
Version #1

Distributed architectures for big data processing and analytics

July 5, 2021

Student ID __

First Name __

Last Name __

Part I

Answer to the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following piece of a Spark application:

from pyspark.streaming import StreamingContext

ssc = StreamingContext(sc, 10)

lines = ssc.textFileStream("StreamingFolder")

counts = lines.map(lambda l: int(l)).reduce(lambda a, b: a+b)

counts.saveAsTextFiles("StreamingOutput", "txt");

ssc.start()

ssc.awaitTermination()

Which one of the following statements is true?

 a) The code is counting the number of words in each batch of the DStream “lines”

 b) A new batch of the Dstream “lines” is created every 5 seconds

 c) The output of each batch does not depend on the content of the previous

batches

 d) The output of each batch depends on the content of the previous batches

 2. (2 points) Consider the following MapReduce application.

DRIVER

import …

public class DriverBigData extends Configured implements Tool {

Version #1

 public int run(String[] args) throws Exception {

 Path inputPath, outputDir;

 inputPath = new Path(args[0]);

 outputDir = new Path(args[1]);

 Configuration conf = this.getConf();

 Job job = Job.getInstance(conf);

 job.setJobName("Exam");

 FileInputFormat.addInputPath(job, inputPath);

 FileOutputFormat.setOutputPath(job, outputDir);

 job.setJarByClass(DriverBigData.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 // Set map class

 job.setMapperClass(MapperBigData.class);

 // Set map output key and value classes

 job.setMapOutputKeyClass(NullWritable.class);

 job.setMapOutputValueClass(IntWritable.class);

 // Set combiner class

 job.setCombinerClass(CombinerBigData.class);

 // Set reduce class

 job.setReducerClass(ReducerBigData.class);

 // Set reduce output key and value classes

 job.setOutputKeyClass(NullWritable.class);

 job.setOutputValueClass(IntWritable.class);

 // Set number of reducers

 job.setNumReduceTasks(1);

 // Execute the job and wait for completion

 if (job.waitForCompletion(true) == true)

 return 0;

 else

 return 1;

 }

 public static void main(String args[]) throws Exception {

 int res = ToolRunner.run(new Configuration(), new DriverBigData(),

args);

 System.exit(res);

Version #1

 }

}

MAPPER

import …

class MapperBigData extends Mapper<LongWritable, // Input key type

 Text, // Input value type

 NullWritable, // Output key type

 IntWritable> {// Output value type

 protected void map(LongWritable key, // Input key type

 Text value, // Input value type

 Context context) throws IOException, InterruptedException {

 // Read one integer from each input line

 int number = Integer.parseInt(value.toString());

 // emit the pair (NullWritable, number)

 context.write(NullWritable.get(), new IntWritable(number));

 }

}

COMBINER

import ….

class CombinerBigData extends Reducer<NullWritable, // Input key type

 IntWritable, // Input value type

 NullWritable, // Output key type

 IntWritable> { // Output value type

 protected void reduce(NullWritable key, // Input key type

 Iterable<IntWritable> values, // Input value type

 Context context) throws IOException, InterruptedException {

 // Iterate over the set of values and emit them.

 for (IntWritable number : values) {

 // Emits pair (NullWritable, number)

 context.write(NullWritable.get(), new IntWritable(number.get()));

 }

 }

}

REDUCER

import …

Version #1

class ReducerBigData extends Reducer<NullWritable, // Input key type

 IntWritable, // Input value type

 NullWritable, // Output key type

 IntWritable> { // Output value type

 protected void reduce(NullWritable key, // Input key type

 Iterable<IntWritable> values, // Input value type

 Context context) throws IOException, InterruptedException {

 int sum = 0;

 // Iterate over the set of values and sum them.

 for (IntWritable number : values) {

 sum = sum + number.get();

 }

 // Emits pair (NullWritable, sum)

 context.write(NullWritable.get(), new IntWritable(sum));

 }

}

d
Which one of the following statements is true?

 a) The application works properly and returns the sum of the input values but the

combiner is useless because it does not reduce the amount of data that is sent

on the network.

 b) The application works properly, returns the sum of the input values and the

combiner is useful because it reduces the amount of data that is sent on the

network.

 c) The application works properly and returns the sum of the input values only if

the combiner is executed but the combiner does not reduce the amount of data

that is sent on the network.

 d) The application does not work properly and raises an error at runtime also if the

combiner is instantiated.

