Regression

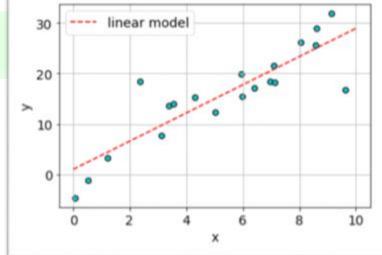
Flavio Giobergia *Politecnico di Torino*

Introduction to regression

- Objective: Predict a continuous outcome variable based on one or more predictor variables
 - i.e., learn a function $f: \mathcal{X} \to \mathbb{R}$
 - We refer to the outcome as the dependent variable, and to the predictors as the independent variables
- Useful for:
 - Making predictions
 - Understanding relationships between variables
 - Identifying significant predictors

Linear regression

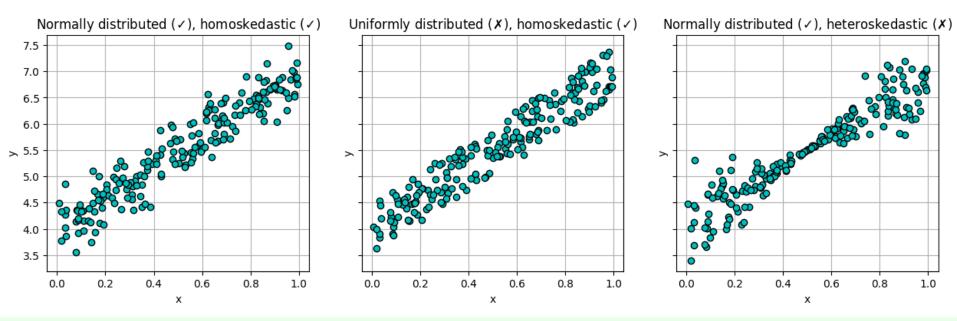
Linear regression



Assumption:

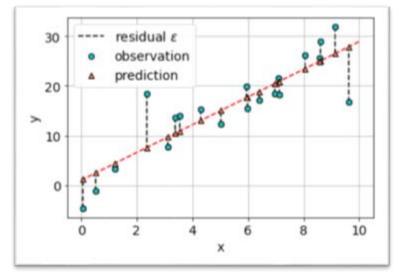
- There is a linear relation between the independent (x) and dependent (y) variables
- $y = \theta_0 + \theta_1 x + \varepsilon$ (observation)
- ullet represents a stochasticity that we cannot model
- Simple linear regression:
 - Goal: estimate θ_0, θ_1 so that we can build our own model!
 - $\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 x \text{ (prediction)}$
- ϵ : residual (difference between predictions and observations)

- Residuals are expected to be:
 - Normally distributed
 - Homoskedastic



Residuals, error

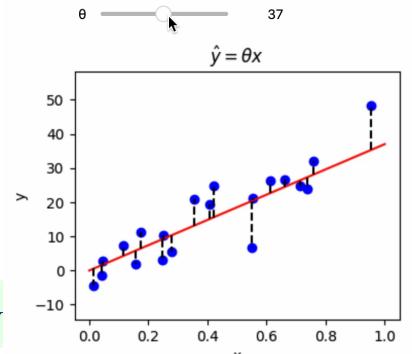
- We can compute the squared error for x_i
 - $(y_i \hat{y}_i)^2 = \varepsilon_i^2$
- Properties of squared errors:
 - Quantify quality of prediction
 - The smaller the better!
 - Always positive
 - "Stretches" error:
 - (Large error)² = even larger error
 - (Small error)² = smaller error



- Error over the entire dataset: mean squared error (MSE)
 - $MSE = \frac{1}{n} \sum_{i} (y_i \hat{y}_i)^2$

Residuals, error

- The MSE, $\frac{1}{n}\sum_i(y_i-\theta_0-\theta_1x_i)^2$, is a quadratic function of the parameters θ
- So, it has a single minimum, which are the "best" values for θ



Error minimization

- $MSE(\theta_0, \theta_1) = \frac{1}{n} \sum_i (y_i \theta_0 \theta_1 x_i)^2$
 - "Cost function" to be minimized
- We want to find θ_0 , θ_1 that minimize the MSE
- MSE is a quadratic function of θ_0 , θ_1
 - Minimum for $\frac{\partial MSE}{\partial \theta_0} = 0$, $\frac{\partial MSE}{\partial \theta_1} = 0$
- Linear regression chooses the parameters θ_0 , θ_1 that minimize the SSE

$$\bullet_0 = \bar{y} - \theta_1 \bar{x}$$

$$\theta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

Multivariate case

- Similarly, we can define a problem with n independent variables
- $x = (x_1, x_2, ..., x_n)$
- Multiple linear regression:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

- $\hat{y} = \theta^T x$
 - as a scalar product of $x = (1, x_1, x_2 \dots x_n)$ and $\theta = (\theta_0, \theta_1 \dots \theta_n)$
- Solution:

$$\bullet = (X^T X)^{-1} X^T Y$$

- The coefficients help understand the relationship between the independent and dependent variables
 - E.g. θ_1 indicates the change in the predicted y for a one-unit increase in x_1 , all else being equal

