Vector Database

Powering Al Search and Semantic Understanding

Whatis a Vector Database?

* AVector Database is a specialized data store desighed to
manage, index, and query high-dimensional vector embeddings.

* These vectors represent semantic meaning often generated by

machine learning models (like embeddings from text, image, or
audio).

* Enables similarity search rather than traditional exact matching.

What are embeddings?

* Embeddings are numerical
representations of data (text,
Images, audio, etc.) in a high-
dimensional space.

* Each piece of data is converted into a
vector, a list of numbers that
captures its semantic meaning.

* Similar meanings - vectors close
together.

* Different meanings - vectors far
apart.

A simple example with textual data

Words:
e “king”~>1[0.21,0.89, 0.42, ...]
 “gueen”~>[0.20, 0.88, 0.43, ...]
e “car”’~>[0.85,0.13,0.09, ...]

The vectors for “king” and “queen” are close together because they’re
semantically related (royalty).

The vector for “car” is far away because it belongs to a different concept.
We can think each column identifies a “concept”, depending on the
embedding model selected.

Concept are learned by the embedding model: they don’t have a
concrete meaning.

How embeddings are created

Embeddings come from machine learning models trained on large
datasets.

Examples:
* Word2Vec - early model for word embeddings
* GloVe - captures word relationships using co-occurrence statistics

* BERT / OpenAl Embeddings —- modern models that capture contextual
meaning, event on long sentences

* CLIP-Model that learns image embedding, aligned with their descriptions

Each model learns to map meaning into numbers based on context and
similarity.

Why do we need Vector Databases?

* Traditional databases struggle with unstructured data (e.g., text,
Images).

* Vector databases allow semantic retrieval, so “find things that
mean the same”, not just “match keywords”

* Embedding similarity comparison made naively is extremely slow

* They are critical for building applications such as:
* chatbots and recommendation systems
* image and video search (not keyword-base)
* document and knowledge retrieval

Popular Vector Databases

* Pinecone — Managed vector database with APl integration
* Qdrant - Vector DB with hybrid and schema-based search
* Milvus - Scalable open-source vector engine

* FAISS (by Meta) — Library for efficient similarity search

¢33 Pinecone

‘drant

Real-World use cases

Retrieval-Augmented Generation (RAG)
* Personalized Recommendations (e.g., movies, products)

Semantic Document Search

Image Similarity Search (visual recognition, e-commerce)

How a Vector DB works

* Data embedding: convert data (text, images, etc.) into numerical
vector representations using Al models.

* Indexing: store vectors in optimized structures (e.g., HNSW, IVF,
or PQ indexes).

* Querying: compare query vectors using similarity metrics
(cosine, Euclidean, etc.).

* Query can be images (e.g., when finding images close to a target one), text
(e.g., one question, when looking for a bunch of possible answers)

e Results: retrieve the k most similar items based on vector
distance.

Similarity search types

* k-Nearest Neighbors (k-NN)
* Returns the k most similar items.
* Most common search type.

* Range search
* Returns all items within a similarity threshold (e.g., distance < 0.5).

* Hybrid search

* Combines vector search with keyword filtering or metadata constraints.

Example hybrid query: “Find articles about Tesla that are semantically
similar to electric carinnovation.”

To efficiently do this, Vector Databases use indexing.

10

Vector indexing

* Indexing is the process of organizing vectors to make similarity
search fast and efficient.

* Without an index, finding the nearest vectors would require
comparing every vector, which is too slow for large datasets.

* Vector indexes enable Approximate Nearest Neighbor (ANN)

search by retrieving the most similar items quickly, even among
billions of vectors.

11

Indexing basics - similarity search

Vector indexes rely on distance metrics to measure
similarity
* Cosine similarity: measures angle between vectors (used for
text).

* Euclidean distance: measures straight-line distance (used for
Images).

* Dot product: measures projection of one vector onto another.

The index stores and organizes vectors so these
comparisons are optimized.

