
From Zero to Neural Networks
Data Science and Machine Learning

for Engineering Applications

Lab 10

Giordano Paoletti

What Are Neural Networks?

• Neural Networks are computational models inspired by the human
brain, used for tasks like image recognition, translation, and more.

2

Biological Inspiration

3

• Brains are made of neurons that fire when they receive signals above
a threshold. Neural networks mimic this behavior.

Theperceptron: The Artificial Neuron

• The perceptron is the simplest unit of neural
networks

• It takes an input with multiple features, and:

• It weights each input feature with a given
weight

• It produces a weighted sum of the inputs, and

• It applies an activation function to the weighted
sum and produces an output

𝑦 = 𝑓(𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛)

4

x = (x1, x2 , …, xn) are the input features

w = (w1, w2 , …, wn) are the network weights

𝑥1

𝑥2

𝑥n-1

…

𝑥n

Inputs

𝑓(⋅) 𝑦

Output

෍𝑤𝑖𝑥𝑖

Perceptron Generalizes Classical Models

The perceptron is a linear model. Depending on its activation function:

• With linear activation f(x)=x, it behaves like Linear Regression:
y = wᵗx + b

• With a sigmoid activation, it becomes equivalent to Logistic
Regression
y = σ(wᵗx + b), where σ(z) = 1 / (1 + exp(-z))

• The original percetron use the step activation:
y = 𝝳(wᵗx + b), where 𝝳(z)=1 if z>0, else 0

5

When Linearity fails: XOR Problem

6

• XOR is not linearly separable -> a
single perceptron cannot solve the
problem

• Requires at least one hidden layer

When Linearity fails: XOR Problem

7

• XOR is not linearly separable -> a
single perceptron cannot solve the
problem

• Requires at least one hidden layer

• 2 input neurons (x₁ and x₂)

• 1 hidden layer with 2 neurons

• 1 output neuron
𝑥1

𝑥2

ℎ1

ℎ2

ℎ3

1 1

𝑦

When Linearity fails: XOR Problem

8

Let us define:

• Hidden neuron h₁ computes
h₁ = 𝝳(w₁₁ x₁ + w₁₂ x₂ + b₁)

• Hidden neuron h₂ computes
h₂ = 𝝳(w₂₁ x₁ + w₂₂ x₂ + b₂)

• Output neuron computes:
y = 𝝳(w₃₁ h₁+ w₃₂ h₂ + b₃)

If:

• w₁₁= w₁₂ = w₂₁ = w₂₂ =1,
• b₁= -1.5, b₂= -0.5,
• w₃₁ = -1, w₃₂ = 1,b₃ = -0.5

The XOR is rocked

• (0,0): h₁ = δ(-1.5) = 0, h₂ = δ(-0.5) = 0 → y = δ(-0.5) = 0

• (0,1): h₁ = δ(-0.5) = 0, h₂ = δ(0.5) = 1 → y = δ(0.5) = 1

• (1,0): h₁ = δ(-0.5) = 0, h₂ = δ(0.5) = 1 → y = δ(0.5) = 1

• (1,1): h₁ = δ(0.5) = 1, h₂ = δ(1.5) = 1 → y = δ(-0.5) = 0

9

Basic Elements in a FF-NN

• You have just seen the simplest form of a Feed-Forward Neural
Network — one capable of solving a non-linear problem like XOR.

• Generally thet are composed of:
• An input layer: Receives raw features (e.g., pixels, numerical values).

• One or more Hidden Layers: Perform transformations to capture non-linear
relationships. The “deep” in deep learning. They learn new features
combining the previuos one.

• An output layer that makes the final decision

10

Basic Elements in a FF-NN

• Weights and Biases:
Weights determine importance of inputs. Biases shift activations.
Both are learned during training.

• Activation Functions:
Introduce non-linearity. Enable networks to approximate complex
functions.

11

Why does Non-Linearity matter?
Without them, any number of layers behaves like a single linear
transformation.
f(g(x)) = W₂(g(x)) + b₂ = W₂(W₁x + b₁) + b₂ = (W₂W₁)x + (W₂b₁ + b₂)= h(x)

12

Activation Functions

• Sigmoid
Smooth, maps input to (0,1). Useful for binary classification, but
suffers from vanishing gradients.

• Tanh
Maps input to (-1,1). Zero-centered. Better than sigmoid in practice.

• ReLU
ReLU(x) = max(0,x). Fast, simple, and widely used. Can lead to dead
neurons.

• Other Activations
Leaky ReLU, ELU, GELU – variants to mitigate ReLU issues.

