
Vector Database
Powering AI Search and Semantic Understanding

1



What is a Vector Database?

• A Vector Database is a specialized data store designed to 
manage, index, and query high-dimensional vector embeddings.

• These vectors represent semantic meaning often generated by 
machine learning models (like embeddings from text, image, or 
audio).

• Enables similarity search rather than traditional exact matching.
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What are embeddings?

• Embeddings are numerical 
representations of data (text, 
images, audio, etc.) in a high-
dimensional space.

• Each piece of data is converted into a 
vector, a list of numbers that 
captures its semantic meaning.

• Similar meanings → vectors close 
together.

• Different meanings → vectors far 
apart.
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A simple example with textual data

Words:
• “king” → [0.21, 0.89, 0.42, …]
• “queen” → [0.20, 0.88, 0.43, …]
• “car” → [0.85, 0.13, 0.09, …]

The vectors for “king” and “queen” are close together because they’re 
semantically related (royalty).
The vector for “car” is far away because it belongs to a different concept.
We can think each column identifies a “concept”, depending on the 
embedding model selected.
Concept are learned by the embedding model: they don’t have a 
concrete meaning.
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How embeddings are created

Embeddings come from machine learning models trained on large 
datasets.

Examples:
• Word2Vec – early model for word embeddings
• GloVe – captures word relationships using co-occurrence statistics
• BERT / OpenAI Embeddings – modern models that capture contextual 

meaning, event on long sentences
• CLIP – Model that learns image embedding, aligned with their descriptions

Each model learns to map meaning into numbers based on context and 
similarity.
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Why do we need Vector Databases?

• Traditional databases struggle with unstructured data (e.g., text, 
images).

• Vector databases allow semantic retrieval, so “find things that 
mean the same”, not just “match keywords”

• Embedding similarity comparison made naively is extremely slow
• They are critical for building applications such as:

• chatbots and recommendation systems
• image and video search (not keyword-base)
• document and knowledge retrieval
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Popular Vector Databases

• Pinecone – Managed vector database with API integration
• Qdrant – Vector DB with hybrid and schema-based search
• Milvus – Scalable open-source vector engine
• FAISS (by Meta) – Library for efficient similarity search
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Real-World use cases

• Retrieval-Augmented Generation (RAG)
• Personalized Recommendations (e.g., movies, products)
• Semantic Document Search
• Image Similarity Search (visual recognition, e-commerce)
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How a Vector DB works

• Data embedding: convert data (text, images, etc.) into numerical 
vector representations using AI models.

• Indexing: store vectors in optimized structures (e.g., HNSW, IVF, 
or PQ indexes).

• Querying: compare query vectors using similarity metrics 
(cosine, Euclidean, etc.).
• Query can be images (e.g., when finding images close to a target one), text 

(e.g., one question, when looking for a bunch of possible answers)

• Results: retrieve the k most similar items based on vector 
distance.
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Similarity search types

• k-Nearest Neighbors (k-NN)
• Returns the k most similar items.
• Most common search type.

• Range search
• Returns all items within a similarity threshold (e.g., distance < 0.5).

• Hybrid search
• Combines vector search with keyword filtering or metadata constraints.

Example hybrid query: “Find articles about Tesla that are semantically 
similar to electric car innovation.”
To efficiently do this, Vector Databases use indexing.
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Vector indexing

• Indexing is the process of organizing vectors to make similarity 
search fast and efficient.

• Without an index, finding the nearest vectors would require 
comparing every vector, which is too slow for large datasets.

• Vector indexes enable Approximate Nearest Neighbor (ANN)
search by retrieving the most similar items quickly, even among 
billions of vectors.
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Indexing basics - similarity search

Vector indexes rely on distance metrics to measure 
similarity

• Cosine similarity: measures angle between vectors (used for 
text).

• Euclidean distance: measures straight-line distance (used for 
images).

• Dot product: measures projection of one vector onto another.

The index stores and organizes vectors so these 
comparisons are optimized.
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Cosine similarity

Measures the angle between two vectors.
Ignores the length (magnitude) and focuses on directional 
similarity.
Formula:

• Cosine Similarity = 𝐴⋅𝐵

∥𝐴∥∥𝐵∥

Values range from -1 (opposite) to 1 (identical).
Best for: text embeddings, NLP applications (semantic meaning).
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The need for indexing

Imagine you have 100 million embeddings.
A brute-force search checks all 100M vectors for every query, 
becoming very slow.
Indexing creates a structure that allows the database to skip most 
comparisons, at the price of small accuracy trade-off.
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Types of index structures

Common ANN (Approximate Nearest Neighbor) techniques include
• HNSW (Hierarchical Navigable Small World)

• Graph-based structure
• Balances speed and accuracy
• Used in Weaviate, Pinecone, Milvus

• IVF (Inverted File Index)
• Clusters vectors into “buckets”
• Speeds up search by checking only relevant buckets

• PQ (Product Quantization)
• Compresses vectors to save memory
• Enables large-scale search with minimal loss
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HNSW

• HNSW (Hierarchical Navigable Small World) is a graph-based 
indexing algorithm used for Approximate Nearest Neighbor 
(ANN) search.

