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Stages of Explainability – Mechanistic

Explainability involves the entire AI development pipeline 
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Post-modelling 
explainability

Explainable 
modeling

Pre-modelling 
explainability

Before building the model
• Data exploration
• Data selection
• Feature engineering

Build inherently 
interpretable models
• Manage the accuracy and 

interpretability trade-off

After model development
• Explaining predictions 

and behavior of trained 
models
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Mechanistic Interpretability in CNN
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How Neural Networks Globally Reason 
Internally?

The decision making of NNs is seen often defined 
indecipherable: 

• We are unable to interpret NNs inner workings

We can reveal meaningful patterns zooming in on:

• Individual neurons 

• Their connections

Mechanistic Interpretability helps us break down NN 
decisions into globally understandable structures
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The power of ‘‘Zooming In’’1

Scientific progress is driven by the ability to zoom into finer 

details of a given field:

• Microscope --> Discovery of cells --> Cellular Biology

• X-ray cristallography --> DNA structure and molecules --> Atomic 

Theory

Why don’t we try to do the same with NNs?

• NN visualization --> Computational circuits --> NN interpretation?

NNs often studied at a macro level but:

• Finer analysis may uncover universal processes within NNs

[1] https://distill.pub/2020/circuits/zoom-in/
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Three Speculative Claims

1. Features 

• NN representations are composed of individual features such as edges, textures, and object parts

• Each neuron (or combination of neurons) specializes in detecting specific characteristics

2. Circuits

• Neurons form meaningful interactions, creating circuits rather than working in isolation

• Circuits connect features, creating complex computations as shape recognition or object segmentation

3. Universality

• Similar neurons and circuits appear across different architectures and tasks 

• Do certain structures emerge naturally from training data? 
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Feature Example - Curve Detectors

Neurons in vision models detect curves and edges, a 
crucial step in visual processing

Supporting evidence:
• Feature visualization: Visualizing neurons shows curve 

patterns

• Dataset examples: Neurons activate when encountering 
curve-related images

• Synthetic testing: Creating artificial inputs verifies neuron 
behavior
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Feature Visualization2

How?
• Optimizes an input image to strongly activate a specific 

neuron or layer

• Iteratively adjuste the image until maximazing activation

What do we obtain?
• Generate synthetic representations of the features learnt by 

the network (neurons or layers)

Deep Dream 
• Modifies an existing image to exaggerate the patterns that a 

NN detects

• Instead of generating new images from scratch

• Artistic yet insightful look into how models perceive patterns 
and objects

[2] https://distill.pub/2017/feature-visualization/ 9
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Feature Example -Pose-Invariant Dog Head 
Detector
• Some neurons specialize in 

recognizing dog heads from various 
angles

• Networks generalize recognition by 
forming “union over cases’’

• This allows models to learn abstract 
concepts beyond pixel patterns
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Circuits Motifs in Neural Networks

• Features are connected by weights, forming circuits

• Neural networks develop consistent circuits, known as motifs:

• Equivariance – Rotation-invariant recognition.

• Unioning over cases – Combining multiple perspectives.

• Superposition – Using neurons efficiently to store information.
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Circuit Example: Forming the Pose-Invariant 
Dog Head Detector
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Universality
NNs often develop similar features and circuits 

across different models and architectures

Why Universality Matters?

• Suggests neural networks may be converging 
toward fundamental computational principles

• Provides a foundation for transfer learning

Examples of Universality:

• Edge and texture features appear across all vision models

• Curve detectors circuits function similarly in different 
architectures

13



Challenges

Polisemanticity

• Some neurons respond to multiple unrelated features

• Complicates alignment to human decision-making

• Superposition: need to use neurons efficiently to store information

Required human annotation to:

• Inspect neurons

• Create visualizations

• Examine circuits

Universality is not strictly required

• But if it does not hold future research can focus only on individual models
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Mechanistic Interpretability in LLMs
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Different Representation Structure

Lack of Spatial Structure

• Transformers process tokens in a sequence rather than pixels in a grid

      --> We do not have filters that learns patterns tied to specific locations

Dynamic, Complex Interactions

• Attention mechanisms dynamically shift focus based on context

• Transformers learn relationships between tokens

      --> Challenging to attribute a single neuron to a specific feature

      --> Challenging to visualize circuits
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Reverse Engineering Transformers

• The Residual Stream

• Each layer reads its input and writes its output on the 

residual stream 

• Deeper layers do not overwrite previous information but 

additively build upon it

• Attention heads are independent and additive

• Attention heads move information from one token to the 

other (residual stream)

