
Data Science &

Machine Learning

Lab

Flavio Giobergia

Introduction to

Deep Learning

[Data Science & Machine Learning Lab]

The perceptron

• The perceptron is the simplest unit of neural networks

• It takes an input with multiple features, and does the following:
• It weights each input feature with a given weight,

• It produces a weighted sum of the inputs, and

• It applies a function to the output

• 𝑦 = 𝑓(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛)

[Introduction to deep learning] 2

[Data Science & Machine Learning Lab]

The perceptron

෍ 𝑤𝑖𝑥𝑖

𝑥1

𝑥2

𝑥𝑛−1

𝑥𝑛

…

𝑤0

𝑓(⋅) 𝑦

Inputs

Output

Or, in other words, 𝑦 = 𝑓 σ𝑖=0
𝑛 𝑤𝑖𝑥𝑖) = 𝑓(𝑤T𝑥 and 𝑥0 = 1

• 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 is the input sample

• 𝑦 represents the output of the perceptron.

• 𝑓 ⋅ represents a non-linear “activation” function

• 𝑤𝑖 (and 𝑤0) are weights (and bias), which are

“learned”

Note
With the exception of 𝑓 ⋅ , this looks like the classic linear regression
And if 𝑓 ⋅ = 𝜎 ⋅ (sigmoid function), this looks like the (just as classic) logistic regression

[Introduction to deep learning] 3

[Data Science & Machine Learning Lab]

The perceptron, in 2D

෍ 𝑤𝑖𝑥𝑖

𝑥1

𝑥2

𝑤0

𝑥 𝑦

Inputs
Output

𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤0

The perceptron can be used to
represent a family of functions,
𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤0

Various values of 𝑤0, 𝑤1, 𝑤2 define
the different functions that can be
learned by the perceptron.

Linear activation
function, 𝑓 𝑥 = 𝑥

[Introduction to deep learning] 4

[Data Science & Machine Learning Lab]

Activation functions

• Activation functions are used for two main reasons:
1. Enforce properties on perceptron’s output

• E.g., sigmoid ➔ binds output to [0, 1] range

2. Introduce non-linearities in the model
+ some others (faster convergence, sparsity, …)

• Commonly adopted functions:
• ReLU
• Sigmoid
• Leaky ReLU
• Tanh
• Softmax
• Linear
• GeLU

[Introduction to deep learning] 5

[Data Science & Machine Learning Lab]

1. Enforce properties on perceptron’s output

• Binary classification problem
• Separate positive () and negative () samples

• For a point 𝑥 ∈ ℝ2, the perceptron can predict 𝑝 𝑥)
• For the binary case, this implies 𝑝 𝑥) = 1 − 𝑝 𝑥)

• To get a valid probability, we must enforce 𝑝 𝑥) ∈ [0, 1]
• We already have 𝑝 𝑥) + 𝑝 𝑥) = 1 by construction

• The Sigmoid maps any value in ℝ to the range [0, 1]
• i.e., the perceptron’s output (in ℝ) is squashed to 0, 1

• 𝜎 𝑥 =
1

1+𝑒−𝑥

[Introduction to deep learning] 6

[Data Science & Machine Learning Lab]

𝑥1

𝑥2

Linear (fully-connected)
layer

Adding some perceptrons

෍ 𝑞𝑖𝑥𝑖

𝑞0

𝑓(⋅) 𝑦2

Output 2

෍ 𝑤𝑖𝑥𝑖

𝑤0

𝑓(⋅) 𝑦1

Output 1

𝑦1 = 𝑓(𝑤T𝑥)

𝑦2 = 𝑓(𝑞T𝑥)

𝑦 =
𝑦1

𝑦2
= 𝑓(

𝑤0 𝑤1 𝑤2

𝑞0 𝑞1 𝑞2

1
𝑥1

𝑥2

) = 𝑓(𝑊T𝑥)

Inputs

Note
When we refer to the “number of
parameters” in a model, we refer to the
total number of weights the model has.
This is a “6 parameters” model!

[Introduction to deep learning] 7

[Data Science & Machine Learning Lab]

Non-
linearity

Non-
linearity Linear layer 2Linear layer 1

and adding other layers!

