

Distributed architectures for big data processing and analytics

July 11, 2025

Student ID __

First Name __

Last Name __

The exam is open book

Part I

Answer the following questions. There is only one right answer for each question.

 1. (2 points) Consider the following Spark Streaming applications.

(Application A)

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

resADStream = inputDStream\

.map(lambda value: int(value))\

.reduce(lambda v1,v2: min(v1, v2))\

.filter(lambda value : value>5)\

.window(40, 10)\

.reduce(lambda v1,v2: min(v1, v2))\

.filter(lambda value : value<10)

Print the result

resADStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

(Application B)

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

resBDStream = inputDStream\

.map(lambda value: int(value))\

.filter(lambda value : value>5)\

.window(40, 10)\

.reduce(lambda v1,v2: min(v1, v2))\

.filter(lambda value : value<10)

Print the result

resBDStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

(Application C)

from pyspark.streaming import StreamingContext

Create a Spark Streaming Context object

ssc = StreamingContext(sc, 10)

Create a (Receiver) DStream that will connect to localhost:9999

inputDStream = ssc.socketTextStream("localhost", 9999)

resCDStream = inputDStream\

.map(lambda value: int(value))\

.filter(lambda value : value>5)\

.reduce(lambda v1,v2: min(v1, v2))\

.window(40, 10)\

.reduce(lambda v1,v2: min(v1, v2))\

.filter(lambda value : value<10)

Print the result

resCDStream.pprint()

ssc.start()

ssc.awaitTerminationOrTimeout(360)

ssc.stop(stopSparkContext=False)

Which one of the following statements is true?

 a) Independently of the content of inputDStream, resADStream and resBDStream

always contain the same integer values, while resCDStream may contain different

integer values with respect to resADStream and resBDStream.

 b) Independently of the content of inputDStream, resADStream and resCDStream

always contain the same integer values, while resBDStream may contain different

integer values with respect to resADStream and resCDStream.

 c) Independently of the content of inputDStream, resBDStream and resCDStream

always contain the same integer values, while resADStream may contain different

integer values with respect to resBDStream and resCDStream.

 d) resADStream, resBDStream, and resCDStream may contain different integer

values, i.e., Application A is not equivalent to Application B, and Application A is

not equivalent to Application C, and Application B is not equivalent to Application

C.

 2. (2 points) Consider the following MapReduce application for Hadoop.

DriverBigData.java

/* Driver class */

package it.polito.bigdata.hadoop;

import ….;

/* Driver class */

public class DriverBigData extends Configured implements Tool {

 @Override

public int run(String[] args) throws Exception {

 int exitCode;

 Configuration conf = this.getConf();

 // Define a new job

 Job job = Job.getInstance(conf);

 // Assign a name to the job

 job.setJobName("Exercise 11/07/2025");

 // Set path of the input file/folder for this job

 FileInputFormat.addInputPath(job, new Path("inputFolder/"));

 // Set path of the output folder for this job

 FileOutputFormat.setOutputPath(job, new Path("outputFolder/"));

 // Specify the class of the Driver for this job

 job.setJarByClass(DriverBigData.class);

 // Set job input format

 job.setInputFormatClass(TextInputFormat.class);

 // Set job output format

 job.setOutputFormatClass(TextOutputFormat.class);

 // Set map class

 job.setMapperClass(MapperBigData.class);

 // Set map output key and value classes

 job.setMapOutputKeyClass(Text.class);

 job.setMapOutputValueClass(NullWritable.class);

 // Set reduce class

 job.setReducerClass(ReducerBigData.class);

 // Set reduce output key and value classes

 job.setOutputKeyClass(IntWritable.class);

 job.setOutputValueClass(NullWritable.class);

 // Set the number of reducers to 2

 job.setNumReduceTasks(2);

 // Execute the job and wait for completion

 if (job.waitForCompletion(true)==true)

 exitCode=0;

 else

 exitCode=1;

 return exitCode;

 }

 /* Main of the driver */

 public static void main(String args[]) throws Exception {

 int res = ToolRunner.run(new Configuration(), new DriverBigData(), args);

 System.exit(res);

 }

}

--

MapperBigData.java

/* Mapper class */

package it.polito.bigdata.hadoop;

import …;

class MapperBigData extends

 Mapper<LongWritable, // Input key type

 Text, // Input value type

 Text, // Output key type

 NullWritable> { // Output value type

 protected void map(LongWritable key, // Input key type

 Text value, // Input value type

 Context context) throws IOException, InterruptedException {

 // Emit the pair (value, NullWritable)

 context.write(new Text(value), NullWritable.get());