Version #1

Part II

PoliMarket is an international company that sells items online. To improve the number of

sales and revenue of PoliMarket, a set of statistics about the managed items and

customers are computed based on the following input data sets/files.

 Items.txt

o Items.txt is a textual file containing the information about the items that are

sold by PoliMarket. There is one line for each item and the total number of

items is greater than 1,000,000. This file is large and you cannot suppose the

content of Items.txt can be stored in one in-memory python variable.

o Each line of Items.txt has the following format

 ItemID,Name,RecommendedPrice,Category

where ItemID is the item unique identifier, Name is the name of

ItemID, RecommendedPrice is the recommended sale price of ItemID

and Category is its category (i.e., the item category).

 For example, the following line

ID1,t-shirt-winter,10.5,Clothing

means that the item with id ID1 is characterized by the name t-shirt-

winter, its recommended price is 10.5 euro and it belongs to the

Clothing category.

 Customers.txt

o Customers.txt is a textual file containing the information about the customers

who are registered on the web site of PoliMarket. There is one line for each

customer and the total number of customers is greater than 10,000,000. This

file is large and you cannot suppose the content of Customers.txt can be

stored in one in-memory python variable.

o Each line of Customers.txt has the following format

 Username,Name,Surname,DateOfBirth

where Username is the customer unique identifier, Name and

Surname are his/her name and surname, respectively, and

DateOfBirth is his/her date of birth. The DateOfBirth format is

“YYYY/MM/DD”.

 For example, the following line

User20,Paolo,Garza,1976/03/01

means that the name and surname of customer User20 are Paolo

and Garza, respectively, and that the customer was born on March 1,

1976.

Version #1

 Ads_Purchases.txt

o Ads_Purchases.txt is a textual file containing the information about which

items, and when, were proposed through advertisements to each customer

and how many of those advertisements were converted in a purchase of the

advertised items. A new line is inserted in Ads_Purchases.txt every time a

new advertisement is shown to a customer. Ads_Purchases.txt contains the

historical data about the last 10 years. This file is big and you cannot

suppose the content of Ads_Purchases.txt can be stored in one in-memory

python variable.

o Each line of Ads_Purchases.txt has the following format

 Timestamp,Username,ItemID,Purchased,SalePrice

where Timestamp is the timestamp at which an advertisement about

the item ItemID has been shown to customer Username. Purchased is

a Boolean variable that is set to “true” if the customer Username

purchased the item ItemID after the visualization of the advertisement.

Otherwise, Purchased is set to “false”. SalePrice is the price at which

Username bought ItemID. SalePrice is set to 0 if Purchased is “false”.

 For example, the following line

2019/02/02-09:15:01,User20,ID1,true,50.99

means that on February 2, 2019, at 09:15:01 an advertisement about

the item identified by ID1 was shown to the customer User20, and

then User20 bought that item at 50.99 euro. The format of timestamp

is “YYYY/MM/DD-HH:MM:SS”.

Note that the same advertisement can be shown to different users at

the same timestamp, the same advertisement can be shown to the

same user in many different timestamps, and many different

advertisements can be shown to the same customer, also at the same

timestamps.

Version #1

Exercise 1 – MapReduce and Hadoop (7 points)

The managers of PoliMarket are interested in performing some analyses about the
effectiveness of their advertisements.

Design a single application, based on MapReduce and Hadoop, and write the
corresponding Java code, to address the following point:

1. Advertised items with a high percentage of conversions in the year 2020. The

application considers only the advertisements related to the year 2020 (i.e., those
with timestamps related to the year 2020) and selects the items associated with a

conversion rate greater than 0.1%. The conversion rate of an item is given by the
ratio between the number of advertisements related to that item which are also
associated with a purchase (i.e., the number of lines in Ads_Purchases.txt
associated with that item having Purchased equal to “true”) divided by the number

of advertisements related to that item (i.e., the number of lines in Ads_Purchases.txt
associated with that item). Pay attention that you must compute the conversion rate

considering only the data related to the year 2020. Store in the output HDFS folder
the identifiers (ItemIDs) of the selected items and their conversion rate in the year
2020 (i.e., the output contains one line for each of the selected items and the format

is ItemID\t percentage of conversions in the year 2020).

