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The perceptron

• The perceptron is the simplest unit of neural networks

• It takes an input with multiple features, and does the following:
• It weights each input feature with a given weight,

• It produces a weighted sum of the inputs, and

• It applies a function to the output

• 𝑦 = 𝑓(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛)
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The perceptron
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Or, in other words, 𝑦 = 𝑓 σ𝑖=0
𝑛 𝑤𝑖𝑥𝑖) = 𝑓(𝑤T𝑥  and 𝑥0 = 1 

• 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛  is the input sample

• 𝑦 represents the output of the perceptron.

• 𝑓 ⋅  represents a non-linear “activation” function

• 𝑤𝑖 (and 𝑤0) are weights (and bias), which are 

“learned”

Note
With the exception of 𝑓 ⋅ , this looks like the classic linear regression 
And if 𝑓 ⋅ = 𝜎 ⋅  (sigmoid function), this looks like the (just as classic) logistic regression
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The perceptron, in 2D

෍ 𝑤𝑖𝑥𝑖
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Output

𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤0

The perceptron can be used to 
represent a family of functions, 
𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤0

Various values of 𝑤0, 𝑤1, 𝑤2 define 
the different functions that can be 
learned by the perceptron. 

Linear activation 
function, 𝑓 𝑥 = 𝑥 
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Activation functions

• Activation functions are used for two main reasons:
1. Enforce properties on perceptron’s output 

• E.g., sigmoid ➔ binds output to [0, 1] range

2. Introduce non-linearities in the model
+ some others (faster convergence, sparsity, …)

• Commonly adopted functions:
• ReLU
• Sigmoid
• Leaky ReLU
• Tanh
• Softmax
• Linear
• GeLU
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1. Enforce properties on perceptron’s output

• Binary classification problem
• Separate positive (     ) and negative (     ) samples

• For a point 𝑥 ∈ ℝ2, the perceptron can predict 𝑝  𝑥)
• For the binary case, this implies 𝑝  𝑥) = 1 − 𝑝  𝑥)

• To get a valid probability, we must enforce 𝑝  𝑥) ∈ [0, 1]
• We already have 𝑝  𝑥) +  𝑝  𝑥) = 1 by construction

• The Sigmoid maps any value in ℝ to the range [0, 1]
• i.e., the perceptron’s output (in ℝ) is squashed to 0, 1

• 𝜎 𝑥 =
1

1+𝑒−𝑥
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𝑥1

𝑥2

Linear (fully-connected) 
layer

Adding some perceptrons
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𝑦1 = 𝑓(𝑤T𝑥)

𝑦2 = 𝑓(𝑞T𝑥)

𝑦 =
𝑦1

𝑦2
= 𝑓(

𝑤0 𝑤1 𝑤2

𝑞0 𝑞1 𝑞2

1
𝑥1

𝑥2

) = 𝑓(𝑊T𝑥)

Inputs

Note
When we refer to the “number of 
parameters” in a model, we refer to the 
total number of weights the model has. 
This is a “6 parameters” model!
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Non-
linearity

Non-
linearity Linear layer 2Linear layer 1

and adding other layers!

𝑓(⋅) 𝑦2

𝑓(⋅) 𝑦1
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𝑠0

𝑓(⋅) 𝑧

Output

𝑧 =  𝑓(𝑠T𝑓 𝑊T𝑥 )
𝑥1

𝑥2

෍ 𝑞𝑖𝑥𝑖

𝑞0

Inputs

෍ 𝑤𝑖𝑥𝑖

𝑤0
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2. Introduce non-linearities in the model

• if 𝑓 𝑥 = 𝑥 (i.e., no non-linearity is added), we get 
𝑧 =  𝑠T𝑊T𝑥

• This implies:
1. We could have used 𝑊′ = 𝑊𝑠 and get the same 

output

2. We wouldn’t have needed a second layer!

3. But our model is still linear

• So, we use non-linear activation functions to 
model more complex functions
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Multi-layer perceptron models

• We can stack additional layers
• separated by non-linearities (activation functions) to 

prevent collapses

• Universal Approximation Theorem tells us that 
we can approximate “any” function with MLPs
• “For any continuous function 𝑔 defined on a compact 

subset of ℝ𝑛 and for any 𝜖 > 0, there exists a 
feedforward neural network with a single hidden 
layer and a finite number of neurons that can 
approximate g to within an arbitrary degree of 
accuracy 𝜖”

• A single-layer MLP works … but no information on the 
number of neurons, or the weights’ values!

