Vector Database

Powering Al Search and Semantic Understanding



Whatis a Vector Database?

* AVector Database is a specialized data store desighed to
manage, index, and query high-dimensional vector embeddings.

* These vectors represent semantic meaning often generated by

machine learning models (like embeddings from text, image, or
audio).

* Enables similarity search rather than traditional exact matching.



What are embeddings?

* Embeddings are numerical
representations of data (text,
Images, audio, etc.) in a high-
dimensional space.

* Each piece of data is converted into a
vector, a list of numbers that
captures its semantic meaning.

* Similar meanings - vectors close
together.

* Different meanings - vectors far
apart.




A simple example with textual data

Words:
e “king”~>1[0.21,0.89, 0.42, ...]
 “gueen”~>[0.20, 0.88, 0.43, ...]
e “car”’~>[0.85,0.13,0.09, ...]

The vectors for “king” and “queen” are close together because they’re
semantically related (royalty).

The vector for “car” is far away because it belongs to a different concept.
We can think each column identifies a “concept”, depending on the
embedding model selected.

Concept are learned by the embedding model: they don’t have a
concrete meaning.



How embeddings are created

Embeddings come from machine learning models trained on large
datasets.

Examples:
* Word2Vec - early model for word embeddings
* GloVe - captures word relationships using co-occurrence statistics

* BERT / OpenAl Embeddings —- modern models that capture contextual
meaning, event on long sentences

* CLIP-Model that learns image embedding, aligned with their descriptions

Each model learns to map meaning into numbers based on context and
similarity.



Why do we need Vector Databases?

* Traditional databases struggle with unstructured data (e.g., text,
Images).

* Vector databases allow semantic retrieval, so “find things that
mean the same”, not just “match keywords”

* Embedding similarity comparison made naively is extremely slow

* They are critical for building applications such as:
* chatbots and recommendation systems
* image and video search (not keyword-base)
* document and knowledge retrieval



Popular Vector Databases

* Pinecone — Managed vector database with APl integration
* Qdrant - Vector DB with hybrid and schema-based search
* Milvus - Scalable open-source vector engine

* FAISS (by Meta) — Library for efficient similarity search
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Real-World use cases

Retrieval-Augmented Generation (RAG)
* Personalized Recommendations (e.g., movies, products)

Semantic Document Search

Image Similarity Search (visual recognition, e-commerce)




How a Vector DB works

* Data embedding: convert data (text, images, etc.) into numerical
vector representations using Al models.

* Indexing: store vectors in optimized structures (e.g., HNSW, IVF,
or PQ indexes).

* Querying: compare query vectors using similarity metrics
(cosine, Euclidean, etc.).

* Query can be images (e.g., when finding images close to a target one), text
(e.g., one question, when looking for a bunch of possible answers)

e Results: retrieve the k most similar items based on vector
distance.



Similarity search types

* k-Nearest Neighbors (k-NN)
* Returns the k most similar items.
* Most common search type.

* Range search
* Returns all items within a similarity threshold (e.g., distance < 0.5).

* Hybrid search

* Combines vector search with keyword filtering or metadata constraints.

Example hybrid query: “Find articles about Tesla that are semantically
similar to electric carinnovation.”

To efficiently do this, Vector Databases use indexing.
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Vector indexing

* Indexing is the process of organizing vectors to make similarity
search fast and efficient.

* Without an index, finding the nearest vectors would require
comparing every vector, which is too slow for large datasets.

* Vector indexes enable Approximate Nearest Neighbor (ANN)

search by retrieving the most similar items quickly, even among
billions of vectors.
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Indexing basics - similarity search

Vector indexes rely on distance metrics to measure
similarity
* Cosine similarity: measures angle between vectors (used for
text).

* Euclidean distance: measures straight-line distance (used for
Images).

* Dot product: measures projection of one vector onto another.

The index stores and organizes vectors so these
comparisons are optimized.
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Cosine similarity

Measures the angle between two vectors.

lgnores the length (magnitude) and focuses on directional
similarity.
Formula:
A'B
lAIlIBII

Values range from -1 (opposite) to 1 (identical).

* Cosine Similarity =

Best for: text embeddings, NLP applications (semantic meaning).
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The need for indexing

Imagine you have 100 million embeddings.

A brute-force search checks all 100M vectors for every query,
becoming very slow.

Indexing creates a structure that allows the database to skip most
comparisons, at the price of small accuracy trade-off.
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Types of index structures

Common ANN (Approximate Nearest Neighbor) techniques include
* HNSW (Hierarchical Navigable Small World)

* Graph-based structure
* Balances speed and accuracy
e Used in Weaviate, Pinecone, Milvus

* IVF (Inverted File Index)

e Clusters vectors into “buckets”
* Speeds up search by checking only relevant buckets

* PQ (Product Quantization)

* Compresses vectors to save memory
* Enables large-scale search with minimal loss
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HNSW

* HNSW (Hierarchical Navigable Small World) is a graph-based
indexing algorithm used for Approximate Nearest Neighbor
(ANN) search.

* |t builds a multi-layer network of vectors, where each node
connects to a small number of nearby vectors.

