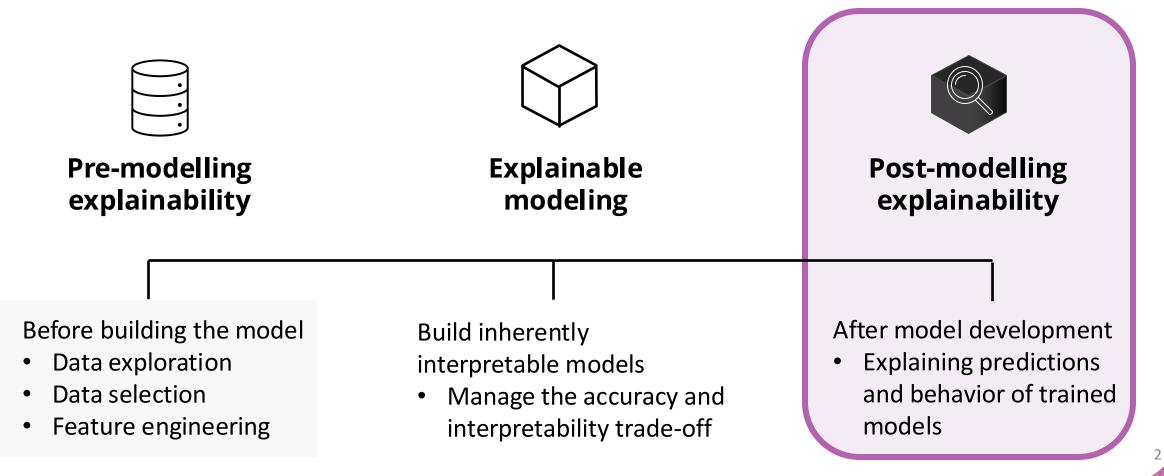


Mechanistic Interpretability

Explainable and Trustworthy AI

Stages of Explainability – Mechanistic

Explainability involves the entire AI development pipeline



Contents

- 1. Mechanistic Interpretability in CNN
 - 1. Features
 - 2. Circuits
 - 3. Universality
- 2. Mechanistic Interpretability in LLMs
 - 1. Analysis of Simplified Transformers
 - 2. The Logit Lens
 - 3. Sparse Dictionary Learning

Mechanistic Interpretability in CNN

How Neural Networks Globally Reason Internally?

The decision making of NNs is seen often defined **indecipherable**:

- We are unable to interpret NNs inner workings
- We can reveal meaningful patterns **zooming in** on:
 - Individual neurons
 - Their connections

Mechanistic Interpretability helps us break down NN decisions into **globally understandable structures**

MECHANISTIC INTERPRETABILITY

The power of "Zooming In"¹

Scientific progress is driven by the ability to zoom into finer details of a given field:

- Microscope --> Discovery of cells --> Cellular Biology
- X-ray cristallography --> DNA structure and molecules --> Atomic Theory

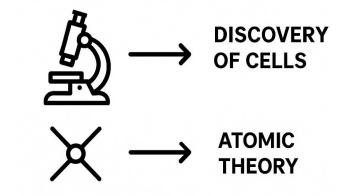
Why don't we try to do the same with NNs?

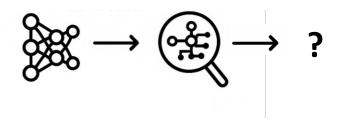
• NN visualization --> Computational circuits --> NN interpretation?

NNs often studied at a **macro level** but:

• Finer analysis may uncover universal processes within NNs

[1] https://distill.pub/2020/circuits/zoom-in/





Three Speculative Claims

1. Features

- NN representations are composed of **individual features** such as edges, textures, and object parts
- Each neuron (or combination of neurons) specializes in detecting specific characteristics

2. Circuits

- Neurons form meaningful interactions, creating circuits rather than working in isolation
- Circuits connect features, creating complex computations as shape recognition or object segmentation

3. Universality

- Similar neurons and circuits appear across different architectures and tasks
- Do certain structures emerge naturally from training data?

