
Data Science and Machine Learning Lab
Lab 06 - PyTorch Introduction

Politecnico di Torino

Intro
In this laboratory, you will learn the fundamental components of the PyTorch framework, one of the most
widely used libraries for deep learning. By the end of this lab, you will be able to:

• Create and manipulate tensors using PyTorch.
• Load, transform, and use datasets with Dataset and DataLoader.
• Define and train simple neural network models using nn.Module.
• Understand the role of loss functions, optimizers, and training loops.

Note that exercises marked with a (*) are optional; you should focus on completing the other ones first.

1 Warm-up: PyTorch tensors
In PyTorch, the fundamental data structure is the torch.Tensor. It is similar to a NumPy ndarray, but it
extends its functionality in several key ways. First, a tensor can live either on the CPU or on the GPU, allow-
ing computations to be executed efficiently on different hardware without changing the code. More im-
portantly, PyTorch tensors are integrated with the library’s automatic differentiation engine (autograd),
which can compute derivatives of any function built from tensor operations automatically. This feature en-
ables the implementation of backpropagation with minimal effort: once a computational graph is defined,
calling loss.backward() automatically calculates the gradients of all parameters involved, eliminating
the need to derive or code them manually (we will take a look at this later!).

1.1 Tensor creation and inspection
In this section, you will learn how to create and manipulate PyTorch tensors, exploring their attributes
and behavior through simple examples. Start by importing the torch library and creating a few small
tensors manually to understand their structure and key properties:

• Creating tensors: Define a one-dimensional tensor containing a few floating-point values. Then,
create a second tensor of the same shape and perform a simple element-wise operation (for example,
addition or multiplication). Print the resulting tensor and verify its contents.

• Inspecting tensor attributes: Examine the tensor’s shape, number of dimensions, and data type
using the appropriate attributes. Check which precision is used by default and compare it to NumPy’s
behavior.

• Changing tensor data types: Experiment with converting a tensor to another data type using either
the .to() method or the shorthand functions (for example, .float() or .double()). The .to()
method is a versatile function that allows you to move tensors between devices (CPU and GPU) or
change their properties, such as data type and precision, by passing the desired torch.dtype as
an argument. For example, you can use tensor.to(torch.float64) to convert a tensor to double
precision, or tensor.to("cuda") to move it to the GPU. After applying the conversion, verify that
the tensor’s dtype changes accordingly.

1

https://pytorch.org/docs/stable/generated/torch.Tensor.to.html

• Performance comparison of data types: Using the torch.randn function, create two large random
matrices (for example, of size 1000 × 1000) and measure the time required to perform a matrix
multiplication in both float32 and float64. After these analyses, why do you think PyTorch uses
float32 as the default type instead of float64?

Info: You can use the timeit function by repeatedly running the matrix multiplication (for example,
100 times) and comparing the total times obtained for the two data types. This is a snippet of how
you can use timeit actually to make this test.
from timeit import timeit

Example timing for float64 and float32 matrix multiplication
t64 = timeit(lambda: M1_64 @ M2_64 , number =100)
t32 = timeit(lambda: M1_32 @ M2_32 , number =100)

print(f"Time for matrix multiplication (float64): {t64:.4f}s")
print(f"Time for matrix multiplication (float32): {t32:.4f}s")

i

2 Datasets and Dataloaders
Usually, we don’t work with “just one tensor”. In most cases, we have many samples consisting of inputs
and corresponding labels, and we need a simple way to access them for training. PyTorch provides this
through Dataset, which enables easy handling of datasets.

Once the dataset is created, we wrap it into a DataLoader, which provides an easy and efficient way
to iterate over the data in batches. The DataLoader automatically groups samples, handles shuffling, and
prepares batches ready to be fed to the model during training.

2.1 Synthetic regression dataset
In this first part, instead of defining a custom dataset class, we will use the built-in TensorDataset, which
conveniently pairs input and target tensors so that each element of the dataset directly corresponds to a
sample (X, y). Your goal is to generate a one-dimensional regression problem and then use a DataLoader
to iterate over it.

• Dataset generation: Create a dataset containing n = 2048 samples. Use the torch.randn function
to generate a one-dimensional input tensorX of shape (n, 1), representing normally distributed ran-
dom features. Then, define the target tensor y as a linear transformation of X with added Gaussian
noise according to the relation:

y = 5x+ 3 + ε

where ε is a small random noise term sampled from a normal distribution. Verify that both X and y
have the expected shapes and compatible data types.

• Creating a Dataset object: Wrap the tensors X and y into a TensorDataset object. This class is
a convenient way to combine multiple tensors into a dataset where each element corresponds to a
pair (Xi, yi). Check that indexing the dataset (for example, dataset[0]) returns a tuple containing
one sample and its label.

• Building a DataLoader and inspect batches: Create a DataLoader from your dataset to enable
efficient iteration in batches. Set a batch size of 256 samples and enable shuffling (shuffle=True).
Iterate once over your DataLoader and print the shapes of the input and target batches. Verify
that the shapes are consistent with the chosen batch size (for example, [256, 1] for both X and
y). Then, change the batch_size parameter and observe how the shapes of the resulting batches
change.