Suppose that the input is Ads_Purchases.txt and it has been already set and also the

name of the output folder has been already set.

 Write only the content of the Mapper and Reducer classes (map and reduce

methods. setup and cleanup if needed). The content of the Driver must not be
reported.

 Use the next two specific multiple-choice questions to specify the number of
instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with
the first job and which are associated with the second job.

 If you need personalized classes report for each of them:

o name of the class

o attributes/fields of the class (data type and name)

o personalized methods (if any), e.g, the content of the toString() method if you

override it

o do not report get and set methods. I suppose they are "automatically

defined"

Version #1

Exercise 1 - Number of instances of the reducer - Job 1 - MapReduce and Hadoop

(0.5 points)

Select the number of instances of the reducer class of the first Job

(a) 0

(b) exactly 1

(c) any number >=1

Exercise 1 - Number of instances of the reducer - Job 2 - MapReduce and Hadoop

(0.5 points)

Select the number of instances of the reducer class of the second Job

(a) One single job is needed for this MapReduce application

(b) 0

(c) exactly 1

(d) any number >=1

Version #1

Exercise 2 – Spark (19 points)

The managers of PoliMarket are interested in performing some analyses related to their

items, customers, and the effectiveness of their advertisements.

The managers of PoliMarket asked you to develop one single application to address all the

analyses they are interested in. The application has five arguments: the three input files

Items.txt, Customers.txt, Ads_Purchases.txt and two output folders, “outPart1/” and

“outPart2/”, which are associated with the outputs of the following Points 1 and 2,

respectively.

Specifically, design a single application, based on Spark RDDs or Spark DataFrames, and
write the corresponding Python code, to address the following points:

1. Items that are frequently sold at a price greater than the recommended one. The

application selects the items that in more than 90% of the associated purchases (lines
of "Ads_Purchases.txt" with Purchased equal to “true”) are characterized by a price of

sale (SalePrice) greater than the recommended price (RecommendedPrice). The
application stores in the first HDFS output folder the identifiers (ItemIDs) of the selected
items and their categories (one combination ItemID, Category per output line).

2. Categories with many unadvertised items and many low-profit items. The application

considers all the data about the displayed advertisements that are in
"Ads_Purchases.txt" and considers only the items that are either unadvertised or low-

profit items. An item is categorized as an unadvertised item if it was never advertised
(i.e., it does not occur in "Ads_Purchases.txt"). An item is categorized as a low-profit
item if the profit associated with its advertisements is greater than 0 and below 100

euro. The profit associated with each item is the sum of the values of SalePrice of its
advertisements (remember that SalePrice is equal to 0 when Purchased is equal to
“false”). The application selects the categories (category is a feature of items.txt) that

are associated with (i) at least 10 unadvertised items and (ii) at least 10 low-profit
items. The categories that satisfy the reported constraints are stored in the second
output folder. For each of the selected categories, the following information is stored in

the second output folder: category, number of unadvertised items, number of low-profit
items (one of the selected categories and the associated information per output line).

Some examples related to Point 2 (second part of the exercise)

 Suppose that the category Books includes 15 unadvertised items and 12 low-

profit items. The category Books is selected because the number of
unadvertised items is greater than or equal to 10 and also the number of low-

profit items of that category is greater than or equal to 10. The line
“Books,15,12” is stored in the second output folder.

 Suppose that the category Clothing includes 4 unadvertised items and 30 low-
profit items. Clothing is not selected because the number of unadvertised items

is less than 10. Clothing is not stored in the second output folder.

 Suppose that the category “Home & Garden” includes 30 unadvertised items

and 0 low-profit items. “Home & Garden” is not selected because the number

Version #1

of low-profit items is less than 10. “Home & Garden” is not stored in the second
output folder.

Suppose sc (Spark Context) and spark (Spark Session) have been already set.

itemsPath= 'Items.txt'
customersPath= 'Customers.txt'

adsPath= 'Ads_Purchases.txt'

output1 = 'out1'

output2 = 'out2'

