
Introduction to databases Laboratory: Triggers in Oracle

1

Laboratory 4

Triggers in Oracle

Goal

The objective of this practice is to write some triggers in SQL to run on an Oracle database.

To connect to a Database you can follow the guides related to the first lab practice. This lab

can be done in Oracle SQL Developer or in Oracle APEX online without any difference.

The triggers must be created using the functionality that allows the execution of SQL code.

Useful SQL statements

• Delete a trigger:

• Update of an existing trigger (instead of delete and recreate it):

• Display defined triggers:

• Disable a trigger:

• Display trigger errors:

Suggestions

Before doing each exercise, load the related tables by executing the scripts script_db_es1.sql,
script_db_es2.sql.

To create a trigger, pay attention to the syntax and to the following issues:

• assign a proper name to the variables avoiding keywords like MIN, MAX, ...

• declare different variables on different lines and not on the same line delimited by a comma

DROP TRIGGER triggerName;

DROP TRIGGER “triggerName”;

CREATE OR REPLACE TRIGGER triggerName …

SELECT trigger_name, triggering_event, table_name, status,

Description, action_type, trigger_body

FROM user_triggers

ALTER TRIGGER triggerName DISABLE;

SELECT * FROM USER_ERRORS;

MyVarOne NUMBER;

MyVarTwo NUMBER;

MyVarThree VARCHAR2(16)

Introduction to databases Laboratory: Triggers in Oracle

2

• terminate the statements with ; character and assign new values to the variables with :=, e.g.

Before starting this practice we suggest you to delete any existing trigger, which could affect the
outcome of the exercises.

Remark. Pay attention because copying and pasting SQL code lines from the practice text in PDF
format into the Browser Web may generate errors due to invalid character encoding or conversion,
such as ora-00911: invalid character.

1 Exercise 1

The following relations are given (primary keys are underlined; optional attributes are denoted with

*):

• IMP(EMPNO, DEPTNO, ENAME, JOB, SAL)

• DIP(DEPTNO, DNAME, LOC, MINSAL, MAXSAL)

Write the trigger which manages the update of the DNAME attribute on the DIP table. When the

DNAME attribute changes from ’ACCOUNTING’ to ’SALES’, the wage (SAL attribute) for all

employees, who work in the corresponding DEPTNO, is increased by 100.

Procedure:

• Create the database using script create_db_es1.sql.

• Create the trigger, eventually by means of a script.

• Verify the content of IMP and DIP tables.

• Modify the department name ’ACCOUNTING’:

• Verify the content of the IMP and DIP tables.

UPDATE tableName

SET varname=newvalue

WHERE column=:NEW.attribute;

IF A<3 OR A=3 THEN

 MyVar := ‘Three’;

ELSE

IF A>3 AND A<5 THEN

 MyVar := ‘Four’;

ELSE

 MyVar := ‘Other’;

END IF;

END IF;

UPDATE DIP SET DNAME = ‘SALES’ WHERE DNAME = ‘ACCOUNTING’;

Introduction to databases Laboratory: Triggers in Oracle

3

2 Exercise 2

The following relations are given (primary keys are underlined; optional attributes are denoted with

*):

• IMP(EMPNO, ENAME, JOB, SAL)

• SUMMARY(JOB, NUM)

In the SUMMARY table, the NUM attribute specifies the number of employees in the IMP table who

perform the same job. Write the triggers to guarantee the consistency between IMP and SUMMARY

tables when:

• A new record is inserted in the IMP table.

• The value of JOB in the IMP table is updated.

Create the database using script create_db_es2.sql.

Introduction to databases Laboratory: Triggers in Oracle

4

Solutions

1 Exercise 1

Table before trigger action

IMP table

DIP table

Code

Trigger

CREATE OR REPLACE TRIGGER UP_SAL

AFTER UPDATE OF DNAME ON DIP

FOR EACH ROW

WHEN (OLD.DNAME = ‘ACCOUNTING’ AND NEW.DNAME=’SALES’)

BEGIN

-- updating salary of the employees of the changed department

UPDATE IMP

SET SAL = SAL+100

WHERE DEPTNO = :OLD.DEPTNO;

END;

Introduction to databases Laboratory: Triggers in Oracle

5

Update statement

Table after trigger action

IMP table

DIP table

UPDATE DIP SET DNAME = ‘SALES’ WHERE DNAME = ‘ACCOUNTING’;

Introduction to databases Laboratory: Triggers in Oracle

6

2 Exercise 2

Table before trigger action

IMP table

SUMMARY table

Introduction to databases Laboratory: Triggers in Oracle

7

Code

Trigger to manage the insertion of a new record into the IMP table

Insert statement

INSERT INTO IMP(EMPNO, ENAME, JOB, SAL) VALUES (4, 'NERI', 'DELIVERER', 750);

CREATE OR REPLACE TRIGGER INS_IMP

AFTER INSERT ON IMP

FOR EACH ROW

DECLARE

N NUMBER;

M NUMBER;

BEGIN

-- checking if there are other employees with the same job

SELECT COUNT(*) INTO N

FROM SUMMARY

WHERE JOB = :NEW.JOB;

IF (N=0) THEN

-- this is the first employee with this job

INSERT INTO SUMMARY (JOB, NUM)

VALUES (:NEW.JOB, 1);

ELSE

-- there is at least another employee with the same job

SELECT NUM INTO M

FROM SUMMARY

WHERE JOB = :NEW.JOB;

UPDATE SUMMARY

SET NUM = M+1

WHERE JOB = :NEW.JOB;

END IF;

END;

Introduction to databases Laboratory: Triggers in Oracle

8

Table after trigger action

IMP table

SUMMARY table

Introduction to databases Laboratory: Triggers in Oracle

9

Code

Trigger to manage the update of the JOB field on the IMP table

CREATE OR REPLACE TRIGGER UPD_IMP

AFTER UPDATE OF JOB ON IMP

FOR EACH ROW

DECLARE

N NUMBER;

M NUMBER;

BEGIN

-- count how many employees have the new job

SELECT COUNT(*) INTO N

FROM SUMMARY

WHERE JOB = :NEW.JOB;

-- increment the number of employees for the new job

IF (N=0) THEN

-- the inserted employee is the first employee for the new job

INSERT INTO SUMMARY (JOB, NUM)

VALUES (:NEW.JOB, 1);

ELSE

-- there is at least one other employee for the new job

UPDATE SUMMARY

SET NUM = NUM+1

WHERE JOB = :NEW.JOB;

END IF;

SELECT NUM INTO M

FROM SUMMARY

WHERE JOB = :OLD.JOB;

IF (M =1) THEN

-- there was only an employee for the old job. Delete the record from

-- SUMMARY table

DELETE FROM SUMMARY

WHERE JOB = :OLD.JOB;

ELSE

-- decrement NUM in the corresponding record of SUMMARY table

UPDATE SUMMARY

SET NUM = NUM-1

WHERE JOB = :OLD.JOB;

END IF;

END;

Introduction to databases Laboratory: Triggers in Oracle

10

Update statement

Table after trigger action

IMP table

SUMMARY table

UPDATE IMP SET JOB = 'DELIVERER' WHERE EMPNO = 2;

