s ﬁ“‘i =y Politecnico

y A, AY% diTorino

ifjli::::::;.;:r:::;liliﬁ'
1859 l.f’

SmartData@PoliTO

SmartData

From Zero to Neural Networks

Data Science and Machine Learning
for Engineering Applications

Lab 10
Giordano Paoletti

What Are Neural Networks? AN

SmartData

* Neural Networks are computational models inspired by the human
brain, used for tasks like image recognition, translation, and more.

Hidden Layers

Output Layer

S Y= O
ORI,
R ﬁ‘&'&v‘.*.“# 0%
AR

.’}’ ﬁ“‘i Y, Politecnico

Biological Inspiration S Rl

SmartData

* Brains are made of neurons that fire when they receive signals above
a threshold. Neural networks mimic this behavior.

Biological Neuron

dendrites

synapses

cell bodv

- %! ~ Politecnico

The perceptron: The Artificial Neuron = {ea e

1859
“ L .
-h‘-‘“‘. aaaaaaaaa @PoliTO

* The perceptron is the simplest unit of neural
networks

* |t takes an input with multiple features, and:

%
* It weights each input feature with a given Oui}put
weight
It prod'uces a wellght.ed sum c.)f the inputs, .and IMPUES = 0 v x.) are the input features
* It applies an activation function to the weighted W= (Wi, W, , ..., W.) are the network weights

sum and produces an output

V= f(Wixy + waxy + o+ wpxy)

SmartData@PoliTO

Perceptron Generalizes Classical Models {47 C

The perceptron is a linear model. Depending on its activation function:

* With linear activation f(x)=x, it behaves like Linear Regression:
y=wXx+Db

* With a sigmoid activation, it becomes equivalent to Logistic
Regression

vy = o(w'x + b), where o(z) =1/ (1 + exp(-z))

* The original percetron use the step activation:
vy = 8(w'x + b), where &(z)=1 if z>0, else O

° ° ° ¥ %;i “{:‘ Politecnico .E
When Linearity fails: XOR Problem o e b
4 * XOR is not linearly separable -> a
single perceptron cannot solve the
roblem
111 0 P |
. * Requires at least one hidden layer
2
0+ 0 1
! } >
0

When Linearity fails: XOR Problem ey 5 CE)

111 0 * XOR is not linearly separable -> a
X single perceptron cannot solve the
040 1 problem
5 . — * Requires at least one hidden layer

e 2 input neurons (x; and x;)

'7 , * 1hidden layer with 2 neurons

* 1 output neuron

When Linearity fails: XOR Problem

SmartData

Let us define:

* Hidden neuron h; computes
hi = &(w1 X1 + Wiz X + by)

e Hidden neuron h, computes
11+1 0 ha = 8(wW21 X1 + W22 X2 + b))

¢ Outgut neuron computes:
y =

X2 (W31 hi+ w3z hy + bs)
|f:
O__
cu) ? > * W= W12 = W21 = W =1,
0 l b b1= '1.5, b2= _O°51

® W31 = -1, W3y = 1,b3 =-0.5
The XOR is rocked

- 8
"ﬁq:*ﬁ'\’* di Torino
iﬂﬁ::::::"::::::ﬂ::

,,,,,,

Y, Politecnico

SmartData@PoliTO

SmartData

* (0,0):
*(0,1):
e (1,0):
°(1,1):

N = 6(-15) =0, hy = 6(-05) =0 Y= 6(-05) =0
=6(-0.5)=0,h,=5(0.5)=1->y=56(05)=1
N, =6(-0.5)=0,h, =6(0.5)=1->y=56(0.5)=1

N1=6(0.5)=1,h,=06(1.5)=1->y=6(-0.5)=0

Basic Elements in a FF-NN kg e =p

aaaaaaaaaaaaa

* You have just seen the simplest form of a Feed-Forward Neural
Network — one capable of solving a non-linear problem like XOR.

* Generally thet are composed of:
* Aninput layer: Receives raw features (e.g., pixels, numerical values).

* One or more Hidden Layers: Perform transformations to capture non-linear
relationships. The “deep” in deep learning. They learn new features
combining the previuos one.

* An output layer that makes the final decision

10

e
=
3
=
3
o

Basic Elements in a FF-NN (Bt

* Weights and Biases:
Weights determine importance of inputs. Biases shift activations.
Both are learned during training.

* Activation Functions:
Introduce non-linearity. Enable networks to approximate complex
functions.