Feature Example - Curve Detectors

Neurons in vision models detect **curves and edges**, a crucial step in visual processing

Supporting evidence:

- Feature visualization: Visualizing neurons shows curve patterns
- **Dataset examples:** Neurons activate when encountering curve-related images
- Synthetic testing: Creating artificial inputs verifies neuron behavior

Feature Visualization²

How?

- Optimizes an input image to strongly activate a specific neuron or layer
- Iteratively adjuste the image until maximazing activation

What do we obtain?

• Generate synthetic representations of the features learnt by the network (neurons or layers)

Deep Dream

- Modifies an existing image to exaggerate the patterns that a NN detects
 - Instead of generating new images from scratch
- Artistic yet insightful look into how models perceive patterns and objects

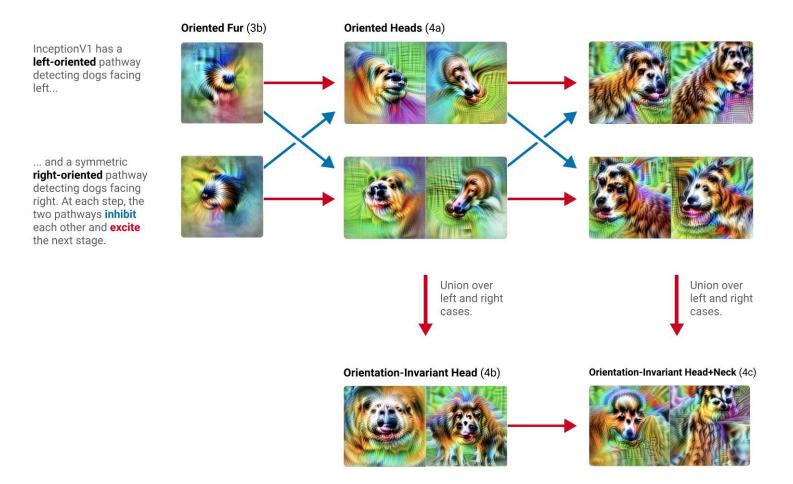
Feature Example -Pose-Invariant Dog Head Detector

- Some neurons specialize in recognizing dog heads from various angles
- Networks generalize recognition by forming "union over cases"
- This allows models to learn abstract concepts beyond pixel patterns

Circuits Motifs in Neural Networks

- Features are connected by weights, forming circuits
- Neural networks develop consistent circuits, known as motifs:
 - **Equivariance** Rotation-invariant recognition.
 - Unioning over cases Combining multiple perspectives.
 - Superposition Using neurons efficiently to store information.

Circuit Example: Forming the Pose-Invariant Dog Head Detector



Universality

NNs often develop similar features and circuits across different models and architectures

Why Universality Matters?

- Suggests neural networks may be converging toward fundamental computational principles
- Provides a foundation for transfer learning

Examples of Universality:

- Edge and texture features appear across all vision model He et al. [36]
- **Curve detectors circuits** function similarly in different architectures

ALEXNET
Krizhevsky et al. [34]Image: Second Second

Curve detectors

Challenges

Polisemanticity

- Some neurons respond to multiple unrelated features
- Complicates alignment to human decision-making
- Superposition: need to use neurons efficiently to store information

Required **human annotation to:**

- Inspect neurons
- Create visualizations
- Examine circuits

Universality is not strictly required

• But if it does not hold future research can focus only on **individual models**

Dataset examples

Mechanistic Interpretability in LLMs

Different Representation Structure

Lack of Spatial Structure

• Transformers process tokens in a sequence rather than pixels in a grid

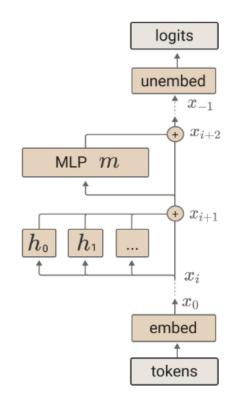
--> We do not have filters that learns patterns tied to specific locations

