
RAG pipeline with MongoDB - 
Practice 6

Data https://archive.org/download/AsimovTheFoundation/Asimov_the_foundation.pdf

Data Management and Visualization - Politecnico di 
Torino

Create and run a local RAG pipeline from 
scratch
The goal of this Lab is to build a RAG (Retrieval Augmented Generation) pipeline from 
scratch and have it run on a Colab Notebook.

Specifically, we will open a PDF file, ask questions (queries) and have them answered by 
a Large Language Model (LLM).

There are frameworks that replicate this kind of workflow, including LlamaIndex and 
LangChain, however, the goal of building from scratch is to be able to inspect and 
customize all the parts.

This document complements the operative steps you can find in the following Notebook:

 https://colab.research.google.com/drive/1T4VgKpgTZ4hAAAhgBJmjJBMpssfMuR5H?
usp=sharing

0. What is RAG?
RAG stands for Retrieval Augmented Generation.

It was introduced in the paper  https://arxiv.org/abs/2005.11401

Each step can be roughly broken down to:

Retrieval - Seeking relevant information from a source given a query. For example, 
getting relevant passages of Wikipedia text from a database given a question.

Augmented - Using the relevant retrieved information to modify an input to a 
generative model (e.g. an LLM).

Generation - Generating an output given an input. For example, in the case of an 
LLM, generating a passage of text given an input prompt.

RAG pipeline with MongoDB - Practice 6 1

https://archive.org/download/AsimovTheFoundation/Asimov_the_foundation.pdf
https://www.llamaindex.ai/
https://www.langchain.com/
https://colab.research.google.com/drive/1T4VgKpgTZ4hAAAhgBJmjJBMpssfMuR5H?usp=sharing
https://colab.research.google.com/drive/1T4VgKpgTZ4hAAAhgBJmjJBMpssfMuR5H?usp=sharing
https://arxiv.org/abs/2005.11401


Why RAG? The main goal of RAG is to improve the generation outptus of LLMs by:

1. Preventing hallucinations by adding relevant context to the input of an LLM.

2. Work with custom data sources the LLM may not have been trained on.

We're going to build RAG pipeline which enables us to chat with a PDF document, 
specifically an open-source Asimov's Foundation Novel Book, ~500 pages long.

We'll write the code to enable the following steps:

1. Document Processing

a. Open a PDF document (you could use almost any PDF here).

b. Format the text of the PDF textbook ready for an embedding model (this process 
is known as text chunking).

c. Embed all of the chunks of text in the textbook and turn them into numerical 
representation which we can store for later.

2. Vector Search and answer generation

a. Build a retrieval system that uses vector search to find relevant chunks of text 
based on a query.

b. Create a prompt that incorporates the retrieved pieces of text.

c. Generate an answer to a query based on passages from the textbook.

1. Document processing
The text processing text has been already provided for you. After downloading the 
sample PDF, the script reads it through the open_and_read_pdf_by_outline  function which 
extracts text by chapters from a document's outline/table of contents. This is done to 
easily process big documents.

Text formatting occurs via the text_formatter  function that cleans the text by removing 
newlines and extra spaces. You can customize this by adding additional text cleaning 
operations if needed. 

For text chunking we first separate the text into sentences, in order not to have chunks 
with non-closed sentences. Then, we split the text into approximately fixed-size chunks 
of chunk_size   characters, which are then extended by a certain number of extra 
sentences as padding. This operation add redundancy between chunks, but it reduces 
possible information loss of the chunking operation. Both chunking size and padding 
can be adjusted to fit the further embedding model’s limitations.

After connecting to your personal MongoDB cluster, we can create a Collection and 
store our chunks as documents.

RAG pipeline with MongoDB - Practice 6 2

https://archive.org/download/AsimovTheFoundation/Asimov_the_foundation.pdf


⚠️ Warning: This is still a document-based Database. For querying the text as a in 
a Vector database we first need to embed them.

TODO: Following the notebook, we can inspect our database and get useful insights 
for the further steps.

Moving to the embedding phase, we are going to use all-mpnet-base-v2  as embedding 
model. It has an input capacity of 384.

Question: Are the chunks we did adequate for this model? If it is not the case, we can 
repeat the above process to fix them.

Finally, let’s store the chunks to MongoDB as a Vector Database. 

While humans understand text, machines understand numbers best. The most powerful 
thing about modern embeddings is that they are learned representations.

Meaning rather than directly mapping words/tokens/characters to numbers directly 
(e.g.  {"a": 0, "b": 1, "c": 3...} ), the numerical representation of tokens is learned by going 
through large corpuses of text and figuring out how different tokens relate to each other.

Ideally, embeddings of text will mean that similar meaning texts have similar numerical 
representation. Our goal is to turn each of our chunks into a numerical representation 
(an embedding vector, where a vector is a sequence of numbers arranged in order). 
Once our text samples are in embedding vectors, us humans will no longer be able to 
understand them.

To do so, we'll use the  sentence-transformers  library which contains many pre-trained 
embedding models. Specifically, we'll get the  all-mpnet-base-v2  model (you can see the 
model's intended use on the Hugging Face model card).

