
Lab3_Matplotlib_solutions

April 8, 2025

1 Lab 3: Matplotlib
The objective of this notebook is to learn about the Matplotlib library (official documentation).
You can find a good guide at this link.

1.1 Outline
• 1. Drawing lines
• 2. Plot bars
• 3. Plot points and Multiple Charts

First, run the following cell to import some useful libraries to complete this Lab. If not already
done, you must install them in your virtual environment

[8]: import numpy as np
import matplotlib.pyplot as plt

If the previous cell outputs one of the following errors: ModuleNotFoundError: No module named
'numpy' or ModuleNotFoundError: No module named 'matplotlib', then, you have to install
the numpy or the matplotlib packages. If you don’t remember how to install a Python package,
please retrieve the guide on Anaconda-Navigator.

To install numpy you can use one of the following commands from the terminal of your virtual
environment: conda install numpy pip install numpy

To install matplotlib you can use one of the following commands from the terminal of your virtual
environment: conda install matplotlib pip install matplotlib

1. Drawing lines

1.1.1 Exercise 1.1

Create a Numpy array X containing 100 samples evenly spaced over the interval [-10, 10].
Then, define a variable Y_squares containing the squares of each element of X, and a variable
Y_lin, where each element 𝑦𝑖 ∈ 𝑌𝑙𝑖𝑛 is computed with the following linear equation: 𝑦𝑖 = 𝑥𝑖 ∗10+9
for each 𝑥𝑖 ∈ 𝑋.

Hints

The np.linspace() function can be exploited to create samples evenly spaced in a specified interval.

Exploit broadcasting in computing 𝑌 _𝑠𝑞𝑢𝑎𝑟𝑒𝑠 and 𝑌 _𝑙𝑖𝑛 (avoid explicit for loops).

1

[9]: #### START CODE HERE (~3 lines) ####

X = np.linspace(-10, 10, 100)
Y_squares = X**2
Y_lin = X * 10 + 9

END CODE HERE

print(f"X shape: {X.shape}")
print(f"X min: {X.min()}")
print(f"X max: {X.max()}")
print(f"\nY_squares shape: {Y_squares.shape}")
print(f"Y_squares min: {Y_squares.min()}")
print(f"Y_squares max: {Y_squares.max()}")
print(f"\nY_lin shape: {Y_lin.shape}")
print(f"Y_lin min: {Y_lin.min()}")
print(f"Y_lin max: {Y_lin.max()}")

X shape: (100,)
X min: -10.0
X max: 10.0

Y_squares shape: (100,)
Y_squares min: 0.010203040506070672
Y_squares max: 100.0

Y_lin shape: (100,)
Y_lin min: -91.0
Y_lin max: 109.0

Expected output X shape: (100,) X min: -10.0 X max: 10.0 Y_squares shape: (100,)
Y_squares min: 0.010203040506070672 Y_squares max: 100.0 Y_lin shape: (100,) Y_lin
min: -91.0 Y_lin max: 109.0

1.1.2 Exercise 1.2

Create a single chart containing the two lines (X, Y_squares) and (X, Y_lin). You should
set the label of the first line (X, Y_squares) as Y squares and the label of the second line (X,
Y_lin) as Y lin. You should set the label of the X axis to X Value and of the Y axis to Y Value.
You should also show the legend and the grid of the chart.

Hints

The ax.plot() method can be exploited to draw a line.

[10]: #### START CODE HERE (~8 lines) ####

fig, ax = plt.subplots()

2

ax.plot(X, Y_squares, label='Y Squares')
ax.plot(X, Y_lin, label='Y lin')

ax.set_ylabel("Y Value")
ax.set_xlabel("X Value")

plt.legend()
plt.grid(True)
plt.show()

END CODE HERE

Expected output ## 2. Plot bars

1.1.3 Exercise 2.1

Create a barplot chart starting from the two dictionaries, males_dict and females_dict. For each
age range in the keys of the two dictionaries (i.e., 18-25,26-35, 36-50, and 50+), you should plot
the two barplots (male and then female) side-by-side. Put in the xticks the name of each age
range (i.e., 18-25,26-35, 36-50, and 50+). Then, set the name of the x axis to age, and the name
of the y axis to n° of people. The bars for the males should be set to the color "royalblue",

3

and for the females to the color "deeppink". You should also plot the legend. For the males
bars in the legend you should put M, and for the females F. The legend should be located on
the right of the plot and in a center height (you can set the location to the following values
(1.1, 0.5)).

Hints

The ax.bar() method can be exploited to draw bars.

If you want to plot bars side-by-side, you should set the position of the left bars to 𝑥−𝑏𝑎𝑟_𝑤𝑖𝑑𝑡ℎ/2,
and the right bars to 𝑥 + 𝑏𝑎𝑟_𝑤𝑖𝑑𝑡ℎ/2.