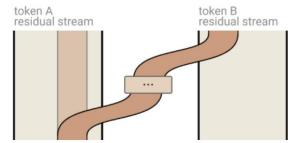
Dynamic, Complex Interactions

- Attention mechanisms dynamically shift focus based on context
- Transformers learn relationships between tokens
 - --> Challenging to attribute a single neuron to a specific feature
 - --> Challenging to visualize circuits

Reverse Engineering Transformers

- The Residual Stream
 - Each layer reads its input and writes its output on the *residual stream*
 - Deeper layers do not overwrite previous information but additively build upon it
- Attention heads are independent and additive
 - Attention heads move information from one token to the other (residual stream)
 - Their contribution can be considered quasi-linear and additive
 - only the attention score with the softmax is non linear

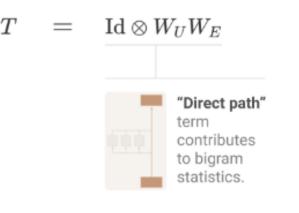




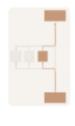
Analysis of Simplified Transformers³

• Zero-Layer Transformer

- No information moves across tokens
- --> it predicts the next token purely based on bigram (i.e. «token pairs») statistics
- One-Layer Transformer
 - Keep bigram probabilities (from residual stream)
 - It introduces skip-trigrams
 - Patterns "A...BC": a token earlier in the sequence (A) influences a later prediction (C) despite being separated by (one or more) token B
 - Attention heads selectively attend to earlier tokens to modify predictions accordingly







The **attention head** terms describe the effects of attention heads in linking input tokens to logits. A^h describes which tokens are attended to while $W_U W_{OV}^h W_E$ describes how each token changes the logits if attended to.

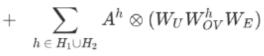
[3] https://transformercircuits.pub/2021/framework/index.html

Analysis of Simplified Transformers (2)

 $+ ~~ \sum_{h_2 \, \in \, H_2} \sum_{h_1 \, \in \, H_1} (A^{h_2} A^{h_1}) \otimes (W_U W^{h_2}_{OV} W^{h_1}_{OV} W_E)$

T

The **virtual attention head** terms correspond to V-composition of attention heads. They function a lot like individual attention heads, with their own attention patterns (the compositon of the heads patterns) and own OV matrix.



The **individual attention head** terms describe the effects of individual attention heads in linking input tokens to logits, similar to those we saw in the one layer model.

- Two Layer Transformer are composed of:
 - Direct path contributing to next token statistics
 - Virtual and Individual attention heads behaving similarly
 - Virtual attention heads are the linear multiplication of several attention heads
 - Much higher in-context learning by «Induction heads»

Induction Head - Example 1	
Mr and Mrs Dursley, of	 such nonsense. Mr Dursley was the
Mr and Mrs Dursley, of	 such nonsense. Mr Dursley was the
Mr and Mrs Dursley, of	 such nonsense. Mr Dursley was the
Mr and Mrs Dursley, of	 such nonsense. Mr Dursley was the
Mr and Mrs Dursley, of	 such nonsense. Mr Dursley was the
Mr and Mrs Dursley, of	 such nonsense. Mr Dursley was the
Mr and Mrs Dursley, of	 such nonsense. Mr Dursley was the

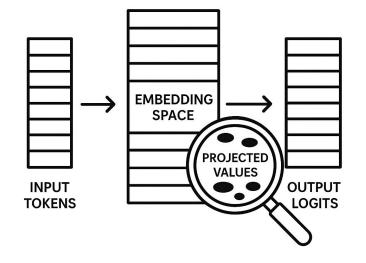
Present Token
Attention
Logit Effect

Transformer Matrix dimensions

- Embedding step:
 - Size: Nv × Ne (50257 × 1600 for GPT-2 1558M)
 - Purpose: From the vocab space (Nv) into the embedding space (Ne)
- Transformer Blocks:
 - Processing: The 1600-dimensional vector moves through all transformer layers (blocks)
 - Each Block's Output: Another 1600-dimensional vector, progressively refining the representation
- Un-Embedding Step (Final Projection):
 - Size: Ne × Nv (1600 × 50257)
 - Purpose: Transforms the processed 1600-dimensional vector back into vocab space (Nv)

--> We can analyze how the residual stream evolves through the layers

• By appling the Un-Embeedding step of the output layer to any intermediate layer!