 }

}

--

ReducerBigData.java

/* Reducer class */

package it.polito.bigdata.hadoop;

import …;

class ReducerBigData extends

 Reducer<Text, // Input key type

 NullWritable, // Input value type

 IntWritable, // Output key type

 NullWritable> { // Output value type

 // Define numD

 int numD;

 protected void setup(Context context) {

 // Initialize numD

 numD = 0;

 }

 protected void reduce(Text key, // Input key type

 Iterable<NullWritable> values, // Input value type

 Context context) throws IOException, InterruptedException {

 // Increment numD if key starts with "D"

 if (key.toString().startsWith("D") == true) {

 numD++;

 }

 }

 protected void cleanup(Context context) throws IOException, InterruptedException {

 // Emit the pair (numD, NullWritable))

 context.write(new IntWritable(numD), NullWritable.get());

 }

}

Suppose that inputFolder contains the files Cities1.txt and Cities2.txt. Suppose the

HDFS block size is 1024 MB.

Content of Cities1.txt and Cities2.txt:

Filename Content

Cities1.txt Beijing

Cairo

Delhi

Dhaka

Dortmund

Mexico City

Mumbai

São Paulo

Cities2.txt Cairo

Chongqing

Delhi

Istanbul

Kolkata

Suppose we run the above MapReduce application (note that the input folder is set to

inputFolder/).

What is a possible output generated by running the above application?

 a) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 4 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the part files is as follows.

Filename (number of lines) Content

part-r-00000 (2 lines) 2

1

part-r-00001 (1 line) 0

 b) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 3

part-r-00001 (1 line) 1

 c) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 2

part-r-00001 (1 line) 1

 d) The content of the output folder is as follows.

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00000

-rw-r--r-- 1 paolo paolo 2 set 3 14:00 part-r-00001

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS

The content of the part files is as follows.

Filename (number of lines) Content

part-r-00000 (1 line) 4

part-r-00001 (1 line) 0

Part II

PoliCourses is an international company that manages online courses attended by

students worldwide. Statistics about the organized courses, lectures, and students are

computed based on the following input data files, which have been collected in the

company's latest twenty years of activities.

 Students.txt

o Students.txt is a textual file containing information about the students of

PoliCourses. There is one line for each student. The total number of students is

greater than 100,000,000. This file is large and you cannot suppose the content

of Students.txt can be stored in one in-memory Java/Python variable.

o Each line of Students.txt has the following format

 SID,Name,Surname,Country,Continent

where SID is the user’s unique identifier, Name and Surname are his/her

name and surname, respectively, Country is the country where he/she

lives, and Continent is the continent where he/she lives.

 For example, the following line

SID10,Maria,Rossi,Italy,Europe

means that the name and surname of the user with identifier SID10 are

Maria and Rossi, respectively, and the student lives in Italy, which is in

Europe.

 Courses.txt

o Courses.txt is a textual file containing information about the courses organized

by PoliCourses. There is one line for each course. The total number of courses

stored in Courses.txt is greater than 200,000. This file is large and you cannot

suppose the content of Courses.txt can be stored in one in-memory Java/Python

variable.

o Each line of Courses.txt has the following format

 CID,Title,ProductionYear

where CID is the course’s unique identifier, Title is the title of the course,

and ProductionYear is the year when the course was produced/recorded.

 For example, the following line

CID3024,MapReduce and Hadoop,2004

means that the course with CID CID3024 is titled “MapReduce and

Hadoop” and was produced/recorded in 2004.

 RecordedLectures.txt

o RecordedLectures.txt is a textual file containing information about the lectures

offered by PoliCourses. There is one line for each lecture. The total number of

lectures stored in RecordedLectures.txt is greater than 4,000,000. This file is

large and you cannot suppose the content of RecordedLectures.txt can be

stored in one in-memory Java/Python variable.

o Each line of RecordedLectures.txt has the following format

 LID,CID,Title,Duration

where LID is the lecture’s unique identifier, CID is the identifier of the

course this recorded lecture is part of, Title is the lecture's title, and

Duration is its duration in minutes. Duration is an integer and represents

the lecture’s duration in minutes. Each lecture is associated with one

single course, while each course is associated with/is composed of many

lectures.

 For example, the following line

LID10,CID3024,Introduction to HDFS, 90

means that the lecture identified by LID10 is part of the course with CID

CID3024, is titled “Introduction to HDFS”, and lasts 90 minutes.