• Deeper, narrower networks are generally used
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Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators." Neural networks 2, no. 5 (1989): 359-366.
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Activation functions for classification models

• As argued, activation functions 
can be used to enforce 
properties on the model’s output

• In classification problems, the 
output before the final activation 
is treated as unnormalized 
probabilities (logits)

• We still need a step to convert 
logits into valid probabilities
• i.e., all probabilities should sum to 

1, and be in [0, 1]
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Binary classification

• The model predicts the probability of a single class for 
point 𝑥
• As a convention, the positive one 𝑃 𝑝𝑜𝑠 𝑥  (e.g., 𝑃 𝑐𝑎𝑡 𝑥 )

• The model produces a logit 𝑧 = 𝑚𝑜𝑑𝑒𝑙(𝑥)

• We use the sigmoid function on the output logit 𝑧

• 𝜎 𝑧 =
1

1+𝑒−𝑧

• This guarantees 𝑃 𝑝𝑜𝑠 𝑥 ∈ 0, 1  

• We work out the probability of the negative class 
(e.g., “not cat”)
• 𝑃 𝑛𝑒𝑔 𝑥 = 1 −  𝑃 𝑝𝑜𝑠 𝑥
• We can easily show that 𝑃 𝑛𝑒𝑔 𝑥 ∈ [0,1] 

• By construction, 𝑃 𝑝𝑜𝑠 𝑥 + 𝑃 𝑛𝑒𝑔|𝑥 = 1
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Multi-class classification

• The output class is one of many 𝑐1, 𝑐2, … , 𝑐𝑛
• E.g., (dog, cat, bird, turtle)

• The model produces a vector of 𝑛 logits for a point 𝑥
• (i.e., the last layer will have 𝑛 perceptrons)

• 𝑧 = 𝑧1, 𝑧2, … , 𝑧𝑛 = 𝑚𝑜𝑑𝑒𝑙 𝑥

• We need to obtain, from the logits, valid probabilities
• 𝑃 𝑐1 𝑥 , 𝑃 𝑐2 𝑥 , … , 𝑃 𝑐𝑛 𝑥

• The softmax function is applied:

• 𝑃 𝑐𝑖 𝑥 =
𝑒𝑧𝑖

σ𝑗 𝑒
𝑧𝑗

• It can be easily shown that:
• 𝑃 𝑐𝑖 𝑥 ∈ 0, 1  
• σ𝑖 𝑃 𝑐𝑖 𝑥 = 1 
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Activation functions for regression models

• In regression, models generally predict real numbers

• Typically, there is no need to enforce properties

• Output activation function can be the identity function
• 𝑓(𝑥) = 𝑥

• Generally the only situation where it makes sense to use it!
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Defining weights (parameters)

• So far, we assumed all weights and biases (let’s call them 𝜃) to be 
known
• But, we still need to figure out how we find them!

• We pick a function (objective, or loss), ℒ 𝜃 , that we want to minimize

• e.g., in Linear Regression we minimize the Mean Squared Error

• ℒ 𝜃 = 𝑀𝑆𝐸 𝜃 =
1

𝑛
σ 𝑦𝑖 − 𝜃𝑇𝑥𝑖

2

• Then, we pick 𝜃 that minimizes it

Note
ℒ also depends on the training points 𝑥𝑖, 𝑦𝑖, so we should 
refer to it as ℒ 𝜃, 𝑋, 𝑦 .

However, the training set 𝑋, 𝑦 is generally fixed. Thus, we 
only have control over 𝜃, so we use the notation ℒ 𝜃 .
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Linear regression

• For simple models, we can find the optimal weights in closed form

•
𝜕ℒ 𝜃

𝜕𝜃
=

𝜕𝑀𝑆𝐸 𝜃

𝜕𝜃
= 0 

• Quadratic in 𝜃, can be solved easily!