2

https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/stable/data.html

3 Building and understanding a simple linear model
In this section, you will implement and analyze a simple linear model in PyTorch to train it on the dataset
you have just created. A univariate linear model is one of the simplest forms of a machine learning model
and can be defined by the equation:

y = wx+ b

where x is the input feature, w is the weight, b is the bias, and y is the predicted output.

3.1 Model definition: SimpleLinearModel
The SimpleLinearModel class is a minimal example of a learnable model implemented using PyTorch’s
module interface. It extends the base class nn.Module, which is used to define all neural networks in
PyTorch. The model consists of a single linear layer that performs the univariate linear transformation.

• Create the class structure: Define a class SimpleLinearModel inheriting from nn.Module. Inside
the constructor (__init__), create a single linear layer using nn.Linear(input_size, output_size).
In this exercise, both the input and output sizes are equal to 1, meaning that the model will learn to
map one scalar input to a single scalar output.

• Define the forward pass: Implement the forward() method to define how the input data flows
through the layer. This method should take an input tensor x and return the result of applying the
linear transformation to it. This defines how PyTorch will compute the model’s prediction during
both training and inference.

• Initialize and analyze your model: Once the class is defined, create an instance of the model and
test it with a single input value. Check that the model returns an output tensor of the correct shape.
Inspect also the parameters of the model (the weight and bias) and note that they are randomly
initialized. These parameters have the attribute requires_grad=True, meaning that PyTorch will
automatically track their gradients during the backward pass.

Info: Example of model creation and test:
class SimpleLinearModel(nn.Module):

def __init__(self , input_size , output_size):
super(SimpleLinearModel , self).__init__ ()
self.linear = ...

def forward(self , x):
return ...

Instantiate the model
model = ...

i

3.2 Criterion and optimizer
During training, two components control the learning process: the criterion and the optimizer.

• Criterion (loss function): The loss function measures the discrepancy between the model’s predic-
tions and the true labels. In this exercise, since the goal is to predict a continuous value, we will use
the Mean Squared Error (MSE) loss.

• Optimizer: The optimizer updates the model’s parameters using the computed gradients. For this
exercise, we will use Stochastic Gradient Descent (SGD) with a learning rate of 0.01. The opti-
mizer adjusts the weights and bias in the direction that minimizes the loss.

3

3.3 Training loop
The training loop is the process through which the model learns from data. It involves multiple epochs,
where each epoch corresponds to one full pass over the dataset. For each batch, the following sequence
of steps occurs:

• Forward pass: Feed inputs through the model to obtain predictions.
• Loss computation: Compare predictions to true labels using the loss function.
• Backward pass: Compute gradients of the loss with respect to model parameters.
• Parameter update: Use the optimizer to update weights and biases.
• Gradient reset: Clear old gradients using optimizer.zero_grad() to prevent accumulation.

Info: Example of a basic training loop:
num_epochs = 50
losses , weights , biases = [], [], []

model.train()
for epoch in range(num_epochs):

running_loss = 0.0
for inputs , labels in trainloader:

inputs , labels = ...
optimizer.zero_grad ()

Forward pass
outputs = ...
loss = ...

Backward pass and optimization
...

Track values
losses.append(loss.item())
weights.append(model.linear.weight.item())
biases.append(model.linear.bias.item())
running_loss += loss.item()

print(f"Epoch [{epoch +1}/{ num_epochs }] - Loss: {running_loss/len(
trainloader):.4f}")

i

Info: Note that we are using loss.item() to extract the underlying scalar value from the tensor. In
this way, we store a Python float rather than a tensor object. Since loss is no longer being used, the
corresponding computational graph will be discarded, avoiding unnecessary memory usage.

i

After training, plot the evolution of the loss, weight, and bias to visualize the learning process.

4 MNIST dataset
In this section, you will load and explore the MNIST dataset, a collection of handwritten digits from 0 to
9 that you have already encountered in previous laboratories. PyTorch provides a ready-to-use interface
through torchvision.datasets.MNIST, which automatically downloads and organizes the data.

4

https://pytorch.org/vision/stable/generated/torchvision.datasets.MNIST.html

Info: You can easily load the MNIST training and test splits using the following snippet:
from torchvision import datasets , transforms

train_dataset = datasets.MNIST(root="data", train=True , download=True)
test_dataset = datasets.MNIST(root="data", train=False , download=True)

i

• Dataset size and Accessing samples: Check the number of samples contained in the training and
test datasets by printing their lengths. Each element i of the dataset can be accessed as a pair
(image, label) simply using train_dataset[i]. Retrieve one element and inspect its structure
and the shape of the tensors.

• Visual inspection: Plot a small grid of sample images together with their corresponding labels to
confirm that you can correctly access both the data and its annotations. Remember that MNIST
images are stored as grayscale tensors, so you should display them using the parameter cmap=’gray’
when calling imshow() to avoid color distortions.