𝑓(⋅) 𝑦2

𝑓(⋅) 𝑦1

෍ 𝑠𝑖𝑦𝑖

𝑠0

𝑓(⋅) 𝑧

Output

𝑧 = 𝑓(𝑠T𝑓 𝑊T𝑥)
𝑥1

𝑥2

෍ 𝑞𝑖𝑥𝑖

𝑞0

Inputs

෍ 𝑤𝑖𝑥𝑖

𝑤0

[Introduction to deep learning] 8

[Data Science & Machine Learning Lab]

2. Introduce non-linearities in the model

• if 𝑓 𝑥 = 𝑥 (i.e., no non-linearity is added), we get
𝑧 = 𝑠T𝑊T𝑥

• This implies:
1. We could have used 𝑊′ = 𝑊𝑠 and get the same

output

2. We wouldn’t have needed a second layer!

3. But our model is still linear

• So, we use non-linear activation functions to
model more complex functions

[Introduction to deep learning] 9

[Data Science & Machine Learning Lab]

Multi-layer perceptron models

• We can stack additional layers
• separated by non-linearities (activation functions) to

prevent collapses

• Universal Approximation Theorem tells us that
we can approximate “any” function with MLPs
• “For any continuous function 𝑔 defined on a compact

subset of ℝ𝑛 and for any 𝜖 > 0, there exists a
feedforward neural network with a single hidden
layer and a finite number of neurons that can
approximate g to within an arbitrary degree of
accuracy 𝜖”

• A single-layer MLP works … but no information on the
number of neurons, or the weights’ values!

• Deeper, narrower networks are generally used

N
o

n
-l

in
e

ar
it

y

lin
e

ar

N
o

n
-l

in
e

ar
it

y

lin
e

ar

N
o

n
-l

in
e

ar
it

y

lin
e

ar

…

o
u

tp
u

t

In
p

u
t

Cybenko, George. "Approximation by superpositions of a sigmoidal function." Mathematics of control, signals and systems 2.4 (1989): 303-314.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators." Neural networks 2, no. 5 (1989): 359-366.

[Introduction to deep learning] 10

Hidden layers

Input layer

N
o

n
-l

in
e

ar
it

y

lin
e

ar

Output layer

[Data Science & Machine Learning Lab]

Activation functions for classification models

• As argued, activation functions
can be used to enforce
properties on the model’s output

• In classification problems, the
output before the final activation
is treated as unnormalized
probabilities (logits)

• We still need a step to convert
logits into valid probabilities
• i.e., all probabilities should sum to

1, and be in [0, 1]

[Introduction to deep learning] 11

Head

N
o

n
-l

in
e

ar
it

y

lin
e

ar

N
o

n
-l

in
e

ar
it

y

lin
e

ar

lin
e

ar…

In
p

u
t

N
o

n
-l

in
e

ar
it

y

Li
n

e
ar

 h
ea

d

O
u

tp
u

t
ac

ti
va

ti
o

n

fu
n

ct
io

n

o
u

tp
u

t

Lo
gi

ts

m
o

d
el

Dog
Cat

Bird
Turtle

H
ea

d

[Data Science & Machine Learning Lab]

Binary classification

• The model predicts the probability of a single class for
point 𝑥
• As a convention, the positive one 𝑃 𝑝𝑜𝑠 𝑥 (e.g., 𝑃 𝑐𝑎𝑡 𝑥)

• The model produces a logit 𝑧 = 𝑚𝑜𝑑𝑒𝑙(𝑥)

• We use the sigmoid function on the output logit 𝑧

• 𝜎 𝑧 =
1

1+𝑒−𝑧

• This guarantees 𝑃 𝑝𝑜𝑠 𝑥 ∈ 0, 1

• We work out the probability of the negative class
(e.g., “not cat”)
• 𝑃 𝑛𝑒𝑔 𝑥 = 1 − 𝑃 𝑝𝑜𝑠 𝑥
• We can easily show that 𝑃 𝑛𝑒𝑔 𝑥 ∈ [0,1]

• By construction, 𝑃 𝑝𝑜𝑠 𝑥 + 𝑃 𝑛𝑒𝑔|𝑥 = 1

[Introduction to deep learning] 12

m
o

d
el Cat

Not cat

[Data Science & Machine Learning Lab]