12

Cosine similarity

Measures the angle between two vectors.

lgnores the length (magnitude) and focuses on directional
similarity.
Formula:
A'B
lAIlIBII

Values range from -1 (opposite) to 1 (identical).

* Cosine Similarity =

Best for: text embeddings, NLP applications (semantic meaning).

13

The need for indexing

Imagine you have 100 million embeddings.

A brute-force search checks all 100M vectors for every query,
becoming very slow.

Indexing creates a structure that allows the database to skip most
comparisons, at the price of small accuracy trade-off.

14

Types of index structures

Common ANN (Approximate Nearest Neighbor) techniques include
* HNSW (Hierarchical Navigable Small World)

* Graph-based structure
* Balances speed and accuracy
e Used in Weaviate, Pinecone, Milvus

* IVF (Inverted File Index)

e Clusters vectors into “buckets”
* Speeds up search by checking only relevant buckets

* PQ (Product Quantization)

* Compresses vectors to save memory
* Enables large-scale search with minimal loss

15

HNSW

* HNSW (Hierarchical Navigable Small World) is a graph-based
indexing algorithm used for Approximate Nearest Neighbor
(ANN) search.

* |t builds a multi-layer network of vectors, where each node
connects to a small number of nearby vectors.

* Designed for high recall, fast search, and efficient updates
Ideal for Al-scale vector databases

16

The core idea of HNSW

* Every vector is a node in a navigable graph
* Each node connects to several neighbors (similar vectors)

* The graph has multiple layers
* Top layers have fewer nodes (for broad, fast navigation)
* Lower layers have denser connections (for fine-grained search)

* The structure lets the search “zoom in” on the most relevant
vectors step by step

17

HNSW Structure Overview

Visualize it like a pyramid

entry point
* Top layer: few entry points, global /y "
view of the space. @< -
* Middle layers: increasingly detailed v
neighborhood connections.

* Bottom layer: full vector network.

Each new vector is placed into

multiple layers, forming links to its — oo 3 :
nearest neighbors neavest negghboy N :

query vector

18

How search works in HNSW

When a query comes in
* Start at the top layer with an entry node
* Move to the neighbor that’s closest to the query vector
* Continue until no closer neighbor exists
* Descend to the next layer and repeat

* Once at the bottom layer, perform a local nearest neighbor search for
exact ranking

This hierarchical descent drastically reduces the number of
comparisons needed

19

Trade-offs in indexing

* Speed vs. Accuracy: faster search may skip some near-perfect
matches

* Memory vs. Compression: smaller indexes can reduce precision

* Dynamic vs. Static:
» Static indexes are optimized for fixed data
* Dynamic indexes can handle frequent updates or inserts

Balancing these trade-offs is key to good performance

21

Example - text query

User query: “Best ways to reduce electricity consumption”
* Embedding model > vector: [0.12, 0.47, -0.56, ...]
 Compare against all stored vectors (e.g., articles)
* Retrieve nearest vectors (highest cosine similarity)

Results
* “How to save power at home”
* “Tips for lowering energy bills”
* “Smart home energy management”

Even though wording differs, meaning is the same

22

Example — image query

* User Query: find a photo of a dog

* Convertimage into embedding
* Search for similar image embeddings using cosine distance

* Retrieve images that are visually or semantically similar (e.g., other
dogs, similar breeds)

Used in e-commerce, visual search, and content moderation
systems. g <

Querying and similarity search

* Queries in vector databases are meaning-based, not
keyword-based

* Embeddings + Indexing + Similarity Metrics
= Semantic Search Engine.

* Supports multimodal (text, image, audio) queries

* Core to modern Al, recommendation, and knowledge
retrieval systems

24

RAG (Retrieval-Augmented Generation)

RAG is a technique that augments LLMs by combining retrieval-
based methods (i.e., a Vector DB) with generation-based
capabilities (an LLM).