Why does Non-Linearity matter?
Without them, any number of layers behaves like a single linear

transformation.

f(g(X)) = Wz(g(X)) + bz = Wz(W1X + b1) + bz = (W2W1)X + (W2b1 + b2)= h(X)

11

Activation Funct|ons

Sigmoid Leaky ReLU ”
| IIlELX(O.].iU, .’L')

U(ZB) - 14e~®

tanh Maxout

tanh(a:) e N max(w’fﬂc + b1, ‘wga: + by)

ReLU ELU

maX(O, .’B) \ Z(em) i i 8 _)

SmartData@PoliTO

Activation Functions ety =)

SmartData

* Sigmoid
Smooth, maps input to (0,1). Useful for binary classification, but
suffers from vanishing gradients.

* Tanh
Maps input to (-1,1). Zero-centered. Better than sigmoid in practice.
* RelU
ReLU(x) = max(0,x). Fast, simple, and widely used. Can lead to dead
neurons.

e Other Activations
Leaky RelU, ELU, GELU — variants to mitigate RelLU issues.

13

How Wrong Is the Model? — Loss Function

SmartData

* The loss function measures how far the model's predictions are from
the true values. It is the objective minimized during training.

e Common Loss Functions:
 Mean Squared Error (MSE) -

* Used for regression tasks MSE = l Z(y . g)Q

e Sensitive to large errors n “ n
1=

* Cross-Entropy Loss (Log Loss)

n C
e Used for classification tasks .
: . .. CE=— E E Yic log(%,c)
 Compares predicted and true probability distributions — =

14

Gradient Descent ety 7= K

* What Are We Optimizing?
We adjust weights to minimize the loss function. Optimization is the
core of training.

* Gradient Descent
A method to find the minimum
of a function by moving in the
opposite direction of the
gradient.

* How It Works

 Compute gradient of loss with
respect to weights

e Update rule:

w' =w —n-VL(w)

15

Backpropagation

SmartData

* In a neural network, weights in earlier layers affect the output indirectly,
through multiple transformations.

* To update those weights, we must know:
"How does changing this weight change the final loss?"

* But the loss depends on the output, the output depends on activations,
and activations depend on previous weights.

* We can’t compute this influence in one step... oL 0L Oa

0z
- But we can decompose it! ;

ow Oa 0z Ow
* The chain rule allows us to break down the total derivative:

Backpropagation uses this rule recursively, layer by layer, to compute all gradients
from output to input — efficiently and exactly.

16

Mini-Batch SGD and Learning Rate

“ ®. ™y Politecnico
: &Y di Torino
II;:- i -:;Ii j

SmartData@PoliTO

* Why is the Learning Rate Important?
* Too small - slow convergence
* Too large = divergence or instability
* Needs tuning - can be decayed or adapted (e.g., Adam)

* Neural networks are trained using Mini-Batch Stochastic Gradient
Descent (SGD):
* Updates weights using a small batch of samples
e Faster and more memory-efficient than full-batch GD
* Introduces noise = helps escape local minima

17

Training a Neural Network

Y, Politecnico

/A% di Torino

SmartData@PoliTO

SmartData

18

oy Ui PA\W ¥ H

Initialize weights
Forward pass
Compute loss
Backpropagate
Update weights
Repeat

How to Know When to Stop Training?

“ ®. ™y Politecnico
4 &y di Torino
III:- i -:;Ii j

SmartData@PoliTO

SmartData

* Training Loss {,: Model is learning to fit the
data. If the model is big enough, it always
decrease. .

* Validation Loss |, then 4: Indicates e
overfitting—model starts memorizing.

* Ideal Stop: When validation loss stops
improving, even if training loss keeps
decreasing.

training

»

* Why It Matters
Early stopping prevents overfitting and
improves generalization > We need to find
how many epochs (full passes over the
dataset) optimize learning without overfitting.

19

»

training steps

Neural Networks -
More complex architectures

Deep neural networks

SmartData

. Deep neural networks are neural networks with “many” layers (up to
billions of neurons)

. They often allow to use raw input

. The multiple layers are used to progressively extract higher-level
features from the raw input

. Often deep learning uses more advanced layers than the one we have
seen in feed-forward neural networks

21

Artificial neural networks

* Different tasks, different architectures

numerical vectors classification/regression: time series analysis: recurrent NN

feed forward NN (what we have seen so far) (RNN)
brother plays volleyhall

S

pmnmm noun v crh noun

image understanding: convolutional NN (CNN) denoising: auto-encoders

convolutional layers

feed forward NN ‘ . ‘ .
. 3 A 4
“‘; l O)-’%Dogos p h .) “ Y v
P. ("

O~ “0
o | | 56

Convolutional neural networks

* Allow automatically extracting features from images and
performing classification

Convolutional Neural Network (CNN) Architecture

convolutional layers

feed forward NN
\ “8 classification
h# > I I O/‘:;}’o Dog e with softmax activation
input | predlcted class with confidence

image 57

24

Convolutional layer

Dense layer

1 w2 wi

n-l S| wé

Weights of the different neurons
are different!

Convolutional layer

Weights of the different neurons
are the same!

