
by eliminating the violation of the constraint

33

Isolation

• The execution of a transaction is independent
from the simultaneous execution of other
transactions

• The effects of a transaction are not visible by other
transactions until the transaction is terminated
• the visibility of unstable intermediate states is avoided

• an intermediate state can be aborted by a subsequent rollback

• in case of a rollback, it would be necessary to rollback the other
transactions that have observed the intermediate state (domino
effect)

34

Durability

• The effect of
a transaction that has executed a commit is
memorized permanently
• the changes to the data carried out

by a transaction ending successfully are permanent after
a commit

• It guarantees the reliability of
the operations of data modification
• the DBMS provides mechanisms for recovery to

the correct state of the database after
a malfunction has occurred

35

Access control
Advanced topics

36

Data security
• Protection of data from

• unauthorized readers

• alteration or destruction

• The DBMS provides protection tools which are defined by
the database administrator (DBA)

• Security control verifies that users
are authorized to execute the operations they request

• Security is guaranteed through a set of constraints

• specificied by the DBA in an appropriate language

• memorized in the data dictionary system

37

Resources
• Any component of the database scheme is a resource

• table

• view

• attribute in a table or view

• domain

• procedure

• ...

• Resources are protected by the definition of access privileges

38

39

Access privileges
• Describe access rights to system resources

• SQL provides very flexible access control mechanisms for specifying

• the resources users can access

• the resources that have to remain private

40

Privileges: characteristics
• Each privilege is characterized by the following information

• the resource it refers to

• the type of privilege
• describes the action allowed on the resource

• the user granting the privilege

• the user receiving the privilege

• the faculty to transmit the privilege to other users

Types of privileges

• INSERT

• enables the insertion of a
new object in the resource

• valid for tables and views

• UPDATE

• enables updating the value of
an object

• valid for tables, views and attributes

• DELETE

• enables removal of objects from
the resource

• valid for tables and views

• SELECT
• enables using the resource in a

query

• valid for tables and views

• REFERENCES
• enables referring to a resource in

the definition of a table scheme

• can be associated with tables and
attributes

• USAGE
• enables use of the resource (e.g. a

new type of data) in
the definition of new schemas

41

Resource creator privileges

Resource creator

• When a resource is created, the
system grants all privileges over
that resource to the
user that created it

• Only the resource creator has
the privilege to eliminate
a resource (DROP)
and modify a scheme (ALTER)
• the privilege to eliminate and

modify a resource cannot be
granted to any other user

System administrator

• The system administrator (user
system) possesses all priviles
over all the resources

42

43

Management of privileges in SQL
• Privileges are granted or revoked using SQL instructions

• GRANT
• grants privileges over a resource to one or more users

• REVOKE
• revokes privileges granted to one or more users

GRANT

GRANT PrivilegeList ON ResourceName
TO UserList
[WITH GRANT OPTION]

• PrivilegeList
• specifies the list of privileges

• ALL PRIVILEGES
• Keyword for identifying all privileges

• ResourceName
• specifies the resource for which the privilege is granted

• UserList
• Specifies the users who are granted the privilege

• WITH GRANT OPTION
• faculty to transfer the privilege to other users

44

Examples

GRANT ALL PRIVILEGES

ON P TO Smith, Singh

• Users Smith and Singh are
granted all privileges for table P

GRANT SELECT ON S TO Smith

WITH GRANT OPTION

• User Smith is granted the privilege
to SELECT in table S

• User Smith has the faculty to grant
the privilege to other users

45

REVOKE

REVOKE PrivilegeList ON ResourceName
FROM UserList
[RESTRICT|CASCADE]

• Can remove
• all the privileges that have been granted
• a subset of privileges granted

• RESTRICT
• the command must not be executed if revoking the user’s

privileges entails revoking other privileges
• Example: the user has received the privileges with the GRANT

OPTION and has propagated the privileges to other users
• default value

• CASCADE
• revokes also all the privileges which have been propagated

• generates a chain reaction
• for each privilege revoked

• all granted privileges are revoked in a cascade
• all database elements which have been created exploiting these

privileges are removed
46

Examples

REVOKE UPDATE ON P FROM White

• User White’s privilege to UPDATE
table P is revoked
• the command is not executed if it

entails revoking the privilege of
other users

REVOKE SELECT
ON S FROM Red CASCADE

• User Red’s privilege
to SELECT table S is revoked

• User Red had received the privile
ge through GRANT OPTION
• if Red has propagated the privilege

to other users, the privilege is
revoked in cascade

• if Red has created a view using
the SELECT privilege, the view is
removed

47

Concept of role
• The role is an access profile

• Defined by its set of privileges

• Each user has a defined role
• it enjoys the privileges associated with that role

• Advantages

• access control is more flexible
• a user can have different roles at different times

• it simplifies administration
• an access profile need not be defined at the moment of its activation

• it is easy to define new user profiles

48

CREATE ROLE

CREATE ROLE RoleName

• Definition of role privileges and
user roles
• instruction GRANT

• A user can have different roles at different
times
• dynamic association of a role with a user

SET ROLE RoleName

49

Index management
Advanced Topics

50

51

Physical data organization
• In a relational DBMS the data are represented as collections of

records memorized in one or more files

• the physical organization of the data in a file influences the time required to
access the information

• each physical data organization makes some operations efficient and others
cumbersome

• There is no physical data organization that is efficient for any type of
data reading and writing

