

Version #1

Distributed architectures for big data processing and analytics

February 10, 2025

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark application.

tempRDD = sc.textFile("Temperature.txt")

Computes the number of lines of Temperature.txt

numLinesTemp = tempRDD.count()

Select high temperature values

highTempRDD = tempRDD.map(lambda v: int(v))\

 .filter(lambda v: v>30)

Cache highTempRDD

highTempRDDCached = highTempRDD.cache()

Computes the number of high temperatures

numHighTemp = highTempRDDCached.count()

Store the content of highTempRDDCached in the output folder

highTempRDDCached.saveAsTextFile ("outputFolder/")

Print on the standard output the computed values

print("Num lines: " + str(numLinesTemp))

print("Num high temperatures: " + str(numHighTemp))

 Suppose the input file Temperature.txt is read from HDFS. Suppose this Spark

application is executed only 1 time. Suppose highTempRDD is small enough to be

completely cached into highTempRDDCached. Which one of the following statements

is true?

Version #1

 a) This application reads the content of Temperature.txt 1 time.

 b) This application reads the content of Temperature.txt 2 times.

 c) This application reads the content of Temperature.txt 3 times.

 d) This application reads the content of Temperature.txt 4 times.

 2. (2 points) Consider the following MapReduce application for Hadoop.

DriverBigData.java

/* Driver class */
package it.polito.bigdata.hadoop;
import ….;

/* Driver class */

public class DriverBigData extends Configured implements Tool {

 @Override

public int run(String[] args) throws Exception {

 int exitCode;

 Configuration conf = this.getConf();

 // Define a new job

 Job job = Job.getInstance(conf);

 // Assign a name to the job

 job.setJobName("MapReduce - Question");

 // Set path of the input file/folder for this job

 FileInputFormat.addInputPath(job, new Path("inputFolder/"));

 // Set path of the output folder for this job

 FileOutputFormat.setOutputPath(job, new Path("outputFolder/"));

 // Specify the class of the Driver for this job

 job.setJarByClass(DriverBigData.class);

 // Set job input format

 job.setInputFormatClass(TextInputFormat.class);

 // Set job output format

 job.setOutputFormatClass(TextOutputFormat.class);

 // Set map class

 job.setMapperClass(MapperBigData.class);

 // Set map output key and value classes

 job.setMapOutputKeyClass(Text.class);

 job.setMapOutputValueClass(NullWritable.class);

Version #1

 // Set reduce class

 job.setReducerClass(ReducerBigData.class);

 // Set reduce output key and value classes

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(NullWritable.class);

 // Set the number of reducers to 2

 job.setNumReduceTasks(2);

 // Execute the job and wait for completion

 if (job.waitForCompletion(true)==true)

 exitCode=0;

 else

 exitCode=1;

 return exitCode;

 }

 /* Main of the driver */
 public static void main(String args[]) throws Exception {
 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);
 System.exit(res);
 }

}

--

MapperBigData.java

/* Mapper class */

package it.polito.bigdata.hadoop;

import …;

class MapperBigData extends

 Mapper<LongWritable, // Input key type

 Text, // Input value type

 Text, // Output key type

 NullWritable> { // Output value type

 protected void map(LongWritable key, // Input key type

 Text value, // Input value type

 Context context) throws IOException, InterruptedException {

 // Emit the pair (value, NullWritable)

 context.write(new Text(value), NullWritable.get());

 }

}

--

ReducerBigData.java

Version #1

/* Reducer class */
package it.polito.bigdata.hadoop;

import …;

 // Define count

 int count;

 protected void setup(Context context) {

 // Initialize count

 count = 0;

 }

 protected void reduce(Text key, // Input key type

 Iterable<NullWritable> values, // Input value type

 Context context) throws IOException, InterruptedException {

 int sum = 0;

 // Consider only the keys starting with "D"

 if (key.toString().startsWith("D")) {

 for (NullWritable value : values) {

 sum++;

 }

 if (sum > 1) {

 // Increment count

 count++;

 }

 }

 }

 protected void cleanup(Context context) throws IOException, InterruptedException {

 // Emit the pair (count, NullWritable)

 context.write(new IntWritable(count), NullWritable.get());

 }

}

Suppose that inputFolder contains the files Cities1.txt and Cities2.txt. Suppose the

HDFS block size is 512 MB.