Analysis under the Logit Lens⁴

- Input: A segment of the GPT-3 paper's abstract
 - Preceding text available but not explicitly visualized
- **Output**: Token predictions (h_out) and correct labels:
 - Correct label: the token following the current input token
 - Correct predictions (*) where the model's top guess matches the expected output
 - DISCLAIMER: Even in output, many predictions are wrong. It does not matter, GPT2 was an early LLM, the underlying process is still valid
- Intermediate values: Color-coded logits
 - Logits increase as the model refines its predictions and improves its certainty

[4]https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

+										
)	() H	, train	Ğ	à	3	ò	·	. 31	. aut
h_out -	, v	'we'	' show'	' a'	'AN'	' models'	'based'	9 V.	' a'	' N'
h46_out -	19 N	' we'	' show'	' a'	'AN'	19 M	Ψ	9 - V	' a'	' N'
h44_out -	9	' we'	' show'	' a'	'BM'	' models'	'based'	' models'	' a'	' N'
h42_out -	У	' we'	' show'	' a'	'rams'	' models'	'based'	' models'	' a'	' algorithm'
h40_out -	У	' we'	demonstrate	' a'	' machine'	' models'	'based'	' models'	' a'	' algorithm'
h38_out -	' we'	'we'	demonstrate	' 'neural'	'rap'	' models'	'based'	' models'	' a'	' algorithm'
h36_out -	'we'	'we'	demonstrate	' 'neural'	'rap'	' models'	'based'	' models'	' a'	' algorithm'
h34_out -	' we'	' we'	demonstrate	' models'	'rap'	' model'	'based'	' models'	' a'	' algorith'
h32_out -		' we'	' simulated'	' models'	'rap'	' model'	'based'	' models'	' a'	' adaptive'
h30_out -		' we'	' found'	' a'	'rap'	. V.	'based'	19	' which'	' hybrid'
h28_out -		' we'	' found'	' a'	'FP'	'Ms'	'based'	'rd'	' which'	
h26_out -		' we'	' found'	' naīve'	'FP'	'Ms'	'based'	'rd'	' which'	' ambitious
h24_out -		' we'	' found'	' algorithms'		's'	'based'	'rd'	' which'	' widely'
h22_out ·		' we'	' found'	' camp'		's'	'based'	'rd'	' which'	' widely'
h20_out -	' targeted'	' although'	' found'	' algorithm'		'ouch'	'based'	'rd'	'000'	' single'
h18_out ·	' targeted'	' although'	' focus'	' camp'	'AP'	'ouch'	'based'	'rd'	'000'	' single'
h16_out -	' targeted'	' unlike'	' focus'	' camp'	'MP'	'IME'	'based'	'rd'	'000'	' single'
h14_out -	' targeted'	' note'	' target'	' camp'	'MS'	'IME'	'based'	'rd'	'000'	' single'
h12_out -	' target'	' unlike'	' hope'	' split'	'MP'	'ouch'	'based'	'rd'	'000'	' massive'
h10_out -	' updated'	' however'	"'d"	' session'	'iott'	'IME'	'style'	'rd'	'000'	' massive'
h8_out -	' target'	' however'	' target'	' evaluation'	'rom'	'IME'	'based'	'rd'	'000'	' enormous'
h6_out -	' focused'	' however'	"'d"	'ees'		'ools'	'based'	'rd'	' which'	' enormous
h4_out -	' target'	' however'	' can'	'ees'		'ools'	'sided'	'rd'	'and'	' enormous'
h2_out -	' guid'	'and'	' Hardy'	'ees'		'ools'	'based'	'rd'	'and'	' enormous
h0_out -		' and'	"'d"	' train'		'ools'	'based'	'rd'	'and'	' isolated'
ć	ically	·.'	, we	train	Ğ	¢.	3	ġ	х, ¹	. s ř 2

