Vector Database

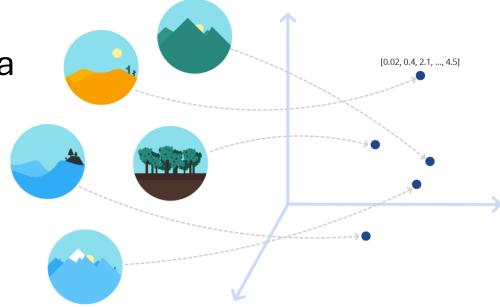
Powering Al Search and Semantic Understanding

What is a Vector Database?

- A Vector Database is a specialized data store designed to manage, index, and query high-dimensional vector embeddings.
- These vectors represent **semantic meaning** often generated by machine learning models (like embeddings from text, image, or audio).
- Enables similarity search rather than traditional exact matching.

What are embeddings?

- Embeddings are numerical representations of data (text, images, audio, etc.) in a highdimensional space.
- Each piece of data is converted into a vector, a list of numbers that captures its semantic meaning.
- Similar meanings → vectors close together.
- Different meanings → vectors far apart.



A simple example with textual data

Words:

- "king" \rightarrow [0.21, 0.89, 0.42, ...]
- "queen" → [0.20, 0.88, 0.43, ...]
- "car" \rightarrow [0.85, 0.13, 0.09, ...]

The vectors for "king" and "queen" are **close together** because they're semantically related (royalty).

The vector for "car" is **far away** because it belongs to a different concept. We can think each column identifies a "concept", depending on the embedding model selected.

Concept are learned by the embedding model: they don't have a concrete meaning.

How embeddings are created

Embeddings come from **machine learning models** trained on large datasets.

Examples:

- Word2Vec early model for word embeddings
- GloVe captures word relationships using co-occurrence statistics
- BERT / OpenAl Embeddings modern models that capture contextual meaning, event on long sentences
- CLIP Model that learns image embedding, aligned with their descriptions

Each model learns to **map meaning** into **numbers** based on context and similarity.

Why do we need Vector Databases?

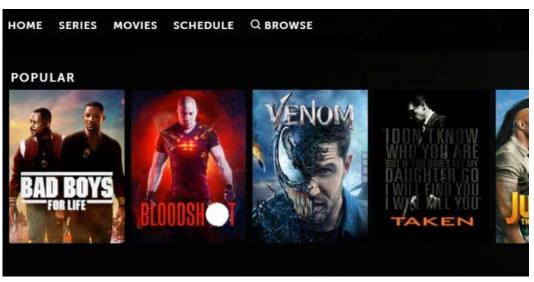
- Traditional databases struggle with unstructured data (e.g., text, images).
- Vector databases allow **semantic retrieval**, so "find things that mean the same", not just "match keywords"
- Embedding similarity comparison made naively is extremely slow
- They are critical for building applications such as:
 - chatbots and recommendation systems
 - image and video search (not keyword-base)
 - document and knowledge retrieval

Popular Vector Databases

- Pinecone Managed vector database with API integration
- Qdrant Vector DB with hybrid and schema-based search
- Milvus Scalable open-source vector engine
- FAISS (by Meta) Library for efficient similarity search

Real-World use cases

- Retrieval-Augmented Generation (RAG)
- Personalized Recommendations (e.g., movies, products)
- Semantic Document Search
- Image Similarity Search (visual recognition, e-commerce)



How a Vector DB works

- **Data embedding:** convert data (text, images, etc.) into numerical vector representations using AI models.
- **Indexing:** store vectors in optimized structures (e.g., HNSW, IVF, or PQ indexes).
- Querying: compare query vectors using similarity metrics (cosine, Euclidean, etc.).
 - Query can be images (e.g., when finding images close to a target one), text (e.g., one question, when looking for a bunch of possible answers)
- Results: retrieve the k most similar items based on vector distance.

Similarity search types

k-Nearest Neighbors (k-NN)

- Returns the k most similar items.
- Most common search type.

Range search

Returns all items within a similarity threshold (e.g., distance < 0.5).

Hybrid search

Combines vector search with keyword filtering or metadata constraints.

Example hybrid query: "Find articles about *Tesla* that are semantically similar to *electric car innovation*."

To efficiently do this, Vector Databases use indexing.

Vector indexing

- Indexing is the process of organizing vectors to make similarity search fast and efficient.
- Without an index, finding the nearest vectors would require comparing every vector, which is **too slow** for large datasets.
- Vector indexes enable Approximate Nearest Neighbor (ANN)
 search by retrieving the most similar items quickly, even among
 billions of vectors.

Indexing basics - similarity search

Vector indexes rely on **distance metrics** to measure similarity

- Cosine similarity: measures angle between vectors (used for text).
- **Euclidean distance:** measures straight-line distance (used for images).
- Dot product: measures projection of one vector onto another.

The index stores and organizes vectors so these comparisons are **optimized**.

Cosine similarity

Measures the **angle** between two vectors.

Ignores the length (magnitude) and focuses on **directional similarity**.