• Or, we can evaluate the loss function for a bunch of 𝜃’s, and find the 
“best” one

Note
For linear regression, we don’t try a bunch of 𝜃 
since we can easily find the best value in closed 
form. 

However, this provides the intuition for what we 
will do next with more complex loss 
functions/models. 
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More complex losses/models

• For more complex loss functions/models, we may not be able to solve 
the problem in closed form
• But we can evaluate ℒ 𝜃  for various values of 𝜃

• We can iteratively update 𝜃 to reach a local minimum:
• We start from a random value 𝜃, then

• we “move around” according to “some policy”
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We “move around” according to 
“some policy”
• Move around = update 𝜃 incrementally, based on its current value

• The new value of 𝜃 at any step depends on the previous step’s value

• 𝜃𝑡+1 ∶= 𝜃𝑡 + 𝑢𝑝𝑑𝑎𝑡𝑒

• Some policy = we take a small step in the direction where the 
function decreases locally
• i.e. in the opposite direction of the gradient

• 𝜃𝑡+1 ∶= 𝜃𝑡 − 𝛼 ∇𝜃ℒ 𝜃𝑡

• for 1-dimensional 𝜃, we have 𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝜕ℒ 𝜃

𝜕𝜃

• 𝛼: learning rate, controls the “size” of the step

• Gradient Descent!
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Some limitations of GD

• GD is sensitive to weight initialization
• Different initializations can lead to different solutions!

• GD can get stuck in local minima

• Various solutions to help prevent local minima:
• Adding momentum

• Adaptive learning rates

• Learning rate schedules
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Backpropagation

• So far, we assumed we were able to compute ∇𝜃ℒ 𝜃

• However, any loss/model combination would need a different 
gradient computation!

• We can use backpropagation to compute the gradient of the loss w.r.t. 
any weight!
• Backpropagation is just a fancy word for “using the chain rule”
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Using the chain rule

• We use the chain rule from calculus, 
𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑥

• Sometimes known as 𝑓 𝑔 𝑥
′

= 𝑓′ 𝑔 𝑥 ⋅ 𝑔′(𝑥)

• And apply it from the end of the computational graph, backwards
• (hence the name, backpropagation)
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Computational graph

• A computational graph is a directed graph
• Each node corresponds to an operation

• Each edge represents the flow of data 
between nodes

• For instance, we may want to compute 
y = 𝑤𝑥 + 𝑞
• We start from three variables, 𝑤, 𝑥 and 𝑦

• The computational graph performs one 
operation at a time
• First, compute the intermediate variable 𝑎 = 𝑤𝑥

• Then, compute the output variable 𝑧 = 𝑎 + 𝑦 =
𝑤𝑥 + 𝑦

[ Introduction to deep learning ] 22

𝑤

𝑥

𝑞

𝑎 = 𝑤𝑥

𝑦 = 𝑎 + 𝑞

×

+



[ Data Science & Machine Learning Lab ]

Backpropagation example

• Let’s say:
• Our dataset has one point, 𝑥, 𝑦

• Our (weird) model has two parameters, 𝜃1 and 𝜃2, and predicts 𝜃1𝜃2𝑥

• Our loss function will be ℒ = 𝜃1𝜃2𝑥 − 𝑦 2

• We build a computational graph with all operations and intermediate 
variables
• 𝑎 = 𝜃1𝜃2

• 𝑏 = 𝑎𝑥 = 𝜃1𝜃2𝑥

• 𝑐 = 𝑏 − 𝑦 = 𝑎𝑥 − 𝑦 = 𝜃1𝜃2𝑥 − 𝑦

• ℒ = 𝑐2 = 𝑏 − 𝑦 2 = 𝑎𝑥 − 𝑦 2 = 𝜃1𝜃2𝑥 − 𝑦 2 
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𝜃1

