
Vector Database
Powering AI Search and Semantic Understanding

1

What is a Vector Database?

• A Vector Database is a specialized data store designed to
manage, index, and query high-dimensional vector embeddings.

• These vectors represent semantic meaning often generated by
machine learning models (like embeddings from text, image, or
audio).

• Enables similarity search rather than traditional exact matching.

2

What are embeddings?

• Embeddings are numerical
representations of data (text,
images, audio, etc.) in a high-
dimensional space.

• Each piece of data is converted into a
vector, a list of numbers that
captures its semantic meaning.

• Similar meanings → vectors close
together.

• Different meanings → vectors far
apart.

3

A simple example with textual data

Words:
• “king” → [0.21, 0.89, 0.42, …]
• “queen” → [0.20, 0.88, 0.43, …]
• “car” → [0.85, 0.13, 0.09, …]

The vectors for “king” and “queen” are close together because they’re
semantically related (royalty).
The vector for “car” is far away because it belongs to a different concept.
We can think each column identifies a “concept”, depending on the
embedding model selected.
Concept are learned by the embedding model: they don’t have a
concrete meaning.

4

How embeddings are created

Embeddings come from machine learning models trained on large
datasets.

Examples:
• Word2Vec – early model for word embeddings
• GloVe – captures word relationships using co-occurrence statistics
• BERT / OpenAI Embeddings – modern models that capture contextual

meaning, event on long sentences
• CLIP – Model that learns image embedding, aligned with their descriptions

Each model learns to map meaning into numbers based on context and
similarity.

5

Why do we need Vector Databases?

• Traditional databases struggle with unstructured data (e.g., text,
images).

• Vector databases allow semantic retrieval, so “find things that
mean the same”, not just “match keywords”

• Embedding similarity comparison made naively is extremely slow
• They are critical for building applications such as:

• chatbots and recommendation systems
• image and video search (not keyword-base)
• document and knowledge retrieval

6

Popular Vector Databases

• Pinecone – Managed vector database with API integration
• Qdrant – Vector DB with hybrid and schema-based search
• Milvus – Scalable open-source vector engine
• FAISS (by Meta) – Library for efficient similarity search

7

Real-World use cases

• Retrieval-Augmented Generation (RAG)
• Personalized Recommendations (e.g., movies, products)
• Semantic Document Search
• Image Similarity Search (visual recognition, e-commerce)

8

How a Vector DB works

• Data embedding: convert data (text, images, etc.) into numerical
vector representations using AI models.

• Indexing: store vectors in optimized structures (e.g., HNSW, IVF,
or PQ indexes).

• Querying: compare query vectors using similarity metrics
(cosine, Euclidean, etc.).
• Query can be images (e.g., when finding images close to a target one), text

(e.g., one question, when looking for a bunch of possible answers)

• Results: retrieve the k most similar items based on vector
distance.

9

Similarity search types

• k-Nearest Neighbors (k-NN)
• Returns the k most similar items.
• Most common search type.

• Range search
• Returns all items within a similarity threshold (e.g., distance < 0.5).

• Hybrid search
• Combines vector search with keyword filtering or metadata constraints.

Example hybrid query: “Find articles about Tesla that are semantically
similar to electric car innovation.”
To efficiently do this, Vector Databases use indexing.

10

Vector indexing

• Indexing is the process of organizing vectors to make similarity
search fast and efficient.

• Without an index, finding the nearest vectors would require
comparing every vector, which is too slow for large datasets.

• Vector indexes enable Approximate Nearest Neighbor (ANN)
search by retrieving the most similar items quickly, even among
billions of vectors.

11

Indexing basics - similarity search

Vector indexes rely on distance metrics to measure
similarity

• Cosine similarity: measures angle between vectors (used for
text).

• Euclidean distance: measures straight-line distance (used for
images).

• Dot product: measures projection of one vector onto another.

The index stores and organizes vectors so these
comparisons are optimized.

12

Cosine similarity

Measures the angle between two vectors.
Ignores the length (magnitude) and focuses on directional
similarity.
Formula:

• Cosine Similarity = 𝐴⋅𝐵

∥𝐴∥∥𝐵∥

Values range from -1 (opposite) to 1 (identical).
Best for: text embeddings, NLP applications (semantic meaning).

13

The need for indexing

Imagine you have 100 million embeddings.
A brute-force search checks all 100M vectors for every query,
becoming very slow.
Indexing creates a structure that allows the database to skip most
comparisons, at the price of small accuracy trade-off.

14

Types of index structures

Common ANN (Approximate Nearest Neighbor) techniques include
• HNSW (Hierarchical Navigable Small World)

• Graph-based structure
• Balances speed and accuracy
• Used in Weaviate, Pinecone, Milvus

• IVF (Inverted File Index)
• Clusters vectors into “buckets”
• Speeds up search by checking only relevant buckets

• PQ (Product Quantization)
• Compresses vectors to save memory
• Enables large-scale search with minimal loss

15

HNSW

• HNSW (Hierarchical Navigable Small World) is a graph-based
indexing algorithm used for Approximate Nearest Neighbor
(ANN) search.

• It builds a multi-layer network of vectors, where each node
connects to a small number of nearby vectors.

• Designed for high recall, fast search, and efficient updates
ideal for AI-scale vector databases

16

The core idea of HNSW

• Every vector is a node in a navigable graph
• Each node connects to several neighbors (similar vectors)
• The graph has multiple layers

• Top layers have fewer nodes (for broad, fast navigation)
• Lower layers have denser connections (for fine-grained search)

• The structure lets the search “zoom in” on the most relevant
vectors step by step

17

HNSW Structure Overview

Visualize it like a pyramid
• Top layer: few entry points, global

view of the space.
• Middle layers: increasingly detailed

neighborhood connections.
• Bottom layer: full vector network.