Observations

- GPT "early guesses" are generally wrong but often sensible enough in some way:
 - "We train GPT-3..." 000? (someday!)
 - "GPT-3, an..." *enormous? massive?* (not wrong!)
- Some early predictions look noisy but gradually become coherent
 - "We train GPT-3, an aut..." *oreceptor?* (later converges to the correct *oregressive*)
- The logit lens reveals **how each step contributes** to the final output

C	0	2	4		6	8	10)	12	14
	£.	(*) H	, train	Ğ	d.	\$	ò	£.	, sí	aut
h_out ·		' we'	' show'	' a'	'AN'	' models'	'based'	9 V.	' a'	' N'
h46_out -	- V	' we'	' show'	' a'	'AN'	19 (S	Ψ	19 - P	' a'	' N'
h44_out -	У	' we'	' show'	' a'	'BM'	' models'	'based'	' models'	' a'	' N'
h42_out -	У	'we'	' show'	' a'	'rams'	' models'	'based'	' models'	'a'	' algorithm'
h40_out -		' we'	demonstrate	' a'	' machine'	' models'	'based'	' models'	' a'	' algorithm'
h38_out -	' we'	'we'	demonstrate	' 'neural'	'rap'	' models'	'based'	' models'	' a'	' algorithm'
h36_out -	'we'	'we'	demonstrate	' 'neural'	'rap'	' models'	'based'	' models'	' a'	' algorithm'
h34_out -	' we'	' we'	demonstrate	' models'	'rap'	' model'	'based'	' models'	' a'	' algorith'
h32_out -	' we'	' we'	' simulated'	' models'	'rap'	' model'	'based'	' models'	' a'	' adaptive'
h30_out -	' targeted'	' we'	' found'	' a'	'rap'	9 - V	'based'	10	' which'	' hybrid'
h28_out -	' targeted'	' we'	' found'	' a'		'Ms'	'based'	'rd'	' which'	' ambitious'
h26_out -	' targeted'	' we'	' found'	' naïve'		'Ms'	'based'	'rd'	' which'	' ambitious'
h24_out -	' targeted'	' we'	' found'	' algorithms'		's'	'based'	'rd'	' which'	' widely'
h22_out -	' targeted'	' we'	' found'	' camp'		's'	'based'	'rd'	' which'	' widely'
h20_out -	' targeted'	' although'	' found'	' algorithm'		'ouch'	'based'	'rd'	'000'	' single'
h18_out -	' targeted'	' although'	' focus'	' camp'	'AP'	'ouch'	'based'	'rd'	'000'	' single'
h16_out -	' targeted'	' unlike'	' focus'	' camp'	'MP'	'IME'	'based'	'rd'	'000'	' single'
h14_out -	' targeted'	' note'	' target'	' camp'	'MS'	'IME'	'based'	'rd'	'000'	' single'
h12_out -	' target'	' unlike'	' hope'	' split'	'MP'	'ouch'	'based'	'rd'	'000'	' massive'
h10_out -	' updated'	' however'	"'d"	' session'	'iott'	'IME'	'style'	'rd'	'000'	' massive'
h8_out -	' target'	' however'	' target'	' evaluation'	'rom'	'IME'	'based'	'rd'	'000'	' enormous'
h6_out -	' focused'	' however'	"'d"	'ees'		'ools'	'based'	'rd'	' which'	' enormous'
h4_out -	' target'	' however'	' can'	'ees'		'ools'	'sided'	'rd'	' and'	' enormous'
h2_out -	' guid'	'and'	' Hardy'	'ees'		'ools'	'based'	'rd'	' and'	' enormous'
h0_out -		' and'	"'d"	' train'		'ools'	'based'	'rd'	' and'	' isolated'
I	incally	·., '	WE	train	<u>ر</u> ڻ	á ^r	3	ŝ	з, ¹	, ari
ei	n.			~						

્ડર્જ

22

KL divergence plot

- The KL Divergence measure the similarity between two distributions
 - The current predicted output distribution
 - The correct output label distribution
- Input token information is **quickly discarded** after the first layer
 - Inputs are transformed immediately rather than preserved for gradual processing
 - Later layers refine guesses without keeping direct input reference
- GPT works more like an iterative **predictive space** refiner rather than an input processing model

