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Stages of Explainability — Mechanistic

Explainability involves the entire Al development pipeline

Before building the model

=

Pre-modelling
explainability

8%

Explainable
modeling

Post-modelling
explainability

Data exploration
Data selection
Feature engineering

Build inherently

interpretable models

* Manage the accuracy and
interpretability trade-off

After model development

* Explaining predictions
and behavior of trained

models
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Mechanistic Interpretability in CNN




nternally?

The decision making of NNs is seen often defined
indecipherable:
 We are unable to interpret NNs inner workings

We can reveal meaningful patterns zooming in on:
* |ndividual neurons
 Their connections

Mechanistic Interpretability helps us break down NN
decisions into globally understandable structures

How Neural Networks Globally Reason

\

MECHANISTIC
INTERPRETABILITY



The power of “Zooming In’"?

Scientific progress is driven by the ability to zoom into finer

DISCOVERY

details of a given field: OF CELLS

* Microscope --> Discovery of cells --> Cellular Biology

e X-ray cristallography --> DNA structure and molecules --> Atomic )( 3 ATOMIC

Theory THEORY

Why don’t we try to do the same with NNs?

* NN visualization --> Computational circuits --> NN interpretation?

— — ?
NNs often studied at a macro level but: % )

* Finer analysis may uncover universal processes within NNs

[1] https://distill.pub/2020/circuits/zoom-in/
6
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Three Speculative Claims

1. Features

* NN representations are composed of individual features such as edges, textures, and object parts

* Each neuron (or combination of neurons) specializes in detecting specific characteristics

2. Circuits

* Neurons form meaningful interactions, creating circuits rather than working in isolation

 Circuits connect features, creating complex computations as shape recognition or object segmentation

3. Universality

* Similar neurons and circuits appear across different architectures and tasks

* Do certain structures emerge naturally from training data?




Feature Example - Curve Detectors

Neurons in vision models detect curves and edges, a
crucial step in visual processing

Supporting evidence:
* Feature visualization: Visualizing neurons shows curve
patterns
* Dataset examples: Neurons activate when encountering
curve-related images
» Synthetic testing: Creating artificial inputs verifies neuron
behavior




Feature Visualization?

How?

* Optimizes an input image to strongly activate a specific
neuron or layer

* |teratively adjuste the image until maximazing activation

What do we obtain?

* Generate synthetic representations of the features learnt by
the network (neurons or layers)

Deep Dream

* Modifies an existing image to exaggerate the patterns that a
NN detects
* Instead of generating new images from scratch
 Artistic yet insightful look into how models perceive patterns
and objects

[2] https://distill.pub/2017/feature-visualization/
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~eature Example -Pose-Invariant Dog Head
Detector

* Some neurons specialize in
recognizing dog heads from various

angles

* Networks generalize recognition by
forming “union over cases”

* This allows models to learn abstract
concepts beyond pixel patterns




Circuits Motifs in Neural Networks

* Features are connected by weights, forming circuits

* Neural networks develop consistent circuits, known as motifs:
* Equivariance — Rotation-invariant recognition.
* Unioning over cases — Combining multiple perspectives.

* Superposition — Using neurons efficiently to store information.




InceptionV1 has a
left-oriented pathway
detecting dogs facing
left...

... and a symmetric
right-oriented pathway
detecting dogs facing
right. At each step, the
two pathways inhibit
each other and excite
the next stage.

Detector

Oriented Fur (3b)

Oriented Heads (4a)

w =

Union over
left and right
cases.

57 e SR

\|

Orientation-Invariant Head (4b)

Circuit Example: Forming the Pose-Invariant
Dog Head

Union over
left and right
cases.

Orientation-Invariant Head+Neck (4c)




Universality

NNs often develop similar features and circuits Curve detectors
across different models and architectures ALEXNET =

Krizhevsky etal. [34]

Why Universality Matters?