61

Convolutional neural networks

* Convolutional layers training

- during training each sliding filter learns to recognize a
particular pattern in the input tensor

- filters in shallow layers recognize textures and edges

- filters in deeper layers can recognize objects and parts (e.g.
eye, ear or even faces)

deeper filters
shallow filters

=\ A >

U

25

bb

Autoencoders

« Autoencoders allow compressing input data by means of compact
representations (embeddings) and from them reconstructing the initial input

- for feature extraction: the compressed representation can be used as significant set
of features representing input data

- for image (or signal) denoising: the image reconstructed from the abstract
representation is denoised with respect to the original one

- 0H
noisy image 1 reconstructed image

73
2 compressed data

4 ﬁ“'\‘! =y Politecnico
Y di Torino

Deep learning is advancing quickly... (2t

SmartData@PoliTO

SmartData

* Long Short Term Memories (LSTM)

* Generative Adversarial Networks (GAN)

* Transformers

e Language models (LM) and large language models (LLM) Graph
e neural networks (GNN)

27

s ﬁ“‘f‘ =y Politecnico
YA, AY diTorino

L .
= q'g,, SmartData@PoliTO

SmartData

28

NN in Pytorch

What is PyTorch?

SmartData

* Open source machine learning library

* Developed by Facebook's Al Research lab
* It leverages the power of GPUs

* Automatic computation of gradients

* Makes it easier to test and develop new ideas.

29

Other libraries?

MR T Y

1859

1

TensorFlow

Why PyTorch?

SmartData

* It is pythonic- concise, close to Python conventions

* Strong GPU support

» Autograd- automatic differentiation

* Many algorithms and components are already implemented
e Similar to NumPy

31

Why PyTorch?

Computation Graph

Numpy

isport nuspy as np

G\ \') @ np.random.seed(0)

N, D=3, 4

el
L

a
- v
k2 .

(\b) rad o

-
grad b = grad o * np.ones((N, D))
el s~
grad_a =

np.random.randn(N, D)
np.randos.randn(¥, D)
ap.randos, randn(%, D)

x*y
a v
np.sun(b)
1.0

qrad_b.oopyl)
grad_b.oopyt)

grad x = grad a v y

e
l%,ﬂ
(9) grad_y = grad s * x

Tensorflow

Asport auspy as np
. reandom. seod()
Aeport teasorflow as of

M, 0=, 14

with af.device(/gpurt' 1y
2 = tfi.placeholdar(ef. . float)d)
y = ti.placehoider(tf.floatl)
2 = ti.placeholder(ef . floatdl)

- . . '
At
ti.rodate_numib)

a
b
¢
Qrad_n, Qrad_y, grad_s = sf.gradientate, [x, ¥y, 1))

WAAR AL Beaaloni) wa seen)
vaiues = (
Rt AP randos.randn(i, D),
Y np.rendon.randn(n, D),
" ».tm-tﬂﬂl. 0.
)
OuUt = sees.run{jo, grad x, gred y, grad _»),
foed_dict=values)
O val, srad x val. sred v val, srad 3 val = out

PyTorch

isport torch

N, D» 3, &

K & torch,rand((N, D), requlres gradetrue)
y » torchorand((N, D),requires gradetrue)
3 » torch.rand((N, D),requires prodeTrue)
am*y

D23

extorch, sum(b)

Cohackhomard()

I

o’}’ %! ~, Politecnico

A AY diTorino
siljl‘:::::“,;;:;:: T '!:

SmartData

33

Lab10 NN _tutorial.ipynb

	Slide 1: From Zero to Neural Networks
	Slide 2: What Are Neural Networks?
	Slide 3: Biological Inspiration
	Slide 4: The perceptron: The Artificial Neuron
	Slide 5: Perceptron Generalizes Classical Models
	Slide 6: When Linearity fails: XOR Problem
	Slide 7: When Linearity fails: XOR Problem
	Slide 8: When Linearity fails: XOR Problem
	Slide 9
	Slide 10: Basic Elements in a FF-NN
	Slide 11: Basic Elements in a FF-NN
	Slide 12
	Slide 13: Activation Functions
	Slide 14: How Wrong Is the Model? – Loss Function
	Slide 15: Gradient Descent
	Slide 16: Backpropagation
	Slide 17: Mini-Batch SGD and Learning Rate
	Slide 18: Training a Neural Network
	Slide 19: How to Know When to Stop Training?
	Slide 20: Neural Networks - More complex architectures
	Slide 21: Deep neural networks
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Deep learning is advancing quickly...
	Slide 28: NN in Pytorch
	Slide 29: What is PyTorch?
	Slide 30: Other libraries?
	Slide 31: Why PyTorch?
	Slide 32
	Slide 33: Lab10_NN_tutorial.ipynb