𝜃2

𝑥

𝑦

𝑎 = 𝜃1𝜃2

𝑏 = 𝑎𝑥
=  𝜃1𝜃2𝑥

𝑐 = 𝑏 − 𝑦
=  𝜃1𝜃2𝑥 − 𝑦

ℒ = 𝑐2

= 𝜃1𝜃2𝑥 − 𝑦 2

𝜕ℒ

𝜕𝑐
=

𝜕𝑐2

𝜕𝑐
= 2𝑐

𝜕ℒ

𝜕𝑏
=

𝜕ℒ

𝜕𝑐

𝜕𝑐

𝜕𝑏
= 2𝑐

𝜕(𝑏 − 𝑦)

𝜕𝑏
= 2𝑐

𝜕ℒ

𝜕𝑎
=

𝜕ℒ

𝜕𝑏

𝜕𝑏

𝜕𝑎
= 2𝑐

𝜕𝑎𝑥

𝜕𝑎
= 2𝑐𝑥

𝜕ℒ

𝜕𝜃1
=

𝜕ℒ

𝜕𝑎

𝜕𝑎

𝜕𝜃1
= 2𝑐𝑥

𝜕𝜃1𝜃2

𝜕𝜃1
= 2𝑐𝑥𝜃2

𝜕ℒ

𝜕𝜃2
=

𝜕ℒ

𝜕𝑎

𝜕𝑎

𝜕𝜃2
= 2𝑐𝑥

𝜕𝜃1𝜃2

𝜕𝜃2
= 2𝑐𝑥𝜃1

𝜕ℒ

𝜕𝜃1
= 2(𝜃1𝜃2𝑥 − 𝑦)𝑥𝜃2

𝜕ℒ

𝜕𝜃2
= 2(𝜃1𝜃2𝑥 − 𝑦)𝑥𝜃1

×

×

−
⋅ 2
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Forward step
• The loss ℒ is computed starting from the “inputs” 𝜃1, 𝜃2, 𝑥, 𝑦

Backward step (backpropagation)

• The loss ℒ is used to compute the derivative w.r.t. 𝑐 ➔
𝜕ℒ

𝜕𝑐

• The derivative 
𝜕ℒ

𝜕𝑐
 is used to compute the derivative w.r.t. 𝑏 ➔

𝜕ℒ

𝜕𝑏

• The derivative 
𝜕ℒ

𝜕𝑏
 is used to compute the derivative w.r.t. 𝑎 ➔

𝜕ℒ

𝜕𝑎

• The derivative 
𝜕ℒ

𝜕𝑎
 is used to compute the derivative w.r.t. 𝜃1, 𝜃2 ➔

𝜕ℒ

𝜕𝜃1
,

𝜕ℒ

𝜕𝜃2
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Loss functions

• Regression
• Mean Squared Error, Mean Absolute Error 

• Binary 
• Binary Cross-Entropy (BCE)
• 𝑦 = {0, 1} ➔ ground truth
• ො𝑦 = 𝑚𝑜𝑑𝑒𝑙 𝑥  ∈ [0,1] ➔ predicted value

ℒ = −𝑦𝑙𝑜𝑔 ො𝑦 − 1 − 𝑦 𝑙𝑜𝑔(1 − ො𝑦)

• 𝑦 (ground truth) acts as a “selector” of the loss term 
to be applied
• 𝑦 = 1 ➔ ℒ = −𝑙𝑜𝑔 ො𝑦
• 𝑦 = 0 ➔ ℒ = −𝑙𝑜𝑔(1 − ො𝑦)
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Target value: 𝑦 = 1
• Low loss values when 

prediction ො𝑦 ≈ 1
• High loss value when 

prediction ො𝑦 ≈ 0

Target value: 𝑦 = 1
• Low loss values when 

prediction ො𝑦 ≈ 1
• High loss value when 

prediction ො𝑦 ≈ 0
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Loss functions

• Multi-class classification
• Cross-Entropy

• Generalization to multiple classes of BCE

• 𝑦𝑖 = 1 when ground truth is the ith class, 0 otherwise

• 𝑦𝑖  plays the same “selector” mechanism as in BCE

ℒ = − ෍

𝑖

𝑦𝑖log( ෝ𝑦𝑖) 
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