INCEPTIONV1
» Suggests neural networks may be converging Szegedy etal. 26]
toward fundamental computational principles

* Provides a foundation for transfer learning VGG19

Simonyan etal. [35]

Examples of Universality:

RESNETV2-50
* Edge and texture features appear across all vision model reetal.ce

* Curve detectors circuits function similarly in different
architectures




Challenges

Polisemanticity

* Some neurons respond to multiple unrelated features
* Complicates alignment to human decision-making

* Superposition: need to use neurons efficiently to store information

Required human annotation to:

* Inspect neurons

Dataset examples

e (Create visualizations

e Examine circuits

Universality is not strictly required

e Butifit does not hold future research can focus only on individual models




Mechanistic Interpretability in LLMs




Different Representation Structure

Lack of Spatial Structure
* Transformers process tokens in a sequence rather than pixels in a grid

--> We do not have filters that learns patterns tied to specific locations

Dynamic, Complex Interactions
* Attention mechanisms dynamically shift focus based on context
* Transformers learn relationships between tokens

--> Challenging to attribute a single neuron to a specific feature

--> Challenging to visualize circuits




Reverse Engineering Transformers

e The Residual Stream

* Each layer reads its input and writes its output on the
residual stream

* Deeper layers do not overwrite previous information but
additively build upon it

» Attention heads are independent and additive

e Attention heads move information from one token to the
other (residual stream)

* Their contribution can be considered quasi-linear and
additive

* only the attention score with the softmax is non linear
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e Zero-Layer Transformer
* No information moves across tokens

--> it predicts the next token purely based on bigram (i.e.
«token pairs») statistics

* One-Layer Transformer
» Keep bigram probabilities (from residual stream)

* Itintroduces skip-trigrams

* Patterns "A...BC": a token earlier in the sequence (A)
influences a later prediction (C) despite being separated
by (one or more) token B

e Attention heads selectively attend to earlier tokens to
modify predictions accordingly

Analysis of Simplified Transformers?

T = Id@WyWg

“Direct path”
term
contributes
to bigram
statistics

| L Al @ (WyWh, W)

[he attention head terms describe the
effects of attention ura-‘.l:; n linking input
tokens to I-:hgr_:: A"describes which
tokens are atte wh I 11 'li,. WE
describes h 1rl I- n changes the
ogits It atte I a to.

[3] https://transformer-
circuits.pub/2021/framework/index.html 18
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T — Ide WiWg

"Direct path”

term
contributes
ta bigram
statistics

(Wo W, Woy, We)

| Z Y (AAM) @

Jng .fi] = ..H[

The virtual attention head terms correspond to
V-composition of attention heads. Theyiunzt on
a lot like individual attention heads, with their
own attention patterns (th e compos siton of the

heads patterns) and own OV matrix.

+ Y A'w

he H|-..-H-;l

(W WhyWg)

The individual attention head terms
describe the effects of individual
attention heads in linking input
tokens to logits, similar to those we
saw in the one layer mode

Analysis of Simplified Transformers (2)

* Two Layer Transformer are composed of:

* Direct path contributing to next token statistics

 Virtual and Individual attention heads behaving

similarly

* Virtual attention heads are the linear
multiplication of several attention heads

* Much higher in-context learning by «Induction

heads»

Mr and Mrs Diile
Mr and Mrs Durs

Mr and Mrs Dursley,
Mr and Mrs Dursley,
Mr and Mrs Dursley,

Mr and Mrs Dursley,
Mr and Mrs Dursley,

such nonsense

such nonsense
such nonsense
such nonsense
such nonsense

Induction Head - Example 1

. Mr Dursley was the
such nonsense.
.[Mr Dursley was the
. Mr D-Ia was the
. Mr Durs was the
. Mr Dursley was the
such nonsense.