Each new vector is placed into
multiple layers, forming links to its
nearest neighbors

18

How search works in HNSW

When a query comes in
• Start at the top layer with an entry node
• Move to the neighbor that’s closest to the query vector
• Continue until no closer neighbor exists
• Descend to the next layer and repeat
• Once at the bottom layer, perform a local nearest neighbor search for

exact ranking

This hierarchical descent drastically reduces the number of
comparisons needed

19

Trade-offs in indexing

• Speed vs. Accuracy: faster search may skip some near-perfect
matches

• Memory vs. Compression: smaller indexes can reduce precision
• Dynamic vs. Static:

• Static indexes are optimized for fixed data
• Dynamic indexes can handle frequent updates or inserts

Balancing these trade-offs is key to good performance

21

Example - text query

User query: “Best ways to reduce electricity consumption”
• Embedding model → vector: [0.12, 0.47, -0.56, …]
• Compare against all stored vectors (e.g., articles)
• Retrieve nearest vectors (highest cosine similarity)

Results
• “How to save power at home”
• “Tips for lowering energy bills”
• “Smart home energy management”

Even though wording differs, meaning is the same

22

Example — image query

• User Query: find a photo of a dog
• Convert image into embedding
• Search for similar image embeddings using cosine distance
• Retrieve images that are visually or semantically similar (e.g., other

dogs, similar breeds)

Used in e-commerce, visual search, and content moderation
systems.

23

0.33
0.01
0.21
…

0.06

Querying and similarity search

• Queries in vector databases are meaning-based, not
keyword-based

• Embeddings + Indexing + Similarity Metrics
= Semantic Search Engine.

• Supports multimodal (text, image, audio) queries
• Core to modern AI, recommendation, and knowledge

retrieval systems

24

RAG (Retrieval-Augmented Generation)

RAG is a technique that augments LLMs by combining retrieval-
based methods (i.e., a Vector DB) with generation-based
capabilities (an LLM).
Unlike standalone language models, RAG retrieves relevant
information from an external knowledge base to
• enrich the LLM’s responses
• reduce hallucination.
• provide up-to-date answers

25

How does RAG work?

RAG consists of two main components
•Retriever: this component fetches relevant

information from a large dataset based on the
user’s query
•Generator: after retrieving the information, the

generator (usually an LLM) uses it to generate a
more accurate, context-aware response.

26

How does RAG work?

The knowledge base (books,
documentation, etc.) is split
into chunks to
• allow the creation of more

aligned embeddings
• allow the generator to focus

on more centred portion of
the text

27

1

How does RAG work?

Get the query embedding and
perform a Vector search on the
database. The result is the
Context.

28

2

How does RAG work?

The generator produces an
answer to the query grounded
on the context, e.g.:

29

3
You are a helpful chatbot.

Use only the following pieces of
context to answer the question.
Don't make up any new information:

{CONTEXT}

to answer to: {QUERY}

MongoDB + Vector search

MongoDB can be used as a vector database too.
This utility allows to seamlessly search and index vector data
alongside all other MongoDB data.
• You must create a MongoDB Vector Search index. MongoDB

Vector Search indexes are separate from your other database
indexes and are used to efficiently retrieve documents that
contain vector embeddings at query-time.

• It supports both ANN with HNSW and ENN (Exact Nearest
Neighbor)

30

Vector search pipeline

MongoDB Vector Search queries
are aggregation pipeline
stages where
the $vectorSearch stage is the first
stage.

• You select either ANN or ENN search
and specify the query vector, that
represents your search query

• MongoDB Vector Search finds vector
embeddings in your data that are
closest to the query vector

31

{

"$vectorSearch": {

"exact": true | false,

"filter": {<filter-specification>},

"index": "<index-name>",

"limit": <number-of-results>,

"numCandidates": <number-of-candidates>,

"path": "<field-to-search>",

"queryVector": [<array-of-numbers>],

"explainOptions": {

"traceDocumentIds": [<array-of-documentIDs>]

}

}

}

https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/#mongodb-pipeline-pipe.-vectorSearch
https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/#mongodb-pipeline-pipe.-vectorSearch

	Diapositiva 1: Vector Database
	Diapositiva 2: What is a Vector Database?
	Diapositiva 3: What are embeddings?
	Diapositiva 4: A simple example with textual data
	Diapositiva 5: How embeddings are created
	Diapositiva 6: Why do we need Vector Databases?
	Diapositiva 7: Popular Vector Databases
	Diapositiva 8: Real-World use cases
	Diapositiva 9: How a Vector DB works
	Diapositiva 10: Similarity search types
	Diapositiva 11: Vector indexing
	Diapositiva 12: Indexing basics - similarity search
	Diapositiva 13: Cosine similarity
	Diapositiva 14: The need for indexing
	Diapositiva 15: Types of index structures
	Diapositiva 16: HNSW
	Diapositiva 17: The core idea of HNSW
	Diapositiva 18: HNSW Structure Overview
	Diapositiva 19: How search works in HNSW
	Diapositiva 21: Trade-offs in indexing
	Diapositiva 22: Example - text query
	Diapositiva 23: Example — image query
	Diapositiva 24: Querying and similarity search
	Diapositiva 25: RAG (Retrieval-Augmented Generation)
	Diapositiva 26: How does RAG work?
	Diapositiva 27: How does RAG work?
	Diapositiva 28: How does RAG work?
	Diapositiva 29: How does RAG work?
	Diapositiva 30: MongoDB + Vector search
	Diapositiva 31: Vector search pipeline

