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Introduction to regression

◼ Objective: Predict a continuous outcome 
variable based on one or more predictor 
variables
◼ i.e., learn a function 𝑓 ∶ 𝒳 → ℝ

◼ We refer to the outcome as the dependent variable, 
and to the predictors as the independent variables

◼ Useful for:
◼ Making predictions

◼ Understanding relationships between variables

◼ Identifying significant predictors
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Linear regression

◼ Used to model linear relationships
between predictors and outcome

◼ Assumption:
◼ There is a linear relation between

the independent (x) and dependent (y) variables
◼ 𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜀 (observation)

◼ 𝜀 represents a stochasticity that we cannot model

◼ Simple linear regression:
◼ Goal: estimate 𝜃0,𝜃1 so that we can build our own model!

◼ ො𝑦 = ෠𝜃0 + ෠𝜃1𝑥 (prediction) 

◼ ε: residual (difference between predictions and observations)
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Residuals

◼ Residuals are expected to be:

◼ Normally distributed

◼ Homoskedastic
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Residuals, error

◼ We can compute the squared error for xi

◼ (𝑦𝑖 − ො𝑦𝑖)
2= 𝜀𝑖

2

◼ Properties of squared errors:
◼ Quantify quality of prediction

◼ The smaller the better!

◼ Always positive
◼ “Stretches” error:

◼ (Large error)2 = even larger error

◼ (Small error)2 = smaller error 

◼ Error over the entire dataset: mean squared 
error (MSE)

◼ M𝑆𝐸 =
1

𝑛
σ𝑖(𝑦𝑖 − ො𝑦𝑖)

2
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Residuals, error

◼ The MSE, 
1

𝑛
σ𝑖(𝑦𝑖 − 𝜃0 − 𝜃1𝑥𝑖)

2 , is a 

quadratic function of the parameters 𝜃

◼ So, it has a single minimum, which are the 
“best” values for 𝜃
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Error minimization

◼ 𝑀𝑆𝐸 𝜃0, 𝜃1 =
1

𝑛
σ𝑖(𝑦𝑖 − 𝜃0 − 𝜃1𝑥𝑖)

2

◼ “Cost function” to be minimized

◼ We want to find 𝜃0, 𝜃1 that minimize the 
MSE

◼ MSE is a quadratic function of 𝜃0, 𝜃1
◼ Minimum for 

𝜕𝑀𝑆𝐸

𝜕𝜃0
= 0 , 

𝜕M𝑆𝐸

𝜕𝜃1
= 0

◼ Linear regression chooses the parameters 
𝜃0, 𝜃1 that minimize the SSE

◼ 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥

◼ 𝜃1 =
σ(𝑥𝑖− ҧ𝑥)(𝑦𝑖− ത𝑦)

σ 𝑥𝑖− ҧ𝑥 2
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Multivariate case

◼ Similarly, we can define a problem with n independent 
variables

◼ 𝑥 = (𝑥1, 𝑥2 , … 𝑥n )

◼ Multiple linear regression:

◼ ො𝑦 = 𝜃0 + 𝜃1𝑥1 + …+ 𝜃𝑛 𝑥𝑛
◼ ො𝑦 = 𝜽𝑇𝒙

◼ as a scalar product of 𝒙 = (1, 𝑥1, x2 … x𝑛 ) and 𝜽 = 𝜃0, 𝜃1 …𝜃𝑛

◼ Solution:

◼ 𝜽 = 𝑋𝑇𝑋 ⁻1𝑋𝑇𝑌

◼ The coefficients help understand the relationship between 
the independent and dependent variables
◼ E.g. 𝜃1 indicates the change in the predicted y for a one-unit 

increase in x1, all else being equal
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Non-linear relationships

◼ We may want to model non-linear relationships

◼ We can add new features, non-linear 

transformations of the original one(s)

◼ E.g., if we expect an inverse quadratic
relationships between 𝑥 and 𝑦, we

introduce a new feature, 
1

𝑥2

◼ Then, we use a “classic” linear regression

◼ The model learns a separate coefficient
for each feature

◼ 𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 𝜃0 + 𝜃1𝑥 + 𝜃2
1

𝑥2

𝒙
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Polynomial regression

◼ We can introduce more
flexibility in representing
relationships with a polynomial regression
◼ i.e., add new polynomial features up to degree n
◼ Increases model capacity
◼ Univariate: ො𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2 𝑥

2…+ 𝜃𝑛𝑥
𝑛

◼ For multivariate problems, we can add either powers, 
or interactions (or both!)
◼ Powers (𝑥1