Mr Dursley was the

Mr Dursley was the

Present Token
. Attention
B Logit Effect




Transformer Matrix dimensions

* Embedding step:
* Size: Nv x Ne (50257 x 1600 for GPT-2 1558 M)

* Purpose: From the vocab space (Nv) into the embedding space (Ne)

* Transformer Blocks:

* Processing: The 1600-dimensional vector moves through all transformer layers
(blocks)

* Each Block's Output: Another 1600-dimensional vector, progressively refining the
representation

* Un-Embedding Step (Final Projection):
* Size: Ne x Nv (1600 x 50257)
INPUT

* Purpose: Transforms the processed 1600-dimensional vector back into vocab TOKENS
space (Nv)

--> We can analyze how the residual stream evolves through the layers
* By appling the Un-Embeedding step of the output layer to any intermediate layer!

EMBEDDING >

SPACE
/5

PROJECTED

VALUES
[ B
[ _J

OUTPUT

LOGITS




Analysis under the Logit Len

h_out ' ' we' ' show’

h46_out 1 W ' we' ' show®

* Input: A segment of the GPT-3 paper's abstract mao] [

' madels'

h42 out L ' we' ' show' 'a' 'rams’ ' models' ' models' 'a' ' algorithm®

* Preceding text available but not explicitly visualized

h40 out i ' we' 'a' ' machine' | 'models’

' models' 'a' ' algorithm®

h3g out ' we' ‘we'  Jdemonstrate’ ' neural' ‘rap’ ' models' ' models' ‘a' ' algorithm®

HEE E- E- :

h36_out 4 ' we! ' we' ' neural’ 'rap’ ' models' =1 ' models' ‘a ' algorithm®
* Output: Token predictions (h_out) and correct labels: maue | v | e [ mos [P [T g
* Correct label: the token following the current input token neon Sl - Rad ) Ml S I B
. ) g p h30_out ' targeted® - * found® - * hybrid*
* Correct predictions (*) where the model’s top guess matches the meou e R BRI |
ex peCted OUtpUt h26_out JREIEEEEEE ' we' ' found® ' naive' 'FP* 'Ms' ! ! 'rd' 0 ' ' ambitious'
h24 out {RElCEEEE ' we' 'found' ' thms' 'FP* 5! . ' e i . widely'
e DISCLAIMER: Even in output, many predictions are wrong. It does B e e e o s 1 E—
not matter, GPT2 was an early LLM, the underlying process is still SURNY tsrgtea aown o s
Va |i d h18_0ut ' targeted' ' although' ! focus'
[DERINE ' targeted’ ' unlike!
h1l4_out {#R&l
h12_out JEEIEES
* Intermediate values: Color-coded logits 1o out R

h8_out

* Logits increase as the model refines its predictions and improves its
certainty

h6_out JRREEEEE
h4_out
h2_out

[4]https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens ho-out
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Observations

* GPT "early guesses" are generally wrong but often
sensible enough in some way:

e "We train GPT-3..." 0007 (someday!)

 "GPT-3, an..." enormous? massive? (not wrong!)

* Some early predictions look noisy but gradually become
coherent
* "We train GPT-3, an aut..." oreceptor? (later converges to

the correct oregressive)

* The logit lens reveals how each step contributes to the
final output

14

' models'

' models' ' ¥ ' models'

' models' ' ¥ ' models'

' algorithm®

' models' ' ¥ ' models'

Q‘{‘. & s ‘Kt’}é G

h_out 1 we' shlow :
h46_out 1 we' ! show'
ha4_out 1 we show'
h42_out 1 we! show' 'a'
h40_out 1 : ' we! 'a'
h38_out { 'we' ' we' demonstrate’ ' neural
h36_out { 'we'
h34_out { 'we'

h32_out
h30_out
h28_out
h26_out
h24 out
h22_out
h20_out
hl8_out

hl6_out

h14_out JMEEEEEN

' targeted'

' targeted’

' targeted'

' targeted'

' targeted'

' targeted'

' found®

'found' ‘'a

' found*

' although' ' found®

' although' ' focus'