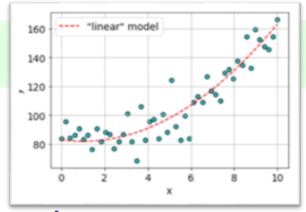
Non-linear relationships

- We may want to model non-linear relationships
- We can add new features, non-linear transformations of the original one(s)
 - E.g., if we expect an inverse quadratic relationships between x and y, we introduce a new feature, $\frac{1}{x^2}$
- Then, we use a "classic" linear regression
 - The model learns a separate coefficient for each feature
 - $y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \leftrightarrow \theta_0 + \theta_1 x + \theta_2 \frac{1}{x^2}$

\boldsymbol{x}	y
0.4	105
0.3	84
0.2	210

$x_1 = x$	$x_2 = \frac{1}{x^2}$
0.4	2.5
0.5	2
0.2	5

Polynomial regression



- We can introduce more flexibility in representing relationships with a polynomial regression
 - i.e., add new polynomial features up to degree *n*
 - Increases model capacity
 - Univariate: $\hat{y} = \theta_0 + \theta_1 x + \theta_2 x^2 \dots + \theta_n x^n$
- For multivariate problems, we can add either powers, or interactions (or both!)
 - Powers $(x_1^2, x_2^2, x_1^3 ...)$
 - Interactions $(x_1x_2, x_1x_3, ...)$, capturing relations between variables at different polynomial degrees
 - E.g., $x_1, x_2, x_3, n = 2 \rightarrow x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3$
 - The total number of features increases <u>combinatorially!</u>

Evaluation

Data Base and Data Mining Group of Politecnico di Torino

To the second se

MSE, RMSE, MAE

- Mean squared error (MSE)
 - $MSE = \frac{1}{n} \sum_{i} (y_i \hat{y}_i)^2$
 - Sometimes not normalized by # points
 - SSE (Sum of SE)
- RMSE (root MSE)
 - $RMSE = \sqrt{MSE}$
 - Same unit of measurement as the dependent var.
- Mean absolute error (MAE)
 - $MAE = \frac{1}{n} \sum_{i} |y_i \hat{y}_i|$
 - Penalizes more «small» errors (w.r.t. MSE)

R-squared (R²)

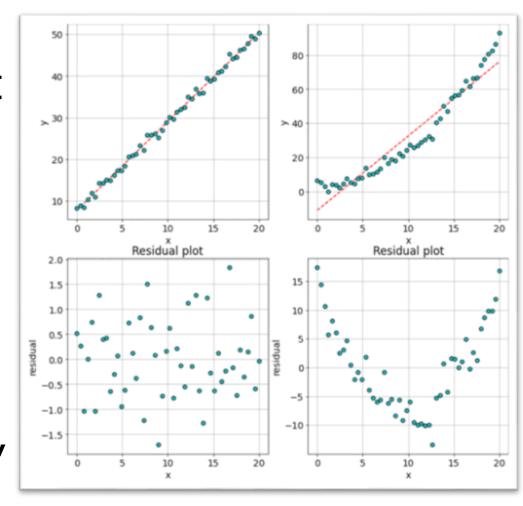
 R²: proportion of the variance in the dependent variable that is explained by the independent variables

$$R^2 = 1 - \frac{MSE}{\sigma^2}$$

- Edge cases:
 - Model predicts everything perfectly
 - MSE = 0, $R^2 = 1$ (upper bound)
 - Model is no better than predicting mean value of y
 - $MSE = \sigma^2$, $R^2 = 0$
 - Model is worse than predicting mean value
 - $MSE > \sigma^2$, $R^2 < 0$

Residual plots

- Residual plots:
 visual assessment
 of the goodness
 of fit of a
 regression model
 - Expecting residuals to be random scattered around zero, with constant variance, and no patterns

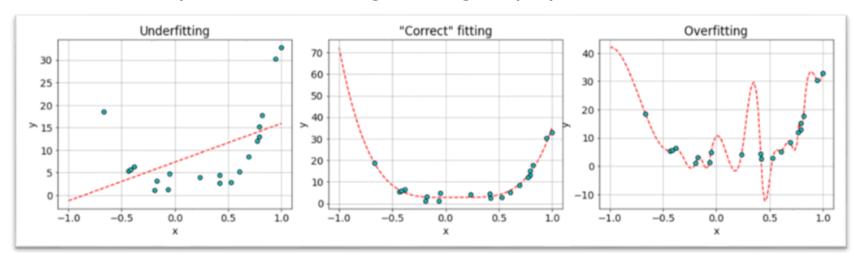


Regularization

Data Base and Data Mining Group of Politecnico di Torino

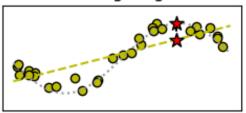
Overfitting and underfitting

- Overfitting: the model is too complex and fits the training data too closely (high variance)
 - Poor performance on test data
 - May occur when using higher degree polynomials
- Underfitting: the model is too simple and does not capture the underlying relationships (high bias)
 - Poor performance on training and test data
 - May occur when using low degree polynomials