2, 𝑥2
2, 𝑥1

3 …) 
◼ Interactions (𝑥1𝑥2, 𝑥1𝑥3, … ), capturing relations between 

variables at different polynomial degrees
◼ E.g., 𝑥1, 𝑥2, 𝑥3, 𝑛 = 2 → 𝑥1

2, 𝑥2
2, 𝑥3

2, 𝑥1𝑥2, 𝑥1𝑥3, 𝑥2𝑥3
◼ The total number of features increases combinatorially!
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MSE, RMSE, MAE

◼ Mean squared error (MSE)

◼ 𝑀𝑆𝐸 =
1

𝑛
σ𝑖(𝑦𝑖 − ො𝑦𝑖)

2

◼ Sometimes not normalized by # points

◼ SSE (Sum of SE)

◼ RMSE (root MSE)

◼ 𝑅𝑀𝑆𝐸 = 𝑀𝑆𝐸

◼ Same unit of measurement as the dependent var. 

◼ Mean absolute error (MAE)

◼ 𝑀𝐴𝐸 =
1

𝑛
σ𝑖 | 𝑦𝑖 − ො𝑦𝑖 |

◼ Penalizes more «small» errors (w.r.t. MSE)
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R-squared (R2)

◼ R2: proportion of the variance in the dependent 

variable that is explained by the independent 

variables

𝑅2 = 1 −
𝑀𝑆𝐸

𝜎2

◼ Edge cases:

◼ Model predicts everything perfectly

◼ 𝑀𝑆𝐸 = 0, 𝑅2 = 1 (upper bound)

◼ Model is no better than predicting mean value of y

◼ 𝑀𝑆𝐸 = 𝜎2, 𝑅2 = 0

◼ Model is worse than predicting mean value

◼ 𝑀𝑆𝐸 > 𝜎2, 𝑅2 < 0
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Residual plots

◼ Residual plots: 
visual assessment 
of the goodness 
of fit of a 
regression model
◼ Expecting 

residuals to be 
random scattered 
around zero, with 
constant variance, 
and no patterns
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Overfitting and underfitting
◼ Overfitting: the model is too complex and fits the training 

data too closely (high variance)
◼ Poor performance on test data
◼ May occur when using higher degree polynomials

◼ Underfitting: the model is too simple and does not capture 
the underlying relationships (high bias)
◼ Poor performance on training and test data
◼ May occur when using low degree polynomials
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High bias vs high variance
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Preventing overfitting

◼ We can generally prevent overfitting by:

◼ Reducing model capacity

◼ (e.g., reduce the polynomial degree used)

◼ Increasing the dataset size

◼ Introducing regularization techniques
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Regularization techniques

◼ Allow model to use high capacity, but penalize it if 
used unnecessarily

◼ Penalty term in the cost function

◼ L1 (Lasso) penalizes all
non-zero weights linearly

◼ 𝐶𝑜𝑠𝑡 = 𝑀𝑆𝐸 + 𝜆| 𝜽 |1
◼ Bring 𝜃 values to 0 if not

strictly needed

◼ L2 (Ridge) penalizes ≈ 0
values less than ≈ 0 values

◼ 𝐶𝑜𝑠𝑡 = 𝑀𝑆𝐸 + 𝜆| 𝜽 |2
◼ Allows 𝜃 values to be ≈ 0 for small contributions
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Regularization techniques

◼ Ridge tends to lower uniformly all the 
coefficients
◼ Coefficients already close to 0 have little effect 

on the sum of squares (if x ≈ 0, x2 < x)

◼ Lasso tends to assign the value 0 to some
coefficients (feature selection)
◼ Also small coefficients affect the sum

C
o
e
ff

ic
ie

n
t

va
lu

e
s

Some values are 
squashed to 0

C
o
e
ff

ic
ie

n
t

va
lu

e
s



Data Base and Data Mining Group of Politecnico di Torino

DB
MG

Other regressors



23DB
MG

Tree-based regression

◼ We can build decision trees for regression

◼ Real values used as targets instead of classes

◼ Node impurity computed as variance

◼ Each leaf assigns average value of points in it
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Other techniques

◼ Random forests can be obtained by aggregating 

the output of decision tree regressors (e.g., by 

averaging them)

◼ In KNN, we can produce the predicted outcome as 

the (possibly weighted) average of the neighbors’ 

“votes”

◼ Neural networks natively produce continuous 

outputs
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