Multi-class classification

• The output class is one of many 𝑐1, 𝑐2, … , 𝑐𝑛
• E.g., (dog, cat, bird, turtle)

• The model produces a vector of 𝑛 logits for a point 𝑥
• (i.e., the last layer will have 𝑛 perceptrons)

• 𝑧 = 𝑧1, 𝑧2, … , 𝑧𝑛 = 𝑚𝑜𝑑𝑒𝑙 𝑥

• We need to obtain, from the logits, valid probabilities
• 𝑃 𝑐1 𝑥 , 𝑃 𝑐2 𝑥 , … , 𝑃 𝑐𝑛 𝑥

• The softmax function is applied:

• 𝑃 𝑐𝑖 𝑥 =
𝑒𝑧𝑖

σ𝑗 𝑒
𝑧𝑗

• It can be easily shown that:
• 𝑃 𝑐𝑖 𝑥 ∈ 0, 1
• σ𝑖 𝑃 𝑐𝑖 𝑥 = 1

[Introduction to deep learning] 13

m
o

d
el

so
ft

m
ax

lo
gi

ts
 𝑧

Dog
Cat

Bird
Turtle

[Data Science & Machine Learning Lab]

Activation functions for regression models

• In regression, models generally predict real numbers

• Typically, there is no need to enforce properties

• Output activation function can be the identity function
• 𝑓(𝑥) = 𝑥

• Generally the only situation where it makes sense to use it!

[Introduction to deep learning] 14

[Data Science & Machine Learning Lab]

Defining weights (parameters)

• So far, we assumed all weights and biases (let’s call them 𝜃) to be
known
• But, we still need to figure out how we find them!

• We pick a function (objective, or loss), ℒ 𝜃 , that we want to minimize

• e.g., in Linear Regression we minimize the Mean Squared Error

• ℒ 𝜃 = 𝑀𝑆𝐸 𝜃 =
1

𝑛
σ 𝑦𝑖 − 𝜃𝑇𝑥𝑖

2

• Then, we pick 𝜃 that minimizes it

Note
ℒ also depends on the training points 𝑥𝑖, 𝑦𝑖, so we should
refer to it as ℒ 𝜃, 𝑋, 𝑦 .

However, the training set 𝑋, 𝑦 is generally fixed. Thus, we
only have control over 𝜃, so we use the notation ℒ 𝜃 .

[Introduction to deep learning] 15

[Data Science & Machine Learning Lab]

Linear regression

• For simple models, we can find the optimal weights in closed form

•
𝜕ℒ 𝜃

𝜕𝜃
=

𝜕𝑀𝑆𝐸 𝜃

𝜕𝜃
= 0

• Quadratic in 𝜃, can be solved easily!

• Or, we can evaluate the loss function for a bunch of 𝜃’s, and find the
“best” one

Note
For linear regression, we don’t try a bunch of 𝜃
since we can easily find the best value in closed
form.

However, this provides the intuition for what we
will do next with more complex loss
functions/models.

[Introduction to deep learning] 16

[Data Science & Machine Learning Lab]

More complex losses/models

• For more complex loss functions/models, we may not be able to solve
the problem in closed form
• But we can evaluate ℒ 𝜃 for various values of 𝜃

• We can iteratively update 𝜃 to reach a local minimum:
• We start from a random value 𝜃, then

• we “move around” according to “some policy”

[Introduction to deep learning] 17

[Data Science & Machine Learning Lab]

We “move around” according to
“some policy”
• Move around = update 𝜃 incrementally, based on its current value

• The new value of 𝜃 at any step depends on the previous step’s value

• 𝜃𝑡+1 ∶= 𝜃𝑡 + 𝑢𝑝𝑑𝑎𝑡𝑒

• Some policy = we take a small step in the direction where the
function decreases locally
• i.e. in the opposite direction of the gradient

• 𝜃𝑡+1 ∶= 𝜃𝑡 − 𝛼 ∇𝜃ℒ 𝜃𝑡

• for 1-dimensional 𝜃, we have 𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝜕ℒ 𝜃

𝜕𝜃

• 𝛼: learning rate, controls the “size” of the step

• Gradient Descent!