1	5 1	. 1	5	20 2	25	30

		(*) *)	in s						*	×
	£.	(*)	train	ͺĠ	Ŕ	3	ŝ	¢,	, sr	, aut
h_out -	- V	'we'	'show'	' a'	'AN'	' models'	'based'	¥.	' a'	' N'
h46_out -	- V	'we'	' show'	' a'	'AN'	9	'U'	97 - S	' a'	' N'
h44_out -	9 V	'we'	'show'	' a'	'BM'	' models'	'based'	' models'	' a'	' N'
h42_out -	- V	'we'	' show'	' a'	'rams'	' models'	'based'	' models'	' a'	' algorithm'
h40_out ·	. У	'we'	' demonstrate	'a'	' machine'	' models'	'based'	' models'	' a'	' algorithm'
h38_out ·	'we'	'we'	demonstrate	' neural'	'rap'	' models'	'based'	' models'	' a'	' algorithm'
h36_out ·	'we'	'we'	' demonstrate	' neural'	'rap'	' models'	'based'	' models'	' a'	' algorithm'
h34_out -	' we'	' we'	demonstrate	' models'	'rap'	' model'	'based'	' models'	' a'	' algorith'
h32_out ·	' we'	' we'	' simulated'	' models'	'rap'	' model'	'based'	' models'	' a'	' adaptive'
h30_out -	' targeted'	'we'	' found'	' a'	'rap'	9	'based'	19	' which'	' hybrid'
h28_out -	' targeted'	'we'	' found'	' a'	'FP'	'Ms'	'based'	'rd'	' which'	' ambitious'
h26_out ·	' targeted'	' we'	' found'	' naīve'	'FP'	'Ms'	'based'	'rd'	' which'	' ambitious'
h24_out -	' targeted'	'we'	' found'	' algorithms'	'FP'	's'	'based'	'rd'	' which'	' widely'
h22_out -	' targeted'	'we'	' found'	' camp'	'FP'	's'	'based'	'rd'	' which'	' widely'
h20_out -	' targeted'	' although'	' found'	' algorithm'	'FP'	'ouch'	'based'	'rd'	'000'	' single'
h18_out -	' targeted'	' although'	' focus'	' camp'	'AP'	'ouch'	'based'	'rd'	'000'	' single'
h16_out -	' targeted'	' unlike'	' focus'	' camp'	'MP'	'IME'	'based'	'rd'	'000'	' single'
h14_out ·	' targeted'	' note'	' target'	' camp'	'MS'	'IME'	'based'	'rd'	'000'	' single'
h12_out -	' target'	' unlike'	' hope'	' split'	'MP'	'ouch'	'based'	'rd'	'000'	' massive'
h10_out -	' updated'	' however'	"'d"	' session'	'iott'	'IME'	'style'	'rd'	'000'	' massive'
h8_out -	' target'	' however'	' target'	' evaluation'	'rom'	'IME'	'based'	'rd'	'000'	' enormous'
h6_out -	' focused'	' however'	"'d"	'ees'	'rou'	'ools'	'based'	'rd'	' which'	' enormous'
h4_out -	' target'	' however'	' can'	'ees'	'rou'	'ools'	'sided'	'rd'	' and'	' enormous'
h2_out -	' guid'	' and'	' Hardy'	'ees'	'rou'	'ools'	'based'	'rd'	' and'	' enormous'
h0_out ·	'chini'	' and'	"'d"	' train'	'rou'	'ools'	'based'	'rd'	' and'	' isolated'
h_in ·		9.	' we'	' train'	' G'		9 1	'3'	<u>.</u>	' an'
	ally	·.'	. 4 ¹⁰	Hain	<u>ر</u> ه	\$	\$	ŵ	·. '	, ar
speci	in .		`	v						