 StudentsWatchedRecordedLectures.txt

o StudentsWatchedRecordedLectures.txt is a textual file containing information

about who watched the recorded lectures and when. A new line is inserted in

this file every time a student watches one of the recorded lectures. This file con-

tains historical data about the last 20 years. This file is big and you cannot sup-

pose the content of StudentsWatchedRecordedLectures.txt can be stored in one

in-memory Java/Python variable.

o Each line of StudentsWatchedRecordedLectures.txt has the following format

 SID,StartWatchingTime,LID

where SID is the identifier of the student who watched the recorded

lecture identified by LID. The student SID started watching the recorded

lecture LID at StartWatchingTime. StartWatchingTime is a timestamp in

the format YYYY/MM/DD-HH:MM.

 For example, the following line

SID10,2024/02/01-20:40,LID10

means that the student identified by SID10 watched the recorded lecture

identified by LID10. He/she started watching the recorded lecture on

February 1, 2024, at 20:40.

Note that each student can watch many lectures, and each lecture can be watched by

many students. Moreover, the same student can watch each lecture several times at

different starting times (a new line is inserted in StudentsWatchedRecordedLectures.txt

for each visualization). The combination of attributes (SID, StartWatchingTime) is the

“primary key” of the input file. Hence, each pair (SID, StartWatchingTime) occurs at most

one time in StudentsWatchedRecordedLectures.txt.

Exercise 1 – MapReduce and Hadoop (8 points)

Exercise 1.1

The managers of PoliCourses are interested in performing some analyses about products.

Design a single application based on MapReduce and Hadoop and write the

corresponding Java code to address the following point:

1. Number of countries with many students for each continent. For each continent, the

application computes how many countries have at least 1000 students.

Each output line has the following format:

Continent,Number of countries with at least 1000 students for this continent

Suppose that in each continent there is at least one country with at least 1000

students, i.e., do not consider the case (Continent, 0 countries with at least

1000 students).

Suppose the number of distinct countries is big and the set of distinct

countries cannot be stored in one single Java variable.

Suppose that the input is Students.txt and it has already been set. Suppose that the name

of the output folder has also already been set.

Toy example

Consider a toy example that contains only two continents (Europe and Asia) and five

countries (Italy, France, Spain, Uzbekistan, and Vietnam).

Suppose that

 Suppose that 1200 students live in Italy (Europe).

 Suppose that 2101 students live in France (Europe).

 Suppose that 400 students live in Spain (Europe).

 Suppose that 1100 students live in Uzbekistan (Asia).

 Suppose that 900 students live in Vietnam (Asia).

The expected output for this toy example is as follows:

 Europe,2

 Asia,1

 Write only the content of the Mapper and Reducer classes (map and reduce

methods. setup and cleanup if needed). The content of the Driver must not be

reported.

 Use the following two specific multiple-choice questions to specify the number of

instances of the reducer class for each job.

 If your application is based on two jobs, specify which methods are associated with

the first job and which are associated with the second job.

 If you need personalized classes, report for each of them:

o the name of the class,

o attributes/fields of the class (data type and name),

o personalized methods (if any), e.g., the content of the toString() method if

you override it,

o do not report the get and set methods. Suppose they are "automatically

defined".

Answer the following two questions to specify the number of jobs (one or two) and

the number of instances of the reducer classes.

Exercise 1.2 - Number of instances of the reducer - Job 1

Select the number of instances of the reducer class of the first Job

(a) 0

(b) exactly 1

(c) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 1.3 - Number of instances of the reducer - Job 2

Select the number of instances of the reducer class of the second Job

(a) One single job is needed

(b) 0

(c) exactly 1

(d) any number >=1 (i.e., the reduce phase can be parallelized)

Exercise 2 – Spark and RDDs (19 points)

The managers of PoliCourses asked you to develop a single Spark-based application

based on RDDs or Spark SQL to address the following tasks. The application takes the

paths of the input files and two output folders (associated with the outputs of the following

points 1 and 2, respectively).

1. Number of distinct lectures of the course CID10 watched by each student in each

year from 2015 to 2020. The first part of this application considers only the

visualizations from 2015 to 2020. The first part of this application computes the

number of distinct lectures of the course with CID “CID10” watched by each student

in each of the years from 2015 to 2020. Store the result in the first output folder. The

output contains one line for each combination (student, year), where year ranges

from 2015 to 2020. The output format is as follows:

SID,year,number of distinct lectures of the course identified by CID10 watched by

this student (SID) in this specific year

Note. Do not consider the combinations (student, year) for which the student

watched no lectures of the course CID10 in year, i.e., the combinations (student,

year) with no visualizations must not be considered.

Part 1 - Example

For this toy example, suppose there are only two students (SID1 and SID2).