• Their contribution can be considered quasi-linear and 

additive

• only the attention score with the softmax is non linear
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Analysis of Simplified Transformers3

• Zero-Layer Transformer 
• No information moves across tokens 

      --> it predicts the next token purely based on bigram (i.e. 
«token pairs») statistics

• One-Layer Transformer 
• Keep bigram probabilities (from residual stream)

• It introduces skip-trigrams

• Patterns "A...BC": a token earlier in the sequence (A) 
influences a later prediction (C) despite being separated 
by (one or more) token B

• Attention heads selectively attend to earlier tokens to 
modify predictions accordingly
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Analysis of Simplified Transformers (2)

• Two Layer Transformer are composed of:

• Direct path contributing to next token statistics

• Virtual and Individual attention heads behaving 

similarly

• Virtual attention heads are the linear 

multiplication of several attention heads

• Much higher in-context learning by «Induction 
heads» 
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Transformer Matrix dimensions
• Embedding step:

• Size: Nv × Ne (50257 × 1600 for GPT-2 1558M)

• Purpose: From the vocab space (Nv) into the embedding space (Ne)

• Transformer Blocks:

• Processing: The 1600-dimensional vector moves through all transformer layers 
(blocks)

• Each Block's Output: Another 1600-dimensional vector, progressively refining the 
representation

• Un-Embedding Step (Final Projection):

• Size: Ne × Nv  (1600 × 50257)

• Purpose: Transforms the processed 1600-dimensional vector back into vocab 
space (Nv)

--> We can analyze how the residual stream evolves through the layers

• By appling the Un-Embeedding step of the output layer to any intermediate layer!

20



Analysis under the Logit Lens4

• Input: A segment of the GPT-3 paper's abstract

• Preceding text available but not explicitly visualized

• Output: Token predictions (h_out) and correct labels:

• Correct label: the token following the current input token

• Correct predictions (*) where the model’s top guess matches the 
expected output

• DISCLAIMER: Even in output, many predictions are wrong. It does 
not matter, GPT2 was an early LLM, the underlying process is still 
valid

• Intermediate values: Color-coded logits 

• Logits increase as the model refines its predictions and improves its 
certainty

[4]https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
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Observations

• GPT "early guesses" are generally wrong but often 

sensible enough in some way:

• "We train GPT-3..." 000? (someday!)

• "GPT-3, an..." enormous? massive? (not wrong!)

• Some early predictions look noisy but gradually become 

coherent

• "We train GPT-3, an aut..." oreceptor? (later converges to 

the correct oregressive)

• The logit lens reveals how each step contributes to the 

final output
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KL divergence plot

• The KL Divergence measure the similarity between 
two distributions

• The current predicted output distribution

• The correct output label distribution

• Input token information is quickly discarded after 
the first layer

• Inputs are transformed immediately rather than 
preserved for gradual processing

• Later layers refine guesses without keeping direct 
input reference

• GPT works more like an iterative predictive space 
refiner rather than an input processing model
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Addressing the Polisemanticity Issue

• Mechanistic interpretability seeks to break neural networks into simpler, 
understandable components

• BUT: Neurons are often polysemantic -- they activate for multiple unrelated 
concepts

• E.g., The neuron in Inception v1 responding to both cat faces and car fronts.

• In LLM a neuron can fire for academic citations, HTTP requests, and Korean text.

• Polysemanticity complicates interpretability, making it hard to assign clear 
functions to neurons.

• Researchers believes dictionary learning may allow extract monosemantic 
features, improving transparency
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Towards Monosemanticity: Decomposing 
Language Models With Dictionary Learning5

• Feature-Based Decomposition: 
• Instead of analyzing neurons

• We analyze the entire activations 

• We decompose it into single general features

• It can be applied on top of MLP as well!

• Sparse AutoEncoders (SAE)
• Represent activations as a combination of distinct features 

instead of single neuron responses

• Feature expansion: SAE hidden dimensions >> input 
dimension (8x)

• Allows to decompose MLP representation and avoid 
superposition

• 𝐿𝑜𝑠𝑠𝑆𝐴𝐸 = 𝑊𝐷𝐸𝐶 𝑀𝐿𝑃 𝑥 𝑊𝐸𝑁𝐶 − 𝑀𝐿𝑃 𝑥  
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Let’s find features within an LLM!
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Let’s find features within an LLM!

https://transformer-circuits.pub/2023/monosemantic-
features/vis/a1.html?ordering=count&search_text=food
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Let’s see how to use these features to analyze 
a text

https://transformer-circuits.pub/2023/monosemantic-features/vis/a1-
en.html
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