

Concept-based Explainable AI

Explainable and Trustworthy AI

Gabriele Ciravegna

- 1. Motivation
- 2. Concept-based eXplainable AI (C-XAI)
- 3. Testing with Concept Activation Vectors (T-CAV)
- 4. Concept Bottleneck Models (CBM)
- 5. Concept Embedding Models (CEM)

3. Testing with Concept Activation Vectors (T-CAV)

Example: Post-training explanation

- To use machine learning responsibly, we need to ensure that
 - Our values are aligned
 - Our knowledge is reflected
- Standard XAI Solutions
 - Interpretable ML model (e.g. linear model)
 - Simple but we significantly lose the performance
 - Post-training explanation
 - E.g. Perturbation-based/sensitivity analysis-based methods
 - May be difficult to trust for standard users

Example: Post-training explanation

• Why was this a cash machine?

Problem Objective

Corresponding **Given Image** Saliency Map Hour Cas

Prediction: Cash-machine

Prediction:

- Did the **'human'** concept matters?
- Did the 'paper' concept matters?
- Did the 'ATM' or 'Cash' concept matters?

Sliding door

TCAV objective:

Quantitatively measure how

important are "user- chosen concepts"

TCAV: Overview

TCAV components

- a) A dataset annotated with both **examples of concepts** and **random images**
- b) The dataset with the **original classes**
- c) The **model** to explain
- d) The Concept Activation Vectors (CAV)
- e) The TCAV score showing the **influence** of a concept on a given class

TCAV: (1) How to define CAV?

Sorting Images with CAVs

- Given a set of images (e.g., belonging to the same class)
- Compute the cosine similarity between
 - the latent representation of an image $f_l(x)$
 - the CAV v_C^l of the selected concept

CEO concept: most similar striped images

CEO concept: least similar striped images

Model Women concept: most similar necktie images

Model Women concept: least similar necktie images

TCAV: (2) How to compute TCAV scores?

$$S_{C,k,l}(\textcircled{\baselineskip})$$

$$S_{C,k,l}(\textcircled{\baselineskip})$$

$$S_{C,k,l}(\textcircled{\baselineskip})$$

$$S_{C,k,l}(\textcircled{\baselineskip})$$

$$\mathrm{TCAVQ}_{C,k,l} = \frac{|\{\boldsymbol{x} \in X_k : S_{C,k,l}(\boldsymbol{x}) > 0\}|}{|X_k|}$$

Directional derivative with CAV:

- $S_{C,k,l}(x) > 0$: positive influence
- $S_{C,k,l}(x) < 0$: negative influence
- The TCAV score is the number of class samples having a positive directional derivative w.r.t. the CAV

TCAV score characteristcs

- $TCAV_{C,k,l} \in [0,1]$
 - $TCAV_{C,k,l} > 0.5$: positive influence $TCAV_{C,k,l} < 0.5$: negative influence
 - Of concept *C*
 - Over class k
 - Computed in layer *l*

TCAV Example 1 (Zebra)

TCAV Example 2 (Doctor)

Was Woman concept important to this doctor image classifier?

TCAV tells that Woman has a negative importance for the classification of doctors

BIAS IDENTIFICATION!

When and where can concept be learnt?

- Accuracy of the «linear probe»
 - High implies the network has automatically learnt a concept
 - Low implies the network does not use that concept for predicting the final class

mixed3a mixed3b mixed4a mixed4b mixed4c mixed4d mixed4e mixed5a mixed5b logit

- Simpler concepts have high accuracy throughout the NN
- High-level concepts can be detected better at higher layers

2. Concept Bottleneck Models (CBMs)

End-2-End models are difficult to interact with

Ideal: Interact through high-level concepts

CBMs Explicitly Represents Concepts

CBMs Allows Interactions!

CBMs Allows Interactions!