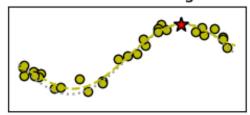


High bias vs high variance

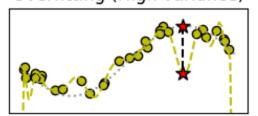
Underfitting (High bias)

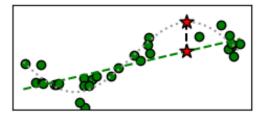


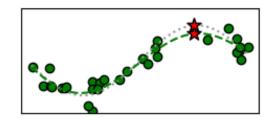
"Correct" fitting

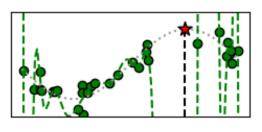


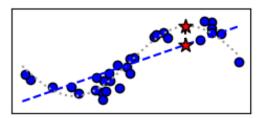
Overfitting (High variance)

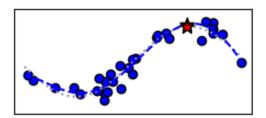


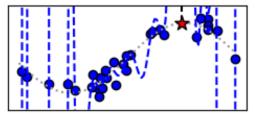


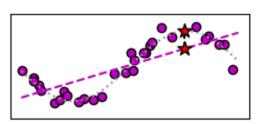


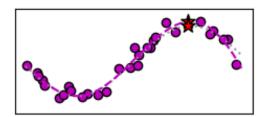


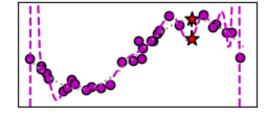










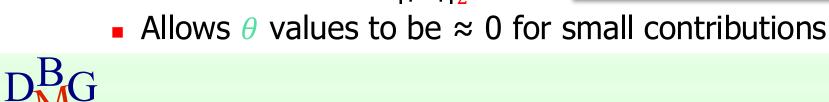


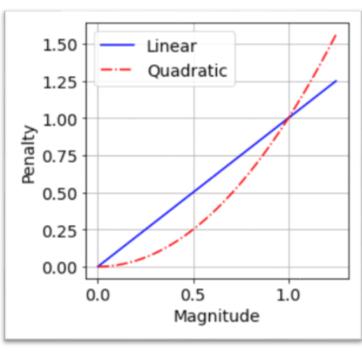
Preventing overfitting

- We can generally prevent overfitting by:
 - Reducing model capacity
 - (e.g., reduce the polynomial degree used)
 - Increasing the dataset size
 - Introducing regularization techniques

Regularization techniques

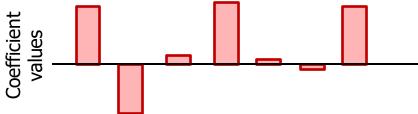
- Allow model to use high capacity, but penalize it if used unnecessarily
- Penalty term in the cost function
- L1 (Lasso) penalizes all non-zero weights linearly
 - $Cost = MSE + \lambda ||\boldsymbol{\theta}||_1$
 - Bring θ values to 0 if not strictly needed
- L2 (Ridge) penalizes ≈ 0 values less than ≈ 0 values
 - $Cost = MSE + \lambda ||\boldsymbol{\theta}||_2$



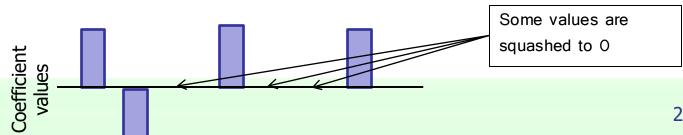


Regularization techniques

- Ridge tends to lower uniformly all the coefficients
 - Coefficients already close to 0 have little effect on the sum of **squares** (if $x \approx 0$, $x^2 < x$)



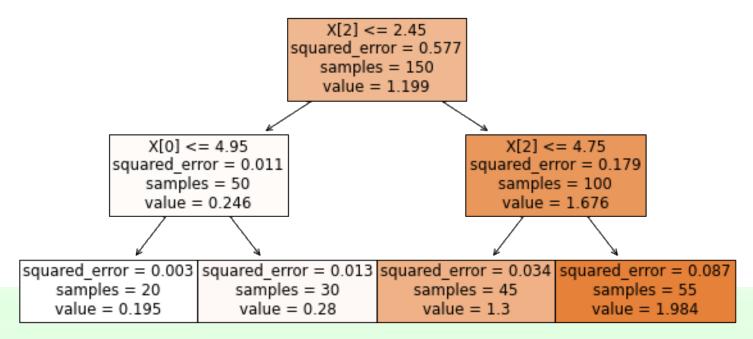
- Lasso tends to assign the value 0 to some coefficients (feature selection)
 - Also small coefficients affect the sum



Other regressors

Tree-based regression

- We can build decision trees for regression
 - Real values used as targets instead of classes
 - Node impurity computed as variance
 - Each leaf assigns average value of points in it



Other techniques

- Random forests can be obtained by aggregating the output of decision tree regressors (e.g., by averaging them)
- In KNN, we can produce the predicted outcome as the (possibly weighted) average of the neighbors' "votes"

 Neural networks natively produce continuous outputs