Suppose that

 SID1 watched

o 3 distinct lectures of the course CID10 in 2015

o 4 distinct lectures of the course CID10 in 2016

o 4 distinct lectures of the course CID10 in 2017

o 5 distinct lectures of the course CID10 in 2018

o 3 distinct lectures of the course CID10 in 2019

o 2 distinct lectures of the course CID10 in 2020

 SID2 watched

o 1 distinct lectures of the course CID10 in 2015

o 3 distinct lectures of the course CID10 in 2016

o 2 distinct lectures of the course CID10 in 2017

o No lectures of the course CID10 in 2018

o 4 distinct lectures of the course CID10 in 2019

o No lectures of the course CID10 in 2020

The output stored in the first output folder is as follows.

SID1,2015,3

SID1,2016,4

SID1,2017,4

SID1,2018,5

SID1,2019,3

SID1,2020,2

SID2,2015,1

SID2,2016,3

SID2,2017,2

SID2,2019,4

Note that the combinations (SID2, 2018) and (SID2, 2020) are not considered and

are not stored in the first output folder because SID2 watched no lectures of CID10

in those two years.

2. Course(s) with the maximum number of visualizations in 2024 and the minimum

number of visualizations in 2023. The second part of this application considers only

the visualizations related to the years 2023 and 2024. The second part of this

application calculates for each course the number of visualizations (each line of

StudentsWatchedRecordedLectures.txt is a visualization) in 2023 and the number

of visualizations in 2024. Then, it selects the course(s) associated with the

maximum number of visualizations in 2024 and the minimum number of

visualizations in 2023. In case of a tie, all courses associated with the maximum

value in 2024 and the minimum value in 2023 must be selected and stored in the

output folder. If there are no courses that satisfy both constraints, the output folder

is empty.

The result is stored in the second output folder (one selected course per output

line). The output format is as follows:

CID,Number of visualizations associated with this course in 2024,Number of

visualizations associated with this course in 2023

Note that the case with both values (the maximum number of visualizations in

2024 and the minimum number of visualizations in 2023) equal to zero must also

be considered.

Note that the output is empty if there are no courses that satisfy both

constraints.

Part 2 - First example

Consider a toy example with three courses identified by CID1, CID2, and CID3.

Suppose that

 CID1

o The number of visualizations associated with the course CID1 in 2024 is 3.

o The number of visualizations associated with the course CID1 in 2023 is 2.

 CID2

o The number of visualizations associated with the course CID2 in 2024 is 2.

o The number of visualizations associated with the course CID2 in 2023 is 2.

 CID3

o The number of visualizations associated with the course CID3 in 2024 is 3.

o The number of visualizations associated with the course CID3 in 2023 is 0.

The maximum value in 2024 is 3 and the minimum value in 2023 is 0. The output of

the second part is as follows for this first toy example:

 CID3,3,0

Part 2 - Second example

Consider a second toy example with three courses identified by CID1, CID2, and

CID3.

Suppose that

 CID1

o The number of visualizations associated with the course CID1 in 2024 is 4.

o The number of visualizations associated with the course CID1 in 2023 is 2.

 CID2

o The number of visualizations associated with the course CID2 in 2024 is 4.

o The number of visualizations associated with the course CID2 in 2023 is 2.

 CID3

o The number of visualizations associated with the course CID3 in 2024 is 3.

o The number of visualizations associated with the course CID3 in 2023 is 3.

The maximum value in 2024 is 4 and the minimum value in 2023 is 2. The output of

the second part is as follows for this second toy example:

 CID1,4,2

 CID2,4,2

Part 2 - Third example

Consider a third toy example with three courses identified by CID1, CID2, and CID3.

Suppose that

 CID1

o The number of visualizations associated with the course CID1 in 2024 is 5.

o The number of visualizations associated with the course CID1 in 2023 is 2.

 CID2

o The number of visualizations associated with the course CID2 in 2024 is 4.

o The number of visualizations associated with the course CID2 in 2023 is 2.

 CID3

o The number of visualizations associated with the course CID3 in 2024 is 3.

o The number of visualizations associated with the course CID3 in 2023 is 0.

The maximum value in 2024 is 5 and the minimum value in 2023 is 0. The output of

the second part is empty for this third example. CID1 is associated with the

maximum value in 2024 but is not associated with the minimum value in 2023. CID3

is associated with the minimum value in 2023 but is not associated with the

maximum value in 2024.

 You do not need to write imports. Focus on the content of the main method.

 Suppose both SparkContext sc and SparkSession ss have already been set.

 Only if you use Spark SQL, suppose the first line of all files contains the header

information/the name of the attributes. Suppose, instead, there are no header lines

if you use RDDs.