[11]: females_dict = {"18-25": 55,"26-35":122, "36-50":21, "50+": 3 }
males_dict = {"18-25": 44,"26-35":143, "36-50":35, "50+": 5 }
bar_width = 0.4

START CODE HERE (~12 lines)

x = np.arange(len(males_dict.values()))

labels = list(males_dict.keys())

fig, ax = plt.subplots(figsize=(4, 3))

ax.bar(x+bar_width/2, females_dict.values(), color='deeppink', width=bar_width,␣
↪label='F')

ax.bar(x-bar_width/2, males_dict.values(), color="royalblue", width=bar_width,␣
↪label='M')

ax.set_xticks(x) # setup positions of x ticks
ax.set_xticklabels(labels) # set up labels of x ticks

ax.set_xlabel("age")
ax.set_ylabel("n° of people")

ax.legend(loc=(1.1, 0.5)) # x, y position, in percentage
plt.grid(True)
plt.show()

END CODE HERE

4

Expected output ## 3. Plot points and Multiple Charts

Please run the following cell containing useful functions already implemented for you to plot some
charts.

[12]: def is_above_fn(p, x, y):
""" This functions returns True if the point p (as a tuple) is above the␣

↪line defined by the points in x and y"""
return np.cross(p-x, y-x) < 0

def find_above_and_below_points_fn(x, y, x_bound, y_bound):
""" This funtion split a numpy array into two numpy arrays with all the␣

↪points that stand
above and below a line, respetively"""
X_above = []
X_below = []
Y_above = []
Y_below = []
for xi, yi in zip(x, y):

if is_above_fn((xi, yi), x_bound, y_bound):
X_above.append(xi)
Y_above.append(yi)

else:
X_below.append(xi)
Y_below.append(yi)

X_above = np.array(X_above)
X_below = np.array(X_below)
Y_above = np.array(Y_above)
Y_below = np.array(Y_below)

5

return X_above, Y_above, X_below, Y_below

def generate_gradient_colors_fn(x, y):
""" This functin generates color values as a function of x and y"""
return x + y

1.1.4 Exercise 3.1

[13]: x = np.random.rand(20)
y = np.random.rand(20)

p1_bound = np.array([0.0, 1.0])
p2_bound = np.array([1.0, 0.0])

colors_1 = generate_gradient_colors_fn(x, y)
x_above, y_above, x_below, y_below = find_above_and_below_points_fn(x, y,␣

↪p1_bound, p2_bound)

/var/folders/yf/khhcc0jx1pg909227gmwfjk00000gn/T/ipykernel_18571/2965452726.py:3
: DeprecationWarning: Arrays of 2-dimensional vectors are deprecated. Use arrays
of 3-dimensional vectors instead. (deprecated in NumPy 2.0)

return np.cross(p-x, y-x) < 0

Plot two charts side-by-side.

In the first chart, you should draw a green line through the points p1_bound and p2_bound.
Then, you should plot the points stored in the variables x and y with the color list stored in the
variable colors_1 (the colors are already computed as a gradient defined with a function of x and
y) and the colormap seismic. Finally, you should set the name of the X axis to X and of the Y
axis to Y.

In the second chart, you should draw the same green line through the points p1_bound and
p2_bound. This time, you should set the name of the line to Decision boundary. Then, you
should plot all the points lying above the line, stored in the variable X_above (they are already
computed for you) with the color red. Set the label for those points to Above points. Then, you
should plot all the points lying below the line, stored in the variable X_below (they are already
computed for you) with the color blue. Set the label for those points to Below points. Finally,
you should set the name of the X axis to X and of the Y axis to Y, and show the legend of the
second chart with the following location loc=(1.1, 0.5).

Hints

The ax.plot() method can be exploited to draw lines.

The ax.scatter() method can be exploited to draw points.

[14]: #### START CODE HERE (~12 lines) ####

fig, ax = plt.subplots(1, 2, figsize=(10, 4))

6

ax[0].scatter(x, y, c=colors_1, cmap='seismic')
ax[0].plot(p1_bound, p2_bound, color='green')
ax[0].set_xlabel("X")
ax[0].set_ylabel("Y")

ax[1].scatter(x_above, y_above, c="red", label="Above points")
ax[1].scatter(x_below, y_below, c="blue", label="Below points")
ax[1].plot(p1_bound, p2_bound, color='green', label="Decision boundary")
ax[1].set_xlabel("X")
ax[1].set_ylabel("Y")
ax[1].legend(loc=(1.1, 0.5))

plt.show()

END CODE HERE

Expected output

7

	Lab 3: Matplotlib
	Outline
	Exercise 1.1
	Exercise 1.2
	Exercise 2.1
	Exercise 3.1