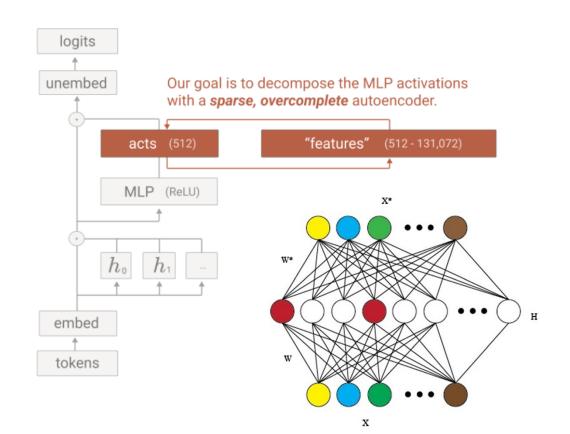
23

Addressing the Polisemanticity Issue

- Mechanistic interpretability seeks to break neural networks into simpler, understandable components
- **BUT:** Neurons are often polysemantic -- they activate for multiple unrelated concepts
 - E.g., The neuron in Inception v1 responding to both cat faces and car fronts.
 - In LLM a neuron can fire for academic citations, HTTP requests, and Korean text.
- **Polysemanticity complicates interpretability**, making it hard to assign clear functions to neurons.
- Researchers believes dictionary learning may allow extract monosemantic features, improving transparency

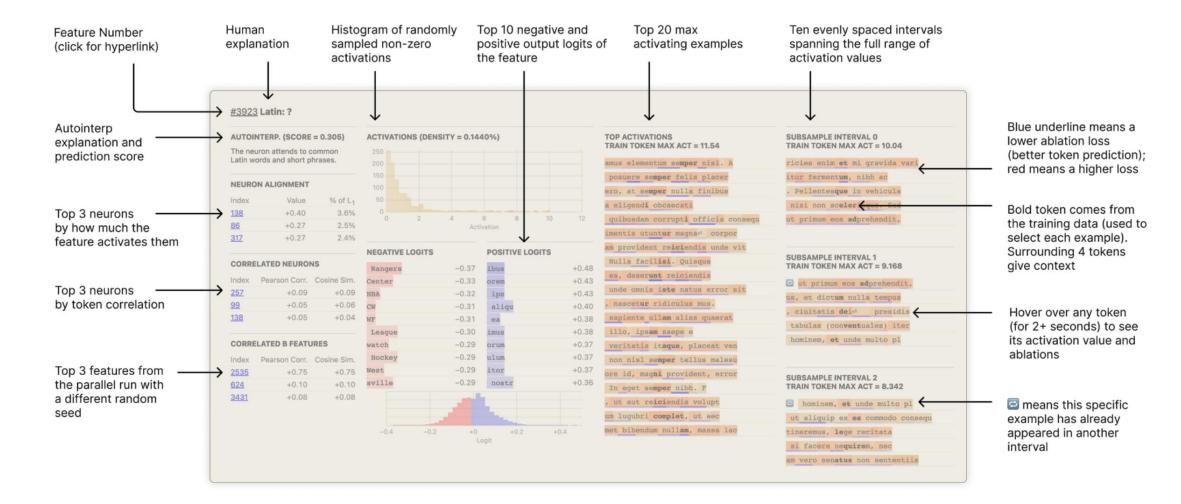
Towards Monosemanticity: Decomposing Language Models With Dictionary Learning⁵

- Feature-Based Decomposition:
 - Instead of analyzing neurons
 - We analyze the entire activations
 - We decompose it into single general **features**
 - It can be applied on top of MLP as well!
- Sparse AutoEncoders (SAE)
 - Represent activations as a combination of distinct features instead of single neuron responses
 - Feature expansion: SAE hidden dimensions >> input dimension (8x)
 - Allows to decompose MLP representation and avoid superposition



[5] https://transformer-circuits.pub/2023/monosemantic-features/index.html

Let's find features within an LLM!



Let's find features within an LLM!

<u>https://transformer-circuits.pub/2023/monosemantic-</u> features/vis/a1.html?ordering=count&search_text=food

Let's see how to use these features to analyze a text

https://transformer-circuits.pub/2023/monosemantic-features/vis/a1en.html