! targeted' ' unlike'

h12_out JEElEES

h10_out EEES

h8_out JERElEE

h6_out JRRELEEE

[CRE target

h2_out

h0_out

' algorithm'

' models' ' ¥ ' models'

' algorithm'

' models'

' algorithm'
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' adaptive’

" hybrid'

' ambitious’

' ambitious'

' widely'

' widely'

' single’

' single’



KL divergence plot

& & : &6‘\ G & 5 & & &
h_out " we' ' show' ‘a' AN ' models' ‘based" ‘a N
h.q.(,_out we' ' show' ‘a AN or L ‘a YN
- - . - h44_out X we' ' show' ‘a' 'BM" ' models' 'based' ' models' 'a "N
i Th e KL D Ive rgen Ce m eaS u re the S I m I | a rlty betwee n h42_out b ' we' ' show' ‘a' ‘rams' ' models' 'based’ ' models' ) ' algorithm'
. . . h40 ou b 'we' 'demonstrate’ ‘a' ' machine' ' models' ‘based’ ' models' ‘a' ' algorithm*
tW O d I St rl b u tl O n S h3::0u: twe' twe' ' demonstrate’ ' neural' 'rap’ ' models' 'based’ ' models' 'a' ' algorithm'
* The current predicted output distribution e DT TR 2
o Th e CO r re Ct O u tp ut | a be I d i stri b u ti 0 n h32_out we' ' we' ' simulated” ' models' ‘rap’ ' model' ‘based' ' models' ‘a' ' adaptive’
h30_out ' targeted' ' we' ' found® ‘a' ‘rap’ = ‘based’ " * which' * hybrid
. . . . . h28_put { 'targeted' "we!  found' ‘a' 'FP* ‘Ms' ‘based' ‘rd' 'which' ' ambitious'
* Input token information is quickly discarded after o O e B . ... . ...
t h e fi rst I aye r h24 out :tavgeted: :we: :found: 'allgorithl:ns' :FF' :s: :based: :rd: :whfch: :widely:
h22 out 1 'targeted we found camp FP* s based rd which widely’
* Inputs are transtormed immediately rather than W el e SRR fee
p re Se rve d fo r g ra d u a I p rOC es S i n g hl6 out - ‘targeted' ' unlike* ' focus' ' camp’ ‘MP* 'IME* ‘based’ 'rd' ‘000" ' single’
h14_out 4 ‘targeted' ' note' ' target ' camp' ‘M5* 'IME* 'based’ 'rd' 000 ' single'
* Later layers refine guesses without keeping direct N . T e | .
in p ut refe re n C e th_out 'updated” ' however' "t ' session’ 'iott" 'IME" 'style’ 'rd' '0oo” ' massive'
h8_out ‘target’ ' however' ‘target’ ' evaluation® ‘rom" ‘IME* ‘based' 'rd' ‘oo0* ' enormous’
. . . ° o hé_out | ‘focused' ' however' "g" ‘ees’ ‘rou’ ‘ools' 'based’ 'rd' 'which' ' enormous’
* GPT works more like an iterative predictive space s . e e
refiner rather than an input processing model - L N T

AL Srecifically”




Addressing the Polisemanticity Issue

* Mechanistic interpretability seeks to break neural networks into simpler,
understandable components

* BUT: Neurons are often polysemantic -- they activate for multiple unrelated
concepts

* E.g.,, The neuron in Inception vl responding to both cat faces and car fronts.
* |In LLM a neuron can fire for academic citations, HTTP requests, and Korean text.

* Polysemanticity complicates interpretability, making it hard to assign clear
functions to neurons.

* Researchers believes dictionary learning may allow extract monosemantic
features, improving transparency




Towards Monosemanticity: Decomposing
Language Models With Dictionary Learning>

* Feature-Based Decomposition:

* Instead of analyzing neurons
* We analyze the entire activations unembed Our goal is to decompose the MLP activations
e We decompose itinto single genera| features with a sparse, overcomplete autoencoder.