Formula:

• Cosine Similarity = $\frac{A \cdot B}{\|A\| \|B\|}$

Values range from -1 (opposite) to 1 (identical).

Best for: text embeddings, NLP applications (semantic meaning).

The need for indexing

Imagine you have 100 million embeddings.

A brute-force search checks all 100M vectors for every query, becoming **very slow**.

Indexing creates a **structure** that allows the database to skip most comparisons, at the price of small accuracy trade-off.

Types of index structures

Common ANN (Approximate Nearest Neighbor) techniques include

- HNSW (Hierarchical Navigable Small World)
 - Graph-based structure
 - Balances speed and accuracy
 - Used in Weaviate, Pinecone, Milvus
- IVF (Inverted File Index)
 - Clusters vectors into "buckets"
 - Speeds up search by checking only relevant buckets
- PQ (Product Quantization)
 - Compresses vectors to save memory
 - Enables large-scale search with minimal loss

HNSW

- HNSW (Hierarchical Navigable Small World) is a graph-based indexing algorithm used for Approximate Nearest Neighbor (ANN) search.
- It builds a multi-layer network of vectors, where each node connects to a small number of nearby vectors.
- Designed for high recall, fast search, and efficient updates ideal for Al-scale vector databases

The core idea of HNSW

- Every vector is a **node** in a **navigable graph**
- Each node connects to several neighbors (similar vectors)
- The graph has multiple layers
 - Top layers have **fewer nodes** (for broad, fast navigation)
 - Lower layers have **denser connections** (for fine-grained search)
- The structure lets the search "zoom in" on the most relevant vectors step by step

HNSW Structure Overview

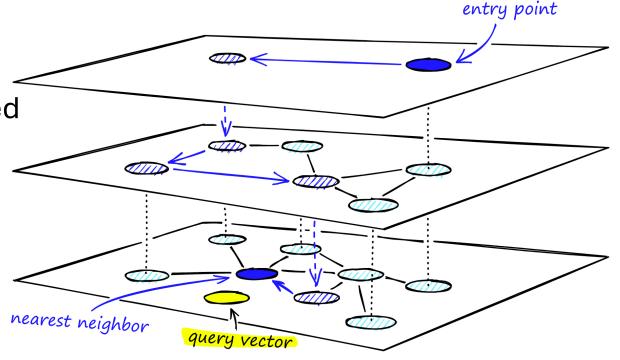
Visualize it like a **pyramid**

• **Top layer:** few entry points, global view of the space.

• Middle layers: increasingly detailed neighborhood connections.

• Bottom layer: full vector network.

Each new vector is placed into multiple layers, forming links to its **nearest neighbors**



How search works in HNSW

When a query comes in

- Start at the **top layer** with an entry node
- Move to the neighbor that's closest to the query vector
- Continue until no closer neighbor exists
- Descend to the **next layer** and repeat
- Once at the bottom layer, perform a local nearest neighbor search for exact ranking

This hierarchical descent drastically reduces the number of comparisons needed

Trade-offs in indexing

- Speed vs. Accuracy: faster search may skip some near-perfect matches
- Memory vs. Compression: smaller indexes can reduce precision
- Dynamic vs. Static:
 - Static indexes are optimized for fixed data
 - Dynamic indexes can handle frequent updates or inserts

Balancing these trade-offs is key to good performance

Example - text query

User query: "Best ways to reduce electricity consumption"

- Embedding model → vector: [0.12, 0.47, -0.56, ...]
- Compare against all stored vectors (e.g., articles)
- Retrieve nearest vectors (highest cosine similarity)

Results

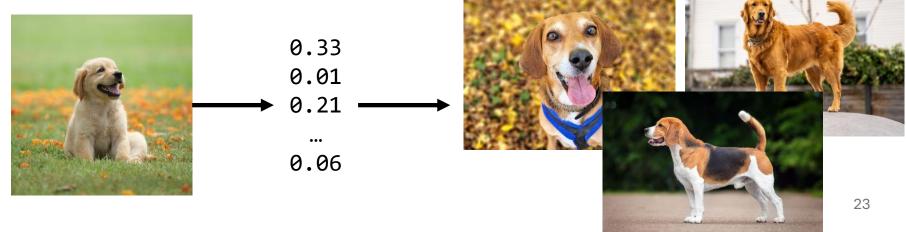
- "How to save power at home"
- "Tips for lowering energy bills"
- "Smart home energy management"

Even though wording differs, meaning is the same

Example — image query

- User Query: find a photo of a dog
 - Convert image into embedding
 - Search for similar image embeddings using cosine distance
 - Retrieve images that are **visually or semantically similar** (e.g., other dogs, similar breeds)

Used in e-commerce, visual search, and content moderation systems.



Querying and similarity search

- Queries in vector databases are meaning-based, not keyword-based
- Embeddings + Indexing + Similarity Metrics
 - = Semantic Search Engine.
- Supports multimodal (text, image, audio) queries
- Core to modern AI, recommendation, and knowledge retrieval systems

RAG (Retrieval-Augmented Generation)

RAG is a technique that augments LLMs by combining **retrieval-based methods** (i.e., a Vector DB) with generation-based capabilities (an LLM).