Indexes
• Indexes are the accessory physical structures provided by

the relational DBMS to improve the efficiency of data
access operations
• indexes are implemented using different types of physical structures

• trees

• hash tables

• The instructions for managing the indexes are not part of
standard SQL

52

53

Index definition in SQL
• SQL language provides the following instructions for defining indexes

• to create an index
• CREATE INDEX

• to delete an index
• DROP INDEX

• The instructions for the management of indexes are not part of
standard SQL

CREATE INDEX

CREATE INDEX NomeIndice
ON NomeTabella (ElencoAttributi)

• The order in which the attributes appear in
AttributeList is important

• the order of the index keys is
• first on the basis of the

first attribute in AttributeList

• equal in value to the first attribute on
the values of the second attribute

• and so on, in order, until the last attribute

Use the minimum number of attributes, usually
one

54

Example
• Creation of an index on the attribute Residence of the table

EMPLOYEE

• The index is jointly defined on the two attributes

• The index keys are ordered

• first on the basis of the value of the attribute Surname

• of equal value to the attribute Surname, on the value of the attribute Name

55

CREATE INDEX ResidenceIndex

ON EMPLOYEE (Surname, Residence)

DROP INDEX

DROP INDEX NomeIndice

• Eliminate the index with the
name IndexName

• This command is used when
• the index is no longer utilized

• the improvement in performance is
insufficient
• reduced reduction in response time for the

queries

• slowing down of updates due to
index maintenance

56

Physical design
Advanced Topics

57

Physical design: input data
• Logical scheme of the database

• Characteristics of the chosen DBMS
• physically available options

• physical memory structures

• indexes

• Data volumes
• cardinality of tables

• cardinality and distribution of the attribute values domain

• Estimate of application load
• most important queries and their frequency

• most important updating operations and their frequency

• response time requirements for important queries/updates

58

Physical design: result
• Physical scheme of the database

• physical organization of tables

• indexes

• Memorization and operating parameters
• Initial file sizes, expansion possibilities, free space at outset, ...

59

Procedure
• Physical design is carried out empirically, using a trial

and error approach
• there are no reference methodologies

• Characterization of the application load
• for each important query it is necessary to define

• access relationships

• attributes to be viewed

• attributes involved in selections/joins

• degree of selectivity of selection conditions

• for each important update it is necessary to define
• type of update (Insertion, cancellation, modification)

• relation to any attributes involved

• degree of selectivity of selection conditions

60

Procedure: choices to be made
• Choices to be made

• physical structuring of the files containing the tables

• choice of attributes to index
• driven by estimating applicative load and data volume

• definition of type for each index

• e.g. hash or B-tree

• any variations of the scheme

• horizontal partitioning in the secondary memory

• denormalization of tables
• used in data warehouses

61

Tuning
• If the result is not satisfactory

• Tuning, adding and removing indexes

• This is a procedure guided by the availability of tools that enable
• verification of the execution plan adopted by the chosen DBMS

• the execution plan defines the sequence of activities carried out by the DBMS to execute a
query

• data access methods

• join methods

• assess the execution cost of various alternatives

62

	Copertina
	Slide 0: Advanced topics

	Materiale didattico
	Slide 1: SQL Language: Advanced Topics
	Slide 2: Views
	Slide 3: The concept of view
	Slide 4: Example n.1: definition of the view
	Slide 5: Example n.1: query
	Slide 6: Example n.2: definition of the view
	Slide 7: Advantages of views
	Slide 8: Creation of views
	Slide 9: Cancelling views
	Slide 10: Updating views
	Slide 11: Example n.1
	Slide 12: Example n.1: insertion
	Slide 13: Example n.1: deletion
	Slide 14: Example n.1: update
	Slide 15: Example n.1: updating
	Slide 16: Example n.2
	Slide 17: Esempio n.2: insertion
	Slide 18: Example n.2: deletion
	Slide 19: Example n.2: update
	Slide 20: Example n.2: updating
	Slide 21: Example n.3: non-updatable view
	Slide 22: Example 4: non-updatable view
	Slide 23: Example n.4: changed view
	Slide 24: Transaction
	Slide 25: Transaction
	Slide 26: Beginning a transaction
	Slide 27: Ending a transaction
	Slide 28: Commit
	Slide 29: Rollback
	Slide 30: Example
	Slide 31: Properties of transactions
	Slide 32: Atomicity
	Slide 33: Consistency
	Slide 34: Isolation
	Slide 35: Durability
	Slide 36: Access control
	Slide 37: Data security
	Slide 38: Resources
	Slide 39: Access privileges
	Slide 40: Privileges: characteristics
	Slide 41: Types of privileges
	Slide 42: Resource creator privileges
	Slide 43: Management of privileges in SQL
	Slide 44: GRANT
	Slide 45: Examples
	Slide 46: REVOKE
	Slide 47: Examples
	Slide 48: Concept of role
	Slide 49: CREATE ROLE
	Slide 50: Index management
	Slide 51: Physical data organization
	Slide 52: Indexes
	Slide 53: Index definition in SQL
	Slide 54: CREATE INDEX
	Slide 55: Example
	Slide 56: DROP INDEX
	Slide 57: Physical design
	Slide 58: Physical design: input data
	Slide 59: Physical design: result
	Slide 60: Procedure
	Slide 61: Procedure: choices to be made
	Slide 62: Tuning