; ¥
" 1ecan besppled on top of ML 35 well X

* Sparse AutoEncoders (SAE) b e

* Represent activations as a combination of distinct features
instead of single neuron responses

logits

* Feature expansion: SAE hidden dimensions >> input h. | h;
dimension (8x)
* Allows to decompose MLP representation and avoid embed H
superposition
tokens
* LosSsap = |Wpgc(MLP(x)Wgyne) — MLP(x)| x

[5] https://transformer-circuits.pub/2023/monosemantic-features/index.html



https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html

Feature Number
(click for hyperlink)

Autointerp
explanation and
prediction score

Top 3 neurons
by how much the
feature activates them

Top 3 neurons
by token correlation

Top 3 features from ——— 2525

the parallel run with
a different random
seed

Let’s find features within an LLM!

Human Histogram of randomly  Top 10 negative and Top 20 max Ten evenly spaced intervals
explanation sampled non-zero positive output logits of activating examples spanning the full range of
activations the feature | activation values
v
—> #3923 Latin: ?

=) AUTOINTERP. (SCORE = 0.305)

The neuron attends to common
Latin words and short phrases.

NEURON ALIGNMENT

CORRELATED B FEATURES

Cosine Sirr

ACTIVATIONS (DENSITY = 0.1440%)

v

NEGATIVE LOGITS POSITIVE LOGITS

Rangers -0.37 1ibus
Center 0.33 orem
NBA 0.32 ips
cW -0.31 aligu
WF 0.31 ea

League -0.30 imus
watch 0.29 orum

Hockey 0.29 wulum
West
sville

TOP ACTIVATIONS
TRAIN TOKEN MAX ACT =11.54

amus elementum semper nisi. A

posuere sﬁqorﬁisipilacar
ero, at seqcr_LllaLinibua
a eligendi obcaecati

quibusdam corrupti officia consequ

imentis utﬁu magna+ corpor
am provident reiciendis unde vit
Nulla Ear:il!ﬂ. Quisque

_ea, deserunt reiciendis

unde omnis iste natus error sit
, nascetur ridiculus mus.
_sapiente_ullam alias quaerat
ille, ipsam saepe e

_veritatis itaque, placeat ven
non nisl semper tellus malesu
ore id, maqnl.rgrovident, error
In eget semper nibh. P

. ut aut reiciendis volupt

um lugubri complet, ut aec

netrblbendum nullE, massa lac

SUBSAMPLE INTERVAL 0
TRAIN TOKEN MAX ACT =10.04

ricies enim et mi gravida wm’i5

itur fermentum, nibh ac
. Pellentesque in vehicula

nisi non sc.l.ot*, —

ut primum eos ulprehendit,

SUBSAMPLE INTERVAL 1
TRAIN TOKEN MAX ACT = 9.168

& ut primum eos adprehendit,
us, et dictum nulla tempus

¢, Ciuitatis deis presidis%
tabulas (conventuales) iter

hominem, et unde multo pl

SUBSAMPLE INTERVAL 2
TRAIN TOKEN MAX ACT = 8.342

& hominem, et unde multo pl b_

ut_aliquip ex ea commodo consequ
tineremus, lege recitata
si facere nequirem, nec

am vero senatus non sententiis

Blue underline means a
lower ablation loss
(better token prediction);
red means a higher loss

Bold token comes from
the training data (used to
select each example).
Surrounding 4 tokens
give context

Hover over any token
(for 2+ seconds) to see
its activation value and
ablations

means this specific
example has already
appeared in another
interval




Let’s find features within an LLM!

https://transformer-circuits.pub/2023/monosemantic-
features/vis/al.html?ordering=count&search text=food
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Let’s see how to use these features to analyze
a text

https://transformer-circuits.pub/2023/monosemantic-features/vis/al-
en.html
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