• It builds a multi-layer network of vectors, where each node 
connects to a small number of nearby vectors.

• Designed for high recall, fast search, and efficient updates
ideal for AI-scale vector databases
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The core idea of HNSW

• Every vector is a node in a navigable graph
• Each node connects to several neighbors (similar vectors)
• The graph has multiple layers

• Top layers have fewer nodes (for broad, fast navigation)
• Lower layers have denser connections (for fine-grained search)

• The structure lets the search “zoom in” on the most relevant 
vectors step by step
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HNSW Structure Overview

Visualize it like a pyramid
• Top layer: few entry points, global 

view of the space.
• Middle layers: increasingly detailed 

neighborhood connections.
• Bottom layer: full vector network.

Each new vector is placed into 
multiple layers, forming links to its 
nearest neighbors
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How search works in HNSW

When a query comes in
• Start at the top layer with an entry node
• Move to the neighbor that’s closest to the query vector
• Continue until no closer neighbor exists
• Descend to the next layer and repeat
• Once at the bottom layer, perform a local nearest neighbor search for 

exact ranking

This hierarchical descent drastically reduces the number of 
comparisons needed
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Trade-offs in indexing

• Speed vs. Accuracy: faster search may skip some near-perfect 
matches

• Memory vs. Compression: smaller indexes can reduce precision
• Dynamic vs. Static:

• Static indexes are optimized for fixed data
• Dynamic indexes can handle frequent updates or inserts

Balancing these trade-offs is key to good performance
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Example - text query

User query: “Best ways to reduce electricity consumption”
• Embedding model → vector: [0.12, 0.47, -0.56, …]
• Compare against all stored vectors (e.g., articles)
• Retrieve nearest vectors (highest cosine similarity)

Results
• “How to save power at home”
• “Tips for lowering energy bills”
• “Smart home energy management”

Even though wording differs, meaning is the same
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Example — image query

• User Query: find a photo of a dog
• Convert image into embedding
• Search for similar image embeddings using cosine distance
• Retrieve images that are visually or semantically similar (e.g., other 

dogs, similar breeds)

Used in e-commerce, visual search, and content moderation 
systems.
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Querying and similarity search

• Queries in vector databases are meaning-based, not 
keyword-based

• Embeddings + Indexing + Similarity Metrics 
= Semantic Search Engine.

• Supports multimodal (text, image, audio) queries
• Core to modern AI, recommendation, and knowledge 

retrieval systems
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RAG (Retrieval-Augmented Generation)

RAG is a technique that augments LLMs by combining retrieval-
based methods (i.e., a Vector DB) with generation-based 
capabilities (an LLM). 
Unlike standalone language models, RAG retrieves relevant 
information from an external knowledge base to 
• enrich the LLM’s responses 
• reduce hallucination.
• provide up-to-date answers
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How does RAG work?

RAG consists of two main components
•Retriever: this component fetches relevant 

information from a large dataset based on the 
user’s query
•Generator: after retrieving the information, the 

generator (usually an LLM) uses it to generate a 
more accurate, context-aware response.
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How does RAG work?

The knowledge base (books, 
documentation, etc.) is split 
into chunks to
• allow the creation of more 

aligned embeddings
• allow the generator to focus 

on more centred portion of 
the text
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How does RAG work?

Get the query embedding and 
perform a Vector search on the 
database. The result is the 
Context.
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How does RAG work?

The generator produces an 
answer to the query grounded 
on the context, e.g.:
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You are a helpful chatbot.

Use only the following pieces of 
context to answer the question. 
Don't make up any new information:

{CONTEXT} 

to answer to: {QUERY}



MongoDB + Vector search

MongoDB can be used as a vector database too. 
This utility allows to seamlessly search and index vector data 
alongside all other MongoDB data.
• You must create a MongoDB Vector Search index. MongoDB 

Vector Search indexes are separate from your other database 
indexes and are used to efficiently retrieve documents that 
contain vector embeddings at query-time.

• It supports both ANN with HNSW and ENN (Exact Nearest 
Neighbor)
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Vector search pipeline

MongoDB Vector Search queries 
are aggregation pipeline 
stages where 
the $vectorSearch stage is the first 
stage. 

• You select either ANN or ENN search 
and specify the query vector, that 
represents your search query

• MongoDB Vector Search finds vector 
embeddings in your data that are 
closest to the query vector
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{

"$vectorSearch": {

"exact": true | false,

"filter": {<filter-specification>},

"index": "<index-name>",

"limit": <number-of-results>,

"numCandidates": <number-of-candidates>,

"path": "<field-to-search>",

"queryVector": [<array-of-numbers>],

"explainOptions": {

"traceDocumentIds": [<array-of-documentIDs>]

}

}

}

https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/#mongodb-pipeline-pipe.-vectorSearch
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/#mongodb-pipeline-pipe.-vectorSearch
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