CONCEPTS

Importance of Concept Intervention

Concept bottleneck models architecture

Different training strategy

• Indipendent:
$$\hat{f} = \arg \min_{f} \sum_{i} L_{y}(f(c_{i}), y_{i})$$
 f is trained using the truth concepts
 $\hat{g} = \arg \min_{g} \sum_{i} L_{c}(g(x_{i}), c_{i})$

• Sequential: $\hat{f} = \arg \min_f \sum_i L_y(f(g(x_i)), y_i)$ g is trained first as above, then freezed

• Joint: $\hat{f}, \hat{g} = \arg \min_{f} \sum_{i} L_{y}(f(c_{i}), y_{i}) + \lambda \arg \min_{g} \sum_{i} L_{c}(g(x_{i}), c_{i})$ for some $\lambda > 0$

• Standard: $\hat{f}, \hat{g} = \arg \min_{f} \sum_{i} L_{y}(f(c_{i}), y_{i})$

It ignores the concepts loss

Different interpretability/performance trade-offs

- Sequential and indipendent are the more «trustworthy» beacause they ensure no concept leakage
- Joint strategy provides better task accuracy
 - Different trade-offs according to the λ value
- **Standard** model still has higher accuracy on average

Explicitly concept training ensure model learns the concepts

Standard E2E trained model

Method	X-Ray Concept Error (↓)
Independent	0.53
Sequential	0.53
Joint	0.54
TCAV [Probe]	0.68

In a trained model, identifying some concepts may not be possible, because it might not have learnt them automatically

 \rightarrow Only by explicitly training a model we can ensure it represents all concepts!

CBM Drawbacks

Poor Trade-offs

Struggle to compromise between accuracy and explainability

Accuracy-Explainability Trade-Off 100 No concepts Task Accuracy (%) 90 80 70 60 CBM Fuzzy 50 (Koh et al.) 50 60 90 100 70 80 Concept Alignment (%)

Low Concept Efficiency

CBMs do not scale in real-world conditions

3. Concept Embedding Models (CEM)

Concept Embedding Models: overview

Concept Embedding workflow

- 1. $h = \psi(x)$: the latent space of the model
- 2. $c_i^+ = \phi_i^+(x)$: neural model dedicated to represent the i-th **positive** concept embedding
- 3. $p_i = s([c_i^+, c_i^-])$: the *concept score* (i.e., probability of presence of the ith concept) is a function shared among concepts working on the concatenations of the concept embeddings
- 4. $\hat{c}_1 = p_i c_i^+ + (1 p_i) c_i^-$: the *concept embedding* is represented by the weighted combination of the positive and negative concept embeddings according to its presence
- 5. $f([\hat{c}_1, \dots, \hat{c}_k])$: the task predictor works on the concatenation of all the concept embeddings

CEM: A neural-symbolic approach

Neural

Symbolic (CBM)

Concepts are represented with: unsupervised **embeddings** Concepts are represented with: **supervised** scalars

Neural Symbolic (CEM)

Concepts are represented with: pairs of **supervised embeddings**

 $\mathbf{c}_{i} \in \mathbb{R}^{k}$

c_i ∈ [0,1]

 $C_i \in \mathbb{R}^k$ $c_i = agg(c_i^+, c_i^-)$ CEM Advanatages

Beyond Trade-offs

CEMs overcome the current accuracy-explainability trade-off

High Concept Efficiency

CEMs scale to real-world conditions where concept supervisions are scarce

Effective interventions

CEMs are responsive to concept interventions

CEM vs Hybrid approach

• PROS:

- Retain high accuracy
- Has high concept efficiency like CEM

- CONS:
 - Prevent any effect of concept intervention
 - Changing the predicted scores has no effect on the task prediction
 - All the information required to predict the task is encoded by the unsupervised neurons

Have we lost something?

Interpretability

CBM: Interpretable

CEM: NON-Interpretable

 $\hat{\mathbf{c}}_{\text{yellow}} = [2.3, 0.3, -3.5, \dots]^T$

Can we create an Interpretable Model over Concept Embeddings?

Come on Monday to the Project Presentation!

- You will form groups of about 4 people
- We will provide 8-10 different projects among which you will have to choose
- The remaining of the lecture we will do:
 - A laboratory on C-XAI
 - A guided laboratory on XAI for Text Data with Prof. Eliana Pastor