* Designed for high recall, fast search, and efficient updates
Ideal for Al-scale vector databases
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The core idea of HNSW

* Every vector is a node in a navigable graph
* Each node connects to several neighbors (similar vectors)

* The graph has multiple layers
* Top layers have fewer nodes (for broad, fast navigation)
* Lower layers have denser connections (for fine-grained search)

* The structure lets the search “zoom in” on the most relevant
vectors step by step
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HNSW Structure Overview

Visualize it like a pyramid

entry point
* Top layer: few entry points, global /y "
view of the space. @< -
* Middle layers: increasingly detailed v
neighborhood connections.

* Bottom layer: full vector network.

Each new vector is placed into

multiple layers, forming links to its — oo 3 :
nearest neighbors neavest negghboy N :

query vector
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How search works in HNSW

When a query comes in
* Start at the top layer with an entry node
* Move to the neighbor that’s closest to the query vector
* Continue until no closer neighbor exists
* Descend to the next layer and repeat

* Once at the bottom layer, perform a local nearest neighbor search for
exact ranking

This hierarchical descent drastically reduces the number of
comparisons needed
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Trade-offs in indexing

* Speed vs. Accuracy: faster search may skip some near-perfect
matches

* Memory vs. Compression: smaller indexes can reduce precision

* Dynamic vs. Static:
» Static indexes are optimized for fixed data
* Dynamic indexes can handle frequent updates or inserts

Balancing these trade-offs is key to good performance
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Example - text query

User query: “Best ways to reduce electricity consumption”
* Embedding model > vector: [0.12, 0.47, -0.56, ...]
 Compare against all stored vectors (e.g., articles)
* Retrieve nearest vectors (highest cosine similarity)

Results
* “How to save power at home”
* “Tips for lowering energy bills”
* “Smart home energy management”

Even though wording differs, meaning is the same
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Example — image query

* User Query: find a photo of a dog

* Convertimage into embedding
* Search for similar image embeddings using cosine distance

* Retrieve images that are visually or semantically similar (e.g., other
dogs, similar breeds)

Used in e-commerce, visual search, and content moderation
systems. g <




Querying and similarity search

* Queries in vector databases are meaning-based, not
keyword-based

* Embeddings + Indexing + Similarity Metrics
= Semantic Search Engine.

* Supports multimodal (text, image, audio) queries

* Core to modern Al, recommendation, and knowledge
retrieval systems
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RAG (Retrieval-Augmented Generation)

RAG is a technique that augments LLMs by combining retrieval-
based methods (i.e., a Vector DB) with generation-based
capabilities (an LLM).

Unlike standalone language models, RAG retrieves relevant
iInformation from an external knowledge base to

* enrich the LLM’s responses
* reduce hallucination.
* provide up-to-date answers
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How does RAG work?

RAG consists of two main components

* Retriever: this component fetches relevant
iInformation from a large dataset based on the
user’s query

* Generator: after retrieving the information, the
generator (usually an LLM) uses it to generate a
more accurate, context-aware response.
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How does RAG work?

Basic RAG Pipeline

The knowledge base (books,
documentation, etc.) is split

into chunks to Ingestion

e allow the creation of more N L ol
aligned embeddings bocuments " Chunk Embeddngs [ e ‘

* allow the generator to focus

on more centred portion of
the text

Retrieval e — ' Synthesis
="  ndex [ ™ Top K
Query . I— _ LLM = Response
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How does RAG work?
Basic RAG Pipeline

Get the query embedding and
perform a Vector search on the
database. The resultis the

Ingestion

Documents

Context. N q D
s T Chunks Embeddings —.{--___lm‘im

-

Retrieval e — ' Synthesis
= " Index I Top K
Query — I . LLM -
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How does RAG work?

Basic RAG Pipeline

The generator produces an
answer to the query grounded
on the context, e.g.:

You are a helpful chatbot.

\l [T
Documents Chunks Embeddings W

Use only the following pieces of
context to answer the question.
Don't make up any new information:

{CONTEXT}
to answer to: {QUERY}
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MongoDB + Vector search

MongoDB can be used as a vector database too.

This utility allows to seamlessly search and index vector data
alongside all other MongoDB data.

* You must create a MongoDB Vector Search index. MongoDB
Vector Search indexes are separate from your other database
iIndexes and are used to efficiently retrieve documents that
contain vector embeddings at query-time.

* |t supports both ANN with HNSW and ENN (Exact Nearest
Neighbor)
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Vector search pipeline

MongoDB Vector Search queries {

are aggregation pipeline =|{

Stages Where . . : {<filter-specification>},
the $vectorSearch stage is the first : ,

Stage. : <number-of-results>,

: <number-of-candidates>,

* You select either ANN or ENN search
and specify the query vector, that
: [<array-of-numbers>],
represents your search query -
* MongoDB Vector Search finds vector . [<array-of-documentIDs>]
embeddings in your data that are }
closest to the query vector }

J
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https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/#mongodb-pipeline-pipe.-vectorSearch
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/#mongodb-pipeline-pipe.-vectorSearch
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