[Introduction to deep learning] 18

[Data Science & Machine Learning Lab]

Some limitations of GD

• GD is sensitive to weight initialization
• Different initializations can lead to different solutions!

• GD can get stuck in local minima

• Various solutions to help prevent local minima:
• Adding momentum

• Adaptive learning rates

• Learning rate schedules

[Introduction to deep learning] 19

Note
Different initializations will lead to the global minimum
for convex loss functions. However, that represents a
trivial situation we typically do not encounter.

[Data Science & Machine Learning Lab]

Backpropagation

• So far, we assumed we were able to compute ∇𝜃ℒ 𝜃

• However, any loss/model combination would need a different
gradient computation!

• We can use backpropagation to compute the gradient of the loss w.r.t.
any weight!
• Backpropagation is just a fancy word for “using the chain rule”

[Introduction to deep learning] 20

[Data Science & Machine Learning Lab]

Using the chain rule

• We use the chain rule from calculus,
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑥

• Sometimes known as 𝑓 𝑔 𝑥
′

= 𝑓′ 𝑔 𝑥 ⋅ 𝑔′(𝑥)

• And apply it from the end of the computational graph, backwards
• (hence the name, backpropagation)

[Introduction to deep learning] 21

[Data Science & Machine Learning Lab]

Computational graph

• A computational graph is a directed graph
• Each node corresponds to an operation

• Each edge represents the flow of data
between nodes

• For instance, we may want to compute
y = 𝑤𝑥 + 𝑞
• We start from three variables, 𝑤, 𝑥 and 𝑦

• The computational graph performs one
operation at a time
• First, compute the intermediate variable 𝑎 = 𝑤𝑥

• Then, compute the output variable 𝑧 = 𝑎 + 𝑦 =
𝑤𝑥 + 𝑦

[Introduction to deep learning] 22

𝑤

𝑥

𝑞

𝑎 = 𝑤𝑥

𝑦 = 𝑎 + 𝑞

×

+

[Data Science & Machine Learning Lab]

Backpropagation example

• Let’s say:
• Our dataset has one point, 𝑥, 𝑦

• Our (weird) model has two parameters, 𝜃1 and 𝜃2, and predicts 𝜃1𝜃2𝑥

• Our loss function will be ℒ = 𝜃1𝜃2𝑥 − 𝑦 2

• We build a computational graph with all operations and intermediate
variables
• 𝑎 = 𝜃1𝜃2

• 𝑏 = 𝑎𝑥 = 𝜃1𝜃2𝑥

• 𝑐 = 𝑏 − 𝑦 = 𝑎𝑥 − 𝑦 = 𝜃1𝜃2𝑥 − 𝑦

• ℒ = 𝑐2 = 𝑏 − 𝑦 2 = 𝑎𝑥 − 𝑦 2 = 𝜃1𝜃2𝑥 − 𝑦 2

[Introduction to deep learning] 23

[Data Science & Machine Learning Lab]

𝜃1

𝜃2

𝑥

𝑦

𝑎 = 𝜃1𝜃2

𝑏 = 𝑎𝑥
= 𝜃1𝜃2𝑥

𝑐 = 𝑏 − 𝑦
= 𝜃1𝜃2𝑥 − 𝑦

ℒ = 𝑐2

= 𝜃1𝜃2𝑥 − 𝑦 2

𝜕ℒ

𝜕𝑐
=

𝜕𝑐2

𝜕𝑐
= 2𝑐

𝜕ℒ

𝜕𝑏
=

𝜕ℒ

𝜕𝑐

𝜕𝑐

𝜕𝑏
= 2𝑐

𝜕(𝑏 − 𝑦)