Content of Cities1.txt and Cities2.txt:

Filename (size and number of lines) Content

Version #1

Cities1.txt (80 bytes – 10 lines) Beijing

Cairo

Delhi

Dhaka

Dortmund

Mexico City

Mumbai

Mumbai

Shanghai

Tokyo

Cities2.txt (60 bytes – 7 lines) Buenos Aires

Chongqing

Delhi

Dortmund

Dortmund

Milan

Mumbai

Suppose we run the above MapReduce application (note that the input folder is set to

inputFolder/).

What is a possible output generated by running the above application?

a) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the two part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 2

part-r-00001 (1 line) 0

b) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the two part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 3

part-r-00001 (1 line) 2

Version #1

c) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the two part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 3

part-r-00001 (1 line) 0

d) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the two part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 3

part-r-00001 (0 line – empty file)

Part II

PoliMeeting is an international company that manages online meetings around the world.

Statistics about the organized meetings and users are computed based on the following

input data files, which have been collected in the company's latest 15 years of activity.

 Users.txt

o Users.txt is a textual file containing information about the users who organized

or participated in meetings managed by PoliMeeting. There is one line for each

user and the total number of users is greater than 150,000,000. This file is large

and you cannot suppose the content of Users.txt can be stored in one in-

memory variable.

o Each line of Users.txt has the following format

 UID,Name,Surname,Country,PricingPlan

where UID is the user’s unique identifier, Name and Surname are his/her

name and surname, respectively, Country is the country where he/she

lives, and PricingPlan is the type of pricing plan (free, business, etc.).

 For example, the following line

User1000,Mario,Rossi,Italian,Business

Version #1

means that the name and surname of the user with identifier User1000

are Mario and Rossi, respectively, and he is Italian. He has subscribed to

a Business pricing plan.

 Meetings.txt

o Meetings.txt is a textual file containing information about the events managed by

PoliMeeting. There is one line for each meeting. The total number of meetings

stored into Meetings.txt is greater than 2,000,000,000. This file is large and you

cannot suppose the content of Meetings.txt can be stored in one in-memory

variable.

o Each line of Meetings.txt has the following format

 MID,Title,StartTime,EndTime,OrganizerUID,MaxParticipants

where MID is the item unique identifier, Title is the title of the meeting,

StartTime is the start time of the meeting, EndTime is the end time of the

meeting, OrganizerUID is the identifier of the user who organized the

meeting and MaxParticipants is the maximum number of allowed

participants.

StartTime and EndTime are timestamps in the format YYYY/MM/DD-

HH:MM:SS.

 For example, the following line

MID1034,Polito project kick-off,2024/02/07-20:30:00,2024/02/07-

21:30:00,User1000,20

means that the meeting with MID MID1034 was organized by User1000,

is titled “Polito project kick-off”, and the maximum number of allowed

participants is 20. The meeting was scheduled from 2024/02/07-20:30:00

to 2024/02/07-21:30:00.

 Invitations.txt

o Invitations.txt is a textual file containing information about invitations to

meetings. A new line is inserted in Invitations.txt every time someone is invited

to a meeting. Invitations.txt includes the historical data about the latest 15 years.

This file is big and you cannot suppose the content of Purchases.txt can be

stored in one in-memory variable.

o Each line of Invitations.txt has the following format

 MID,UID,Accepted

where MID is the identifier of the meeting to which user UID has been

invited. Accepted can assume three values: Yes, No, and Unknown,

depending on the answer of the invited user.

 For example, the following line

MID1034,User1000,Yes

means that User1000 has been invited to the meeting MID1034, and

he/she has accepted the invitation to participate.

Version #1

Note that the same user can be invited to many meetings, and each meeting

can have many invited users. Each combination (MID, UID) occurs at most

one time in Invitations.txt.

 Participations.txt

o Participations.txt is a textual file containing information about who participated in

the organized meetings. A new line is inserted in Participations.txt every time

someone joins (participates in) a meeting. Participations.txt includes the

historical data about the latest 15 years. This file is big and you cannot suppose

the content of Participations.txt can be stored in one in-memory variable.

o Each line of Participations.txt has the following format

 MID,UID,JoinTimestamp,LeaveTimestamp

where MID is the identifier of the meeting that user UID joined at

JoinTimestamp. LeaveTimestamp is the timestamp at which UID left the

meeting MID. The format of the timestamps JoinTimestamp and

LeaveTimestamp is YYYY/MM/DD-HH:MM:SS.