13

How Wrong Is the Model? – Loss Function

• The loss function measures how far the model's predictions are from
the true values. It is the objective minimized during training.

• Common Loss Functions:

• Mean Squared Error (MSE)
• Used for regression tasks

• Sensitive to large errors

• Cross-Entropy Loss (Log Loss)
• Used for classification tasks

• Compares predicted and true probability distributions

14

Gradient Descent

• What Are We Optimizing?
We adjust weights to minimize the loss function. Optimization is the
core of training.

• Gradient Descent
A method to find the minimum
of a function by moving in the
opposite direction of the
gradient.

• How It Works
• Compute gradient of loss with

respect to weights
• Update rule:

15

Backpropagation

• In a neural network, weights in earlier layers affect the output indirectly,
through multiple transformations.

• To update those weights, we must know:
"How does changing this weight change the final loss?"

• But the loss depends on the output, the output depends on activations,
and activations depend on previous weights.

• We can’t compute this influence in one step...
→ But we can decompose it!

• The chain rule allows us to break down the total derivative:

Backpropagation uses this rule recursively, layer by layer, to compute all gradients
from output to input — efficiently and exactly.

16

Mini-Batch SGD and Learning Rate

• Why is the Learning Rate Important?
• Too small → slow convergence

• Too large → divergence or instability

• Needs tuning → can be decayed or adapted (e.g., Adam)

• Neural networks are trained using Mini-Batch Stochastic Gradient
Descent (SGD):
• Updates weights using a small batch of samples

• Faster and more memory-efficient than full-batch GD

• Introduces noise → helps escape local minima

17

Training a Neural Network

1. Initialize weights

2. Forward pass

3. Compute loss

4. Backpropagate

5. Update weights

6. Repeat

18

How to Know When to Stop Training?

• Training Loss ↓: Model is learning to fit the
data. If the model is big enough, it always
decrease.

• Validation Loss ↓ then ↑: Indicates
overfitting—model starts memorizing.

• Ideal Stop: When validation loss stops
improving, even if training loss keeps
decreasing.

• Why It Matters
Early stopping prevents overfitting and
improves generalization > We need to find
how many epochs (full passes over the
dataset) optimize learning without overfitting.

19

Neural Networks -
More complex architectures

20

Deep neural networks

● Deep neural networks are neural networks with “many” layers (up to
billions of neurons)

● They often allow to use raw input

● The multiple layers are used to progressively extract higher-level
features from the raw input

● Often deep learning uses more advanced layers than the one we have
seen in feed-forward neural networks

21

22

23

24

25

26

Deep learning is advancing quickly...

• Long Short Term Memories (LSTM)

• Generative Adversarial Networks (GAN)

• Transformers

• Language models (LM) and large language models (LLM) Graph

• neural networks (GNN)

...

27

NN in Pytorch

28

What is PyTorch?

• Open source machine learning library

• Developed by Facebook's AI Research lab

• It leverages the power of GPUs

• Automatic computation of gradients

• Makes it easier to test and develop new ideas.

29

Other libraries?

30

Why PyTorch?

• It is pythonic- concise, close to Python conventions

• Strong GPU support

• Autograd- automatic differentiation

• Many algorithms and components are already implemented

• Similar to NumPy

31

32

Lab10_NN_tutorial.ipynb

33

	Slide 1: From Zero to Neural Networks
	Slide 2: What Are Neural Networks?
	Slide 3: Biological Inspiration
	Slide 4: The perceptron: The Artificial Neuron
	Slide 5: Perceptron Generalizes Classical Models
	Slide 6: When Linearity fails: XOR Problem
	Slide 7: When Linearity fails: XOR Problem
	Slide 8: When Linearity fails: XOR Problem
	Slide 9
	Slide 10: Basic Elements in a FF-NN
	Slide 11: Basic Elements in a FF-NN
	Slide 12
	Slide 13: Activation Functions
	Slide 14: How Wrong Is the Model? – Loss Function
	Slide 15: Gradient Descent
	Slide 16: Backpropagation
	Slide 17: Mini-Batch SGD and Learning Rate
	Slide 18: Training a Neural Network
	Slide 19: How to Know When to Stop Training?
	Slide 20: Neural Networks - More complex architectures
	Slide 21: Deep neural networks
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Deep learning is advancing quickly...
	Slide 28: NN in Pytorch
	Slide 29: What is PyTorch?
	Slide 30: Other libraries?
	Slide 31: Why PyTorch?
	Slide 32
	Slide 33: Lab10_NN_tutorial.ipynb