2. Vector Search
A vector database is a specialized type of database designed to efficiently store, 
retrieve, and manage vector embeddings. Unlike traditional databases that use exact 
matching for queries, vector databases operate on the principle of similarity search, 
using algorithms to find the most similar vectors to a query vector. The main building 
blocks of a vector database include:

The vector store which contains the embedded representations of documents or 
chunks of text. MongoDB will be our vector store.

The similarity search functionality which finds the most relevant vectors using 
distance metrics like cosine similarity.

RAG pipeline with MongoDB - Practice 6 3

https://www.google.com/url?q=https%3A%2F%2Fwww.sbert.net%2Fdocs%2Finstallation.html
https://www.google.com/url?q=https%3A%2F%2Fhuggingface.co%2Fsentence-transformers%2Fall-mpnet-base-v2%23intended-uses


The indexing mechanism that organizes vectors to enable efficient similarity search 
(using algorithms like HNSW, IVF, etc.). We will get into this later on.

For our RAG pipeline, we'll use MongoDB with vector search capabilities to store our 
embedded text chunks and perform semantic searches when answering questions 
about the text.

The distance metrics we will use is Cosine Similarity:

Range: -1 (opposite) to +1 (identical)

Higher values = most similar vectors

Example

"AI is amazing!"  vs.  "AI is incredible!"  → Cosine Similarity ≈ 0.95 (high similarity).

"AI is amazing!"  vs.  "I love ice cream!"  → Cosine Similarity ≈ 0.05 (low similarity).

Before implementing a real Vector Database with all the optimizations, we will simulate 
the steps with one examples. The steps to follow are:

Build the embedding of a user query (e.g. "What is the Galactic Empire?”)

Fetch all embeddings from our collection and compare them to a user query using 
cosine similarity

Return the top-k most similar chunks

Going on through the notebook, you will understand how to optimize these steps into our 
MongoDB database.

3. Prompt construction and answer generation
A prompt is a set of instructions given to a language model to guide its response 
generation. In a RAG context, prompts are designed to effectively incorporate retrieved 
information from a knowledge base to produce accurate and relevant answers.

When designing prompts for our RAG pipeline, consider these key principles:

Context integration: Include retrieved text chunks from our vector search in the 
prompt, providing the model with the necessary information to answer accurately.

Clear instruction: Explicitly tell the model to base its answers on the provided 
context and not to use information outside of it.

Source attribution: Ask the model to cite or reference the specific parts of the text 
it's drawing information from.

⁍

RAG pipeline with MongoDB - Practice 6 4



Handling uncertainty: Include instructions on what to do when the retrieved context 
doesn't contain enough information to answer the query (e.g., admit knowledge 
gaps).

A typical RAG prompt structure might look like:

prompt = f"""
Answer the following question based ONLY on the provided context. 
If you cannot answer from the context, state "I don't have enough information."

Context:
{retrieved_context}

Question: {user_question}

Answer:
"""

This structure ensures that the LLM stays grounded in the retrieved information, 
reducing hallucinations and hopefully improving answer accuracy.

Finally, we can load a Large Language Model (our Generator) and start asking 
questions! To do so, we will use https://huggingface.co/, which is comprehensive 
platform for AI models and resources that provides access to thousands of pre-trained 
models, datasets, and tools for machine learning development and deployment.

You can follow the instruction to setup the LLM. For simplicity we will access it from an 
InferenceClient (https://huggingface.co/docs/huggingface_hub/en/guides/inference). 
You can also experiment other option such as running it locally using available GPUs or 
even use premium APIs from OpenIA, Google Gemini, etc.

Our RAG workflow is completed!

We've now officially got a way to Retrieve, Augment and Generate answers based on a 
source.

For now we can verify our answers manually by reading them and reading through the 
textbook. But if you want to put this into a production system, it'd be a good idea to have 
some kind of evaluation on how well our pipeline works.

For example, you could use another LLM to rate the answers returned by our LLM and 
then use those ratings as a proxy evaluation.

However, We'll leave this and a few more interesting ideas as extensions.

RAG pipeline with MongoDB - Practice 6 5

https://huggingface.co/
https://huggingface.co/docs/huggingface_hub/en/guides/inference


4. Extensions
Try another embedding model (you can choose from the following leaderboard 
https://huggingface.co/spaces/mteb/leaderboard)

See the following prompt engineering resources for more prompting techniques (e.g. 
https://www.promptingguide.ai/).

Try another LLM... (take inspiration from here, https://huggingface.co/open-llm-
leaderboard… Mind the model size!).

Our example only focuses on text from a PDF, however, we could extend it to include 
figures and images. How does the pipeline change?

Evaluate the answers: could use another LLM to rate our answers. A library for full 
RAG evaluation is https://docs.ragas.io/en/stable/.

RAG pipeline with MongoDB - Practice 6 6

https://huggingface.co/spaces/mteb/leaderboard
https://www.promptingguide.ai/
https://huggingface.co/open-llm-leaderboard
https://huggingface.co/open-llm-leaderboard
https://docs.ragas.io/en/stable/

