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¢ Introduction to regression

= Objective: Predict a continuous outcome
variable based on

= i.e., learn a function f : X - R

= We refer to the outcome as the dependent variable,
and to the predictors as the

= Useful for:
= Making predictions
« Understanding relationships between variables
= Identifying significant predictors
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= Used to model linear relationships =~ e
between predictors and outcome M s
= Assumption: ottt R
= There is a linear relation between _
the independent (x) and dependent (y) variables
Yy = + X =+ E (observation)
= & represents a stochasticity that we cannot model
= Simple linear regression:
= Goal: estimate so that we can build our own model!

- }7 = + 0 X (prediction)

= & residual (difference between predictions and observations)
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Residuals

= Residuals are expected to be:
= Normally distributed
= Homoskedastic

Normally distributed (), homoskedastic ()

7.5
7.0 -
6.5
6.0

. 5.5 1
5.0 - %
4.5 -
4.0

3.5 A

Uniformly distributed (X), homoskedastic ()

1T °dfo @

@

e
® &®
J.‘.'é:'

o s

t-‘.

0.0

T T T T T
0.2 0.4 0.6 0.8 1.0

x

Normally distributed (), heteroskedastic (X)

.. 2 -“

)"" ..
1% oy}
ol




LG D
Cll, i“’%

o 2 .

A NLLH D E ;
il Lt o)

Q0 Ve ’

= We can compute the squared error for x;

= (yi —P)= &° o3 [y 3
= Properties of squared errors: B et 8_.:*"?
= Quantify quality of prediction ] R AR
= The smaller the better! " 10/ i_,sﬁ sk
= Always positive el
= “Stretches” error: 14 |
= (Large error)? = even larger error o 2 ¢ 6 8 W
= (Small error)? = smaller error - —
= Error over the entire dataset: mean squared

error (MSE)
= MSE =%Zi(3’i —9)°
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<t Residuals, error

| The MSE, %Zl(yl - 60 — 91Xi)2 ) |S d
quadratic function of the parameters 6

= S0, it has a single minimum, which are the
“best” values for 6
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+ Error minimization
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= "Cost function” to be minimized

= We want to find that minimize the
MSE

= MSE is a quadratic function of

OMSE OMSE
=0,——=0

= Linear regression chooses the parameters
that minimize the SSE

| Zy_glf

= Minimum for -

_ 2= (yi=y)
> (x;—x)*
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= Similarly, we can define a problem with nindependent
variables

mox = (X, X, . Xy)

= Multiple linear regression:

[ | 5; — + x1 + + xn
[ }7 — Tx
= as a scalar product of x = (1, x;,x, ... x,,) and
= Solution:

« 0 =(XTX)1XTY
= The coefficients help understand the relationship between
the independent and dependent variables

=« E.g. 0, indicates the change in the predicted y for a one-unit
increase in x4, all else being equal
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m We may want to model non-linear relationships
= We can add new features, non-linear

transformations of the original one(s)
= E.g., if we expect an inverse quadratic 0.4
relationships between and y, We 0.3

introduce a new feature, — 0.2

= Then, we use a ClaSSIC" Imear regression @

= The model learns a separate coefficient
for each feature

o Y =00 +0;% + 0,3, © g+ 01x + 0, 0.5
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= We can introduce more
flexibility in representing
relationships with a polynomial regression

= i.e., add new polynomial features up to degree n
= Increases model capacity
= Univariate: 9 =0, + 0, x+ 0, x* ...+ 0, x"

0 Z

= For multivariate problems, we can add either powers,
or interactions (or both!)
= Powers (x#, x%, x; ...)
« Interactions (x;x,, x;x3,...), capturing relations between
variables at different polynomial degrees
s E.Q., X1, %0, %3,n =2 > x{,x5, x5, %1%y, X1 X3, XpX3
= JThe total number of features increases combinatorially!
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& MSE, RMSE, MAE

= Mean squared error (MSE)
1 A
= MSE = —¥;(yi —90)°

= Sometimes not normalized by # points
= SSE (Sum of SE)

= RMSE (root MSE)

= RMSE = VMSE
= Same unit of measurement as the dependent var.

= Mean absolute error (MAE)
= MAE = %Zil%‘ —Ji |

= Penalizes more «small» errors (w.r.t. MSE)
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“/t R-squared (R?)

= RZ: proportion of the variance in the dependent
variable that is explained by the independent
variables

MSE

2
R®=1-—

= Edge cases:

= Model predicts everything perfectly
« MSE =0, R? = 1 (upper bound)

= Model is no better than predicting mean value of y
« MSE=0?,R*=0

= Model is worse than predicting mean value
= MSE > 0%, R><0
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= Residual plots:

visual assessment - .

of the goodness —~ <

of fit of a |~

regression model

= EXpecting
residuals to be
random scattered
around zero, with

constant variance,
and no patterns

Residual plot
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Overfitting and underfitting

o : the model is too complex and fits the training
data too closely ( )

= Poor performance on test data
=« May occur when using higher degree polynomials

o : the model is too simple and does not capture
the underlying relationships ( )

= Poor performance on training and test data
« May occur when using low degree polynomials

Underfitting "Correct” fitting Overfitting
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IANCE

Overfitting (High variance)
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Underfitting (High bias)
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= We can generally prevent overfitting by:

= Reducing model capacity
= (e.g., reduce the polynomial degree used)

= Increasing the dataset size
= Introducing regularization techniques
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= Allow model to use high capacity, but penalize it if
used unnecessarily

= Penalty term in the cost function

= L1 (Lasso) penalizes all

non-zero weights linearly A [
m Cost = MSE + /1”9”1 31.=:m~ .
= Bring 6 values to 0 if not Eﬂ-?ﬂﬂ
strictly needed 0.50 ]
= |2 (Ridge) penalizes = 0 0257
values less than = 0 values PO —
= Cost = MSE + A4[|0]|, Magnitude

= Allows @ values to be = 0 for small contributions

DSG 0
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‘=2t Regularization technigques

= Ridge tends to lower uniformly all the
coefficients

» Coefficients already close to 0 have little effect
on the sum of squares (if X = 0, X2 < X)

| | —
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Coefficient
values

= Lasso tends to assign the value 0 to some
coefficients (feature selection)

= Also small coefficients affect the sum

Some values are

// squashed to O
1

<—T1 | <

Coefficient
values
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2 Tree-based regression

= We can build decision trees for regression
= Real values used as targets instead of classes
= Node impurity computed as variance
= Each leaf assigns average value of points in it

X[2] == 2.45
squared error = 0.577
samples = 150
value = 1.199

o

X[0] == 4.95
squared error = 0.011
samples = 50

value =

0246

/

\

N

X[2] == 475
squared error = 0.179
samples = 100
value = 1.676

/

\

squared _error = 0.003
samples = 20
value = 0.195

squared_error = 0.013
samples = 30
value = 0.28

squared error = 0.034
samples = 45
value=13

squared error = 0.087
samples = 55
value = 1.984
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=% Other techniques

N

= Random forests can be obtained by aggregating
the output of decision tree regressors (e.q., by
averaging them)

= In KNN, we can produce the predicted outcome as
the (possibly weighted) average of the neighbors’
“votes”

= Neural networks natively produce continuous
outputs

B
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