Unlike standalone language models, RAG retrieves relevant information from an external knowledge base to

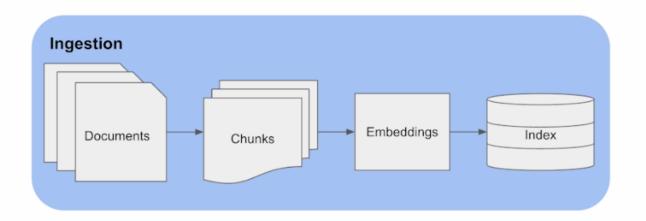
- enrich the LLM's responses
- reduce hallucination.
- provide up-to-date answers

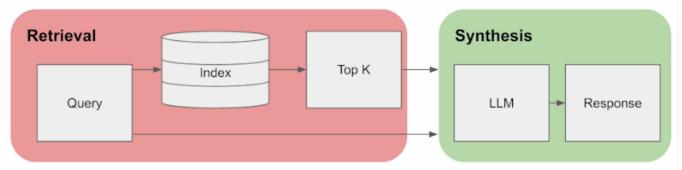
RAG consists of two main components

- Retriever: this component fetches relevant information from a large dataset based on the user's query
- **Generator:** after retrieving the information, the generator (usually an LLM) uses it to generate a more accurate, context-aware response.

- The knowledge base (books, documentation, etc.) is split into **chunks** to
 - allow the creation of more aligned embeddings
 - allow the generator to focus on more centred portion of the text

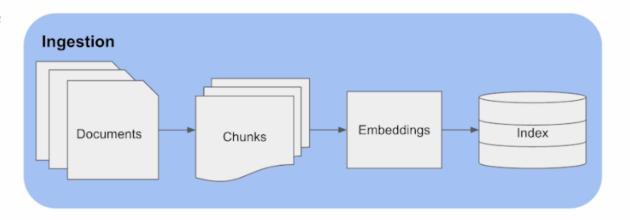
Basic RAG Pipeline

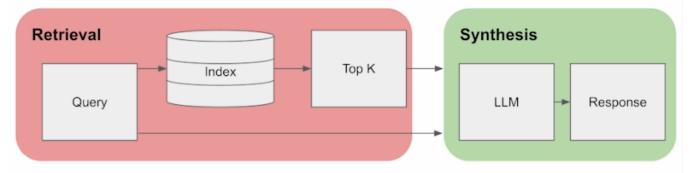




2 Get the query embedding and perform a Vector search on the database. The result is the Context.

Basic RAG Pipeline





The generator produces an answer to the **query** grounded on the **context**, e.g.:

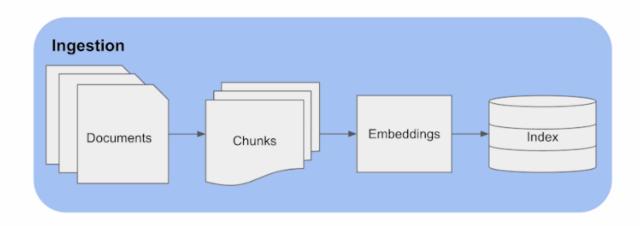
You are a helpful chatbot.

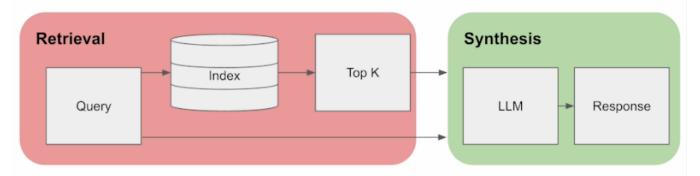
Use only the following pieces of context to answer the question. Don't make up any new information:

{CONTEXT}

to answer to: {QUERY}

Basic RAG Pipeline





MongoDB + Vector search

MongoDB can be used as a vector database too.

This utility allows to seamlessly search and index vector data alongside all other MongoDB data.

- You must create a MongoDB Vector Search index. MongoDB Vector Search indexes are separate from your other database indexes and are used to efficiently retrieve documents that contain vector embeddings at query-time.
- It supports both ANN with HNSW and ENN (Exact Nearest Neighbor)

Vector search pipeline

MongoDB Vector Search queries are **aggregation pipeline stages** where the **\$vectorSearch** stage is the first stage.

- You select either ANN or ENN search and specify the query vector, that represents your search query
- MongoDB Vector Search finds vector embeddings in your data that are closest to the query vector

```
"$vectorSearch": {
 "exact": true | false,
 "filter": {<filter-specification>},
 "index": "<index-name>",
 "limit": <number-of-results>,
 "numCandidates": <number-of-candidates>,
 "path": "<field-to-search>",
 "queryVector": [<array-of-numbers>],
 "explainOptions": {
    "traceDocumentIds": [<array-of-documentIDs>]
```