Lab 3.

In this lab, we analyze a data set containing the information about the items reviewed by some
users of Amazon. Specifically, we will start looking at the connections between the reviewed
items, and to do this we will use a data set containing one line per reviewer. The first field of
each line contains always the id of the reviewer (AXXXXXXXXX in the running example),
followed by the list of all the products reviewed by her/him (BXXXXXXXXX in the sample lines
reported below).

Here is a sample of the first 11 lines of such data set:
AB9539661HB8IHRFVRDC, BOO2R8BUANK , BOO2R8I7YS, BOO2R8SLUY
A1008ULQSWIO06,B00170AQIY

A100EBHBG1GF5,B0013T5Y04

A1017YOSGBINVS, BOOOIF 3SAK

A101F8M8DPFOM9, BOO5HY2BRO, BOOOH7MFVI

A102H88HCCIJAB, BOOO7A8XV6

A102ME7M2YW2P5, BOOOFKGT8W

A102QP20SXRVH, BOO1EQ5SGU, BOOOEHORTS

A102TGNH1D915Z, BOOORHXKC6 ,BOOO2DHNXC, BOOO2DHNXC, BOOOXIK7UG, BOOOOSDFK5
A1051WAJLOHIWH, BOOOW5SUSH6
A1052V04GOA7RV,B002GI9]Y6,BOO1ESE3]Y, BOO8ZRKZSM, BOO2GI9INWS

For the following exercise, you can use the sample data set
AmazonTransposedDataset _Sample.ixt, which is available in the shared folder:

/share/students/bigdata/Dati/Lab3/AmazonTransposedDataset_Sample.txt

A copy of AmazonTransposedDataset_Sample.txt is also available on the web page of the
course.

Ex 1. “People also like...”

In this exercise, we try to build a very basic version of a recommending system. Your goal is to
find the top 100 pairs of products most often reviewed (and so probably bought) together.

In this exercise, we consider two products as reviewed (i.e., bought) together if they appear in
the same line of the input transposed file (the input file is
AmazonTransposedDataset_Sample.txt). We ignore temporal constraints, so even if a decade
or a thousand products have passed between the two reviews, we count the pair, as it
represents anyway the tastes of a single user.

We suggest you to implement your application by using the template project uploaded on the
website of the course. The provided template already contains the skeleton of the Driver,
Mapper, and Reducer classes. Fill out the missing parts and decide if you need one single
job or two concatenated jobs.

Lab3_Skeleton_with_libraries.zip also contains two utility classes for your convenience. They
should support you during the development of your solution.
e WordCountWritable

This class implement a personalized data type and can be used to store a pair (word,
count), where word is a String and count is an Integer.

The public WordCountWritable(String word, Integer count) constructor is used to create
new WordCountWritable objects.

String getWord() and Integer getCount() are used to retrieve the value of word and
count, respectively.

setWord(String value) and setCount(Integer value) are used to set the value of word
and count, respectively.

This class implements the Comparable interface. Hence, the public int
compareTo(WordCountWritable other) can be used to compare objects of this class.
This class implements the Writable interface. Hence, it can be used as data type of the
value part of the pairs emitted by a mapper or a reducer if needed.

e TopKVector<T extends Comparable<T>>

This class can be used to store/manage in main-memory (in a local variable) the top-k
objects of a set of objects. The type of managed objects is T, where T can be an
arbitrary class implementing the Comparable interface (e.g., WordCountWritable).

The TopKVector(int k) method is the constructor used to create TopKVector objects.
Each object of type TopKVector contains an internal Vector storing only the top-k
objects among the set of objects of type T that are inserted in it. Initially, this internal
vector is empty (i.e., initially the top-k vector contains no objects).

public void updateWithNewElement(T newElement) is used to insert a new object in the
internal top-k vector of the TopKVector object on which the method is invoked. This
method inserts the newElement object in the internal top-k vector if and only if it is in
the top-k objects. Otherwise, it is discarded. Note that the parameter of the method
must always be a new object (created using new as in the example below)
otherwise the class will not work properly.

public Vector<T> getLocalTopK() returns a Vector<T> containing the top-k objects
associated with the TopKVector object on which this method is invoked (i.e., it returns a
copy of the internal vector containing only the top-k objects among the ones inserted by
using the updateWithNewElement method).

The following snippet of code shows how to use these two classes. Decide in which parts of
your solution you need these two classes.

/I An example showing how to create an object that is used to store/manage a top-3 vector
/I containing objects of type WordCountWritable.

// top3 is a local variable stored in the main-memory of the application
TopKVector<WordCountWritable> top3 = new TopKVector<WordCountWritable>(3);

/I An example showing how to insert 5 objects of type WordCountWritable in the top3
/I local variable defined in the previous line of code.
// top3 automatically stores in its interval vector only the top-3 objects (based on the value of

/l the count value) and discards the objects that are not in the top-3 set.
top3.updateWithNewElement(new WordCountWritable(new String("p1,p2"), new Integer(4)));
top3.updateWithNewElement(new WordCountWritable(new String("p1,p3"), new Integer(40)));
top3.updateWithNewElement(new WordCountWritable(new String("p2,p4"), new Integer(3)));
top3.updateWithNewElement(new WordCountWritable(new String("p5,p6"), new Integer(6)));
top3.updateWithNewElement(new WordCountWritable(new String("p15,p16"), new Integer(1)));

/I How to retrieve the top-k objects from the local top3 variable
Vector<WordCountWritable> top30bjects = top3.getLocalTopK();

// Print the content of the top-3 selected objects on the standard output
for (WordCountWritable value : top30bjects) {

System.out.printin(value.getWord() + " " + value.getCount());

}

/I The following is the output of this snippet of code if it is executed in a standalone
/I Java application

p1,p3 40

p5,p6 6

p1,p2 4

t./2% Shut down JupyterHub container .2

As soon as you complete all the tasks and activities on JupyterHub environment, please
remember to shut down the container to let all your colleagues in all the sessions connect
on JupyterHub and do all the lab activities.

1. Go into File -> Hub Control Panel menu
2. A new browser tab opens with the “Stop My Server” button. Click on it and wait till it
disappears.

t File | Edit View Run Kernel Diagram Ta

New

New Launcher SCHRL

Open from Path...
Open from URL...

- jupyter Home Token

Close Tab

Shutdown Terminal

Close All Tabs 2. Stop My Server

Click the “Stop My
Save and Export Notebook As... , Server” button

Save Current Workspace As...

Save Current Workspace

Hub Control Panel
Log Out