4.1 Preprocessing and transforms
Before training a model, image data must often be transformed into a suitable numerical format and stan-
dardized for more stable learning. In PyTorch, this process is handled by the torchvision.transforms
module, which provides a collection of ready-to-use operations that can be composed together in a pipeline.

• Conversion to tensors: Raw MNIST images are loaded as PIL images. The ToTensor() transform
converts them into PyTorch tensors of shape 1× 28× 28, automatically scaling pixel values from the
range [0, 255] to [0, 1]. The first dimension, 1, represents the number of “channels” of the image: since
the images are grayscale, there is a single color channel. Colored images are typically represented
using 3 channels (Red, Green, Blue, or RGB).

• Normalization: To make learning more efficient, it is common to normalize the data so that pixel
intensities have approximately zero mean and unit variance. This is achieved using the transform:

xnorm =
x− µ

σ

where µ = 0.1307 and σ = 0.3081 are the empirical mean and std of the MNIST dataset.
• Data augmentation: Simple transformations, such as small random rotations, can be added to

slightly modify the images during training. These are well-known data augmentation techniques,
that help the model better generalize and be more robust to spatial variations.

Info: The following snippet shows how to define a preprocessing pipeline using transforms.Compose:
from torchvision import transforms

transform = transforms.Compose ([
transforms.RandomRotation (45),
...
add the transforms to convert to tensor and apply the
normalization

])

i

• Applying a transform to a single image: Retrieve one image from the dataset and apply the defined
transform directly to it. This will convert the image into a normalized tensor that can be fed into a
model. Verify that the transformed image is now a tensor with shape [1, 28, 28].

5

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imshow.html
https://pillow.readthedocs.io/en/stable/

• Applying a transform to an existing dataset: If a dataset was created without a transform, you can
still attach one afterwards by assigning it to the transform attribute (train_dataset.transform
= transform). From this point on, every time a sample is retrieved, the transform will be applied
automatically.

• (*) Experimenting with transformations: Extend the preprocessing pipeline by adding and test-
ing other transformations available in torchvision.transforms. Refer to the official documenta-
tion to explore the various possible transformations and understand the functionality of each one.
Try including operations such as RandomAffine, RandomCrop, or ColorJitter, and visualize a few
transformed images to observe their effects. Reflect on which transformations are appropriate for
MNIST and which could distort the digits too much for reliable classification.

5 A more complex neural network
In this final exercise, you will extend the concepts learned so far by defining and training a multi-layer
neural network using PyTorch. This will allow you to understand how deeper architectures can model
more complex relationships in the data compared to the single-layer models explored earlier.

5.1 Model definition: SimpleNN
You will define a simple feedforward neural network composed of multiple fully connected (Linear) lay-
ers. Each layer performs a linear transformation followed by a non-linear activation function, introducing
flexibility into the model.

• Define the class: Define a class SimpleNN that inherits from nn.Module. In the constructor (__init__),
specify three fully connected layers using nn.Linear. The input layer should receive the flattened
image of size 28×28, the first hidden layer should produce 512 features, the second hidden layer 256
features, and the output layer should produce 10 outputs (corresponding to the number of classes
to predict).

• Prepare the forward method: Implement the forward() method. First, flatten the input tensor
(keeping the batch dimension). Then, apply the first and second layers followed by ReLU activations,
and finally use the output layer without any activation.

5.2 Training setup
Once the model is defined, set up the components required for training:

• Prepare the data: Use a DataLoader to create mini-batches from your dataset, with a batch size of
1024. Enable shuffling for the training loader to ensure that batches are sampled differently at each
epoch.

• Define the loss function and optimizer: Initialize the model and move it to the selected device
(CPU or GPU). Use the CrossEntropyLoss criterion, which is appropriate formulti-class classification
tasks. Choose Stochastic Gradient Descent (SGD) as the optimizer with a learning rate of 0.01
and momentum of 0.9.

• Create a validation function: Before starting the training process, define a small validation function
to evaluate model accuracy on the test set. The function should:
1. set the model to evaluation mode using model.eval();
2. disable gradient computation with torch.no_grad() to save memory and computation time;
3. iterate over the dataloader, obtain the model’s predictions, and compare them with the proper

labels to compute, at the end, the percentage of correctly classified samples.

Info: Use torch.max(outputs.data, 1) to obtain the predicted class for each sample.
i

6

5.3 Training loop
You will now implement the training loop for the model. This process should be similar to the one used in
the linear model, but adapted for the classification task. After training the model for five epochs, use your
validation function to compute and print the final test accuracy on the test set.

7

	Warm-up: PyTorch tensors
	Tensor creation and inspection

	Datasets and Dataloaders
	Synthetic regression dataset

	Building and understanding a simple linear model
	Model definition: SimpleLinearModel
	Criterion and optimizer
	Training loop

	MNIST dataset
	Preprocessing and transforms

	A more complex neural network
	Model definition: SimpleNN
	Training setup
	Training loop