Unlike standalone language models, RAG retrieves relevant
iInformation from an external knowledge base to

* enrich the LLM’s responses
* reduce hallucination.
* provide up-to-date answers

25

How does RAG work?

RAG consists of two main components

* Retriever: this component fetches relevant
iInformation from a large dataset based on the
user’s query

* Generator: after retrieving the information, the
generator (usually an LLM) uses it to generate a
more accurate, context-aware response.

26

How does RAG work?

Basic RAG Pipeline

The knowledge base (books,
documentation, etc.) is split

into chunks to Ingestion

e allow the creation of more N L ol
aligned embeddings bocuments " Chunk Embeddngs [e ‘

* allow the generator to focus

on more centred portion of
the text

Retrieval e — ' Synthesis
=" ndex [™ Top K
Query . I— _ LLM = Response

27

How does RAG work?
Basic RAG Pipeline

Get the query embedding and
perform a Vector search on the
database. The resultis the

Ingestion

Documents

Context. N q D
s T Chunks Embeddings —.{--___lm‘im

-

Retrieval e — ' Synthesis
= " Index I Top K
Query — I . LLM -

28

How does RAG work?

Basic RAG Pipeline

The generator produces an
answer to the query grounded
on the context, e.g.:

You are a helpful chatbot.

\l [T
Documents Chunks Embeddings W

Use only the following pieces of
context to answer the question.
Don't make up any new information:

{CONTEXT}
to answer to: {QUERY}

29

MongoDB + Vector search

MongoDB can be used as a vector database too.

This utility allows to seamlessly search and index vector data
alongside all other MongoDB data.

* You must create a MongoDB Vector Search index. MongoDB
Vector Search indexes are separate from your other database
iIndexes and are used to efficiently retrieve documents that
contain vector embeddings at query-time.

* |t supports both ANN with HNSW and ENN (Exact Nearest
Neighbor)

30

Vector search pipeline

MongoDB Vector Search queries {

are aggregation pipeline =|{

Stages Where . . : {<filter-specification>},
the $vectorSearch stage is the first : ,

Stage. : <number-of-results>,

: <number-of-candidates>,

* You select either ANN or ENN search
and specify the query vector, that
: [<array-of-numbers>],
represents your search query -
* MongoDB Vector Search finds vector . [<array-of-documentIDs>]
embeddings in your data that are }
closest to the query vector }

J

31

https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/#mongodb-pipeline-pipe.-vectorSearch
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/#mongodb-pipeline-pipe.-vectorSearch

	Diapositiva 1: Vector Database
	Diapositiva 2: What is a Vector Database?
	Diapositiva 3: What are embeddings?
	Diapositiva 4: A simple example with textual data
	Diapositiva 5: How embeddings are created
	Diapositiva 6: Why do we need Vector Databases?
	Diapositiva 7: Popular Vector Databases
	Diapositiva 8: Real-World use cases
	Diapositiva 9: How a Vector DB works
	Diapositiva 10: Similarity search types
	Diapositiva 11: Vector indexing
	Diapositiva 12: Indexing basics - similarity search
	Diapositiva 13: Cosine similarity
	Diapositiva 14: The need for indexing
	Diapositiva 15: Types of index structures
	Diapositiva 16: HNSW
	Diapositiva 17: The core idea of HNSW
	Diapositiva 18: HNSW Structure Overview
	Diapositiva 19: How search works in HNSW
	Diapositiva 21: Trade-offs in indexing
	Diapositiva 22: Example - text query
	Diapositiva 23: Example — image query
	Diapositiva 24: Querying and similarity search
	Diapositiva 25: RAG (Retrieval-Augmented Generation)
	Diapositiva 26: How does RAG work?
	Diapositiva 27: How does RAG work?
	Diapositiva 28: How does RAG work?
	Diapositiva 29: How does RAG work?
	Diapositiva 30: MongoDB + Vector search
	Diapositiva 31: Vector search pipeline