𝜕𝑏
= 2𝑐

𝜕ℒ

𝜕𝑎
=

𝜕ℒ

𝜕𝑏

𝜕𝑏

𝜕𝑎
= 2𝑐

𝜕𝑎𝑥

𝜕𝑎
= 2𝑐𝑥

𝜕ℒ

𝜕𝜃1
=

𝜕ℒ

𝜕𝑎

𝜕𝑎

𝜕𝜃1
= 2𝑐𝑥

𝜕𝜃1𝜃2

𝜕𝜃1
= 2𝑐𝑥𝜃2

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎

𝜕𝑎

𝜕𝜃2
= 2𝑐𝑥

𝜕𝜃1𝜃2

𝜕𝜃2
= 2𝑐𝑥𝜃1

𝜕ℒ

𝜕𝜃1
= 2(𝜃1𝜃2𝑥 − 𝑦)𝑥𝜃2

𝜕ℒ

𝜕𝜃2
= 2(𝜃1𝜃2𝑥 − 𝑦)𝑥𝜃1

×

×

−
⋅ 2

[Introduction to deep learning] 24

Forward step
• The loss ℒ is computed starting from the “inputs” 𝜃1, 𝜃2, 𝑥, 𝑦

Backward step (backpropagation)

• The loss ℒ is used to compute the derivative w.r.t. 𝑐 ➔
𝜕ℒ

𝜕𝑐

• The derivative
𝜕ℒ

𝜕𝑐
 is used to compute the derivative w.r.t. 𝑏 ➔

𝜕ℒ

𝜕𝑏

• The derivative
𝜕ℒ

𝜕𝑏
 is used to compute the derivative w.r.t. 𝑎 ➔

𝜕ℒ

𝜕𝑎

• The derivative
𝜕ℒ

𝜕𝑎
 is used to compute the derivative w.r.t. 𝜃1, 𝜃2 ➔

𝜕ℒ

𝜕𝜃1
,

𝜕ℒ

𝜕𝜃2

[Data Science & Machine Learning Lab]

Loss functions

• Regression
• Mean Squared Error, Mean Absolute Error

• Binary
• Binary Cross-Entropy (BCE)
• 𝑦 = {0, 1} ➔ ground truth
• ො𝑦 = 𝑚𝑜𝑑𝑒𝑙 𝑥 ∈ [0,1] ➔ predicted value

ℒ = −𝑦𝑙𝑜𝑔 ො𝑦 − 1 − 𝑦 𝑙𝑜𝑔(1 − ො𝑦)

• 𝑦 (ground truth) acts as a “selector” of the loss term
to be applied
• 𝑦 = 1 ➔ ℒ = −𝑙𝑜𝑔 ො𝑦
• 𝑦 = 0 ➔ ℒ = −𝑙𝑜𝑔(1 − ො𝑦)

[Introduction to deep learning] 25

Target value: 𝑦 = 1
• Low loss values when

prediction ො𝑦 ≈ 1
• High loss value when

prediction ො𝑦 ≈ 0

Target value: 𝑦 = 1
• Low loss values when

prediction ො𝑦 ≈ 1
• High loss value when

prediction ො𝑦 ≈ 0

[Data Science & Machine Learning Lab]

Loss functions

• Multi-class classification
• Cross-Entropy

• Generalization to multiple classes of BCE

• 𝑦𝑖 = 1 when ground truth is the ith class, 0 otherwise

• 𝑦𝑖 plays the same “selector” mechanism as in BCE

ℒ = − ෍

𝑖

𝑦𝑖log(ෝ𝑦𝑖)

[Introduction to deep learning] 26

	Slide 1
	Slide 2: The perceptron
	Slide 3: The perceptron
	Slide 4: The perceptron, in 2D
	Slide 5: Activation functions
	Slide 6: 1. Enforce properties on perceptron’s output
	Slide 7: Adding some perceptrons
	Slide 8: and adding other layers!
	Slide 9: 2. Introduce non-linearities in the model
	Slide 10: Multi-layer perceptron models
	Slide 11: Activation functions for classification models
	Slide 12: Binary classification
	Slide 13: Multi-class classification
	Slide 14: Activation functions for regression models
	Slide 15: Defining weights (parameters)
	Slide 16: Linear regression
	Slide 17: More complex losses/models
	Slide 18: We “move around” according to “some policy”
	Slide 19: Some limitations of GD
	Slide 20: Backpropagation
	Slide 21: Using the chain rule
	Slide 22: Computational graph
	Slide 23: Backpropagation example
	Slide 24
	Slide 25: Loss functions
	Slide 26: Loss functions