 For example, the following line

MID1034,User10,2024/02/07-20:40:10, 2024/02/07-20:50:02

means that User10 joined the meeting MID1034 on July 2, 2024, at

20:40:10 and left it on July 2, 2024, at 20:50:02.

Note that the same user can participate in many meetings, and each meeting

can have many participants. Moreover, the same user can join and leave

each meeting several times (a new line associated with a different

JoinTimestamp is inserted every time a user joins or rejoins the same

meeting). Each triplet (MID, UID, JoinTimestamp) occurs at most one time in

Participations.txt.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliMeeting are interested in performing some analyses about the pricing

plans.

Design a single application, based on MapReduce and Hadoop, and write the

corresponding Java code, to address the following point:

1. Countries with many free and academic pricing plans. The application selects the

countries where at least 30% of their users have a free pricing plan

(PrincingPlan=‘free') and at least 30% of their users have an academic pricing plan

(PrincingPlan=‘academic'). The selected countries are stored in the output HDFS

folder.

Version #1

Output format (one line per each selected country):

country

Suppose that the input is Users.txt and has already been set. Suppose that also the name

of the output folder has already been set.

 Write only the content of the Mapper and Reducer classes (map and reduce methods.

setup and cleanup if needed). The content of the Driver must not be reported.

 Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to

specify the number of instances of the reducer class for each job.

 If you need personalized classes, report for each of them:
o the name of the class

o attributes/fields of the class (data type and name)
o personalized methods (if any), e.g., the content of the toString() method if

you override it

o do not report the get and set methods. Suppose they are "automatically
defined"

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

 (a) 0

 (b) exactly 1

 (c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

 (a) One single job is needed

 (b) 0

 (c) exactly 1

 (d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark (19 points)

The managers of PoliMeeting asked you to develop a single Spark-based application

based either on RDDs or Spark SQL to address the following tasks. The application takes

the paths of the input files and two output folders (associated with the outputs of the

following points 1 and 2, respectively).

1. Users who frequently organized meetings with the maximum number of allowed

participants in 2024. The first part of this application selects the users who frequently

organized meetings in 2024 (meetings with StartTime associated with 2024) with a

number of actual participants equal to the maximum number of allowed participants

(MaxParticipants). Specifically, a user is selected if more than 20 of the meetings the

user organized in 2024 are characterized by a number of distinct actual participants

equal to the maximum number of allowed participants. A user is considered an actual

participant in a meeting if he/she participated in the meeting (according to the content

Version #1

of Participations.txt). Store the identifiers (UIDs) of the selected users in the first HDFS

output folder. Specifically, store one UID per output line.

Note. Remind that the same user can participate multiple times in the same meeting.

2. Participation of the users in the meetings they organized in 2024. The year of interest is

again 2024. For each user who organized at least one meeting in the year 2024,

compute the number of meetings he/she organized but did not participate. Store the

result in the second HDFS output folder. Specifically, there is one output line for each

user who organized at least one meeting. Each line contains the UID of one of the

users who organized meetings, followed by the number of meetings UID organized in

2024 but did not participate in.

Note. Those users who always participated in the meetings they organized must also

be stored in the second output folder (for those users, the number of meetings they

organized in 2024 but did not participate in is 0).

Output format of each output line (second part):

OrganizerUID, Number of meetings OrganizerUID organized in 2024 but did not

participate in

Example for the second part.

In this small example, suppose there are only three users who organized meetings in

2024. The identifiers of these users are UID1, UID5, and UID12.

Suppose that

 UID1 organized 3 meetings in 2024 and participated in 2 of them.

 UID5 organized 5 meetings in 2024 and participated in 5 of them.

 UID12 organized 3 meetings in 2024 and participated in 0 of them.

The second output folder must contain the following three lines:

 UID1,1

 UID5,0

 UID12,3

 You do not need to write imports. Focus on the content of the main method.

 Only if you use Spark SQL, suppose the first line of each file contains the header
information/the name of the attributes. Suppose, instead, there are no header lines if

you use RDDs.

 Suppose both Spark Context sc and SparkSession spark have already been set.

 Please comment your solution by stating the meaning of the fields you intend to

process with each instruction, e.g., key=(product id, date), value=(category, year)

