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What Are Neural Networks?

• Neural Networks are computational models inspired by the human 
brain, used for tasks like image recognition, translation, and more.
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Biological Inspiration
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• Brains are made of neurons that fire when they receive signals above 
a threshold. Neural networks mimic this behavior.



Theperceptron: The Artificial Neuron

• The perceptron is the simplest unit of neural
networks

• It takes an input with multiple features, and:

• It weights each input feature with a given
weight

• It produces a weighted sum of the inputs, and

• It applies an activation function to the weighted 
sum and produces an output

𝑦 = 𝑓(𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛)
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x = (x1, x2 , …, xn) are the input features

w = (w1, w2 , …, wn) are the network weights
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Perceptron Generalizes Classical Models

The perceptron is a linear model. Depending on its activation function:

• With linear activation f(x)=x, it behaves like Linear Regression:
y = wᵗx + b

• With a sigmoid activation, it becomes equivalent to Logistic 
Regression
y = σ(wᵗx + b), where σ(z) = 1 / (1 + exp(-z))

• The original percetron use the step activation: 
y = 𝝳(wᵗx + b), where 𝝳(z)=1 if z>0, else 0
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When Linearity fails: XOR Problem
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• XOR is not linearly separable -> a 
single perceptron cannot solve the 
problem 

• Requires at least one hidden layer



When Linearity fails: XOR Problem
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• XOR is not linearly separable -> a 
single perceptron cannot solve the 
problem 

• Requires at least one hidden layer

• 2 input neurons (x₁ and x₂)

• 1 hidden layer with 2 neurons

• 1 output neuron
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When Linearity fails: XOR Problem

8

Let us define:

• Hidden neuron h₁ computes 
h₁ = 𝝳(w₁₁ x₁ + w₁₂ x₂ + b₁)

• Hidden neuron h₂ computes 
h₂ = 𝝳(w₂₁ x₁ + w₂₂ x₂ + b₂)

• Output neuron computes: 
y = 𝝳(w₃₁ h₁+ w₃₂ h₂ +  b₃ )

If:

• w₁₁= w₁₂ = w₂₁ = w₂₂ =1,
• b₁= -1.5, b₂= -0.5, 
• w₃₁ = -1, w₃₂ = 1,b₃ = -0.5

The XOR is rocked



• (0,0): h₁ = δ(-1.5) = 0, h₂ = δ(-0.5) = 0 → y = δ(-0.5) = 0

• (0,1): h₁ = δ(-0.5) = 0, h₂ = δ(0.5) = 1 → y = δ(0.5) = 1

• (1,0): h₁ = δ(-0.5) = 0, h₂ = δ(0.5) = 1 → y = δ(0.5) = 1

• (1,1): h₁ = δ(0.5) = 1, h₂ = δ(1.5) = 1 → y = δ(-0.5) = 0
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Basic Elements in a FF-NN

• You have just seen the simplest form of a Feed-Forward Neural 
Network — one capable of solving a non-linear problem like XOR.

• Generally thet are composed of:
• An input layer: Receives raw features (e.g., pixels, numerical values).

• One or more Hidden Layers: Perform transformations to capture non-linear 
relationships. The “deep” in deep learning. They learn new features 
combining the previuos one.

• An output layer that makes the final decision
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Basic Elements in a FF-NN

• Weights and Biases: 
Weights determine importance of inputs. Biases shift activations. 
Both are learned during training.

• Activation Functions: 
Introduce non-linearity. Enable networks to approximate complex 
functions. 
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Why does Non-Linearity matter?
Without them, any number of layers behaves like a single linear 
transformation. 
f(g(x)) = W₂(g(x)) + b₂ = W₂(W₁x + b₁) + b₂ = (W₂W₁)x + (W₂b₁ + b₂)= h(x) 
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Activation Functions

• Sigmoid
Smooth, maps input to (0,1). Useful for binary classification, but 
suffers from vanishing gradients.

• Tanh
Maps input to (-1,1). Zero-centered. Better than sigmoid in practice.

• ReLU
ReLU(x) = max(0,x). Fast, simple, and widely used. Can lead to dead 
neurons.

• Other Activations
Leaky ReLU, ELU, GELU – variants to mitigate ReLU issues.
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How Wrong Is the Model? – Loss Function

• The loss function measures how far the model's predictions are from 
the true values. It is the objective minimized during training.

• Common Loss Functions:

• Mean Squared Error (MSE)
• Used for regression tasks

• Sensitive to large errors

• Cross-Entropy Loss (Log Loss)
• Used for classification tasks

• Compares predicted and true probability distributions
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Gradient Descent

• What Are We Optimizing?
We adjust weights to minimize the loss function. Optimization is the 
core of training.

• Gradient Descent
A method to find the minimum 
of a function by moving in the 
opposite direction of the 
gradient.

• How It Works
• Compute gradient of loss with 

respect to weights
• Update rule:
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Backpropagation

• In a neural network, weights in earlier layers affect the output indirectly, 
through multiple transformations.

• To update those weights, we must know:
"How does changing this weight change the final loss?"

• But the loss depends on the output, the output depends on activations,
and activations depend on previous weights.

• We can’t compute this influence in one step...
→ But we can decompose it!

• The chain rule allows us to break down the total derivative:

Backpropagation uses this rule recursively, layer by layer, to compute all gradients
from output to input — efficiently and exactly.
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Mini-Batch SGD and Learning Rate

• Why is the Learning Rate Important?
• Too small → slow convergence

• Too large → divergence or instability

• Needs tuning → can be decayed or adapted (e.g., Adam)

• Neural networks are trained using Mini-Batch Stochastic Gradient 
Descent (SGD):
• Updates weights using a small batch of samples

• Faster and more memory-efficient than full-batch GD

• Introduces noise → helps escape local minima
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Training a Neural Network

1. Initialize weights

2. Forward pass

3. Compute loss

4. Backpropagate

5. Update weights

6. Repeat
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How to Know When to Stop Training?

• Training Loss ↓: Model is learning to fit the 
data. If the model is big enough, it always 
decrease.

• Validation Loss ↓ then ↑: Indicates 
overfitting—model starts memorizing.

• Ideal Stop: When validation loss stops 
improving, even if training loss keeps 
decreasing.

• Why It Matters
Early stopping prevents overfitting and 
improves generalization > We need to find 
how many epochs (full passes over the 
dataset) optimize learning without overfitting.
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Neural Networks -
More complex architectures
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Deep neural networks

● Deep neural networks are neural networks with “many” layers (up to 
billions of neurons)

● They often allow to use raw input

● The multiple layers are used to progressively extract higher-level 
features from the raw input

● Often deep learning uses more advanced layers than the one we have 
seen in feed-forward neural networks
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Deep learning is advancing quickly... 

• Long Short Term Memories (LSTM)

• Generative Adversarial Networks (GAN)

• Transformers

• Language models (LM) and large language models (LLM) Graph

• neural networks (GNN) 

...
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NN in Pytorch
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What is PyTorch?

• Open source machine learning library 

• Developed by Facebook's AI Research lab

• It leverages the power of GPUs 

• Automatic computation of gradients 

• Makes it easier to test and develop new ideas.
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Other libraries?
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Why PyTorch?

• It is pythonic- concise, close to Python conventions

• Strong GPU support 

• Autograd- automatic differentiation 

• Many algorithms and components are already implemented

• Similar to NumPy
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Lab10_NN_tutorial.ipynb
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