Dl
NoSQL with PyMongo - Practice 4

= Data https://drive.google.com/drive/folders/1FQISHRbZDTXR4279ZEsfUEM1fIdpOs1E

Data Management and Visudlization - Politecnico di Torino
The practice purpose is to become familiar with MongoDB tools. You will be required to experience both
1. (legacy) the visual application Compass, provided by MongoDB,

2. the MongoDB python APIs (pymongo). In this second case, we have already set up a Colab notebook to avoid local
configuration problems.

The python side is highly recommended, since it is broader. Ask the teacher assistant if you have problems with this
path.

1. Problem specifications

The database contains Car Sharing information divided into two main collections: Bookings and Parkings. The most
relevant information for each collection is shown in Document 1 (Parkings) and 2 (Bookings).

Parkings

|— _id: objectld (Document identifier)

— address: string (Parking address of the vehicle)

— city: string (City location of the vehicle)

— engineType: string (Identifier of the engine type of the vehicle)

— exterior: string (String describing the external condition of the vehicle during the parking)
|—— final_date: date (Date and hour of the end of the parking period)

— fuel: int32 (Fuel level (0-100) during the parking period)

|—— init_date: date (Date and hour of the beginning of the parking period)

— interior: string (String describing the internal condition of the vehicle during the parking)
— loc: coordinates (Coordinates of the parking location)

— plate: int32 (Identifier of the vehicle's plate)

— smartphoneRequired: Boolean (Boolean value denoting if the smartphone is required to start/finish the parkin
g)

|—— vendor: string (Company owner of the vehicle)

L— vin: string (Identifier of the chassis of the vehicle)

Bookings

— _id: objectld (Document identifier)

— car_name: string (Vehicle's model)

|— city: string (City location where the vehicle has been booked)

|— distance: int32 (Distance covered during the vehicle renting)

— driving: object

| |— distance: int32 (Distance covered during the vehicle renting (in meters))
| L— duration: int32 (Duration of the renting (in seconds))

— engineType: string (Identifier of the engine type of the vehicle)

|— exterior: string (String describing the external condition of the vehicle during the renting)
— final_address: string (Address of the final position of the renting period)
— final_date: date (Date and hour of the end of the renting period)

— final_fuel: int32 (Fuel level (0-100) at the end of the renting period)

— init_address: int32 (Address of the starting position of the renting period)
— init_date: date (Date and hour of the beginning of the renting period)

— init_fuel: int32 (Fuel level (0-100) at the beginning of the renting period)

NoSQL with PyMongo — Practice 4

https://drive.google.com/drive/folders/1FQl8HRbZDTXR4279ZEsfUEm1fIdpOs1E

— interior: string (String describing the internal condition of the vehicle during the renting)
|— plate: int32 (Identifier of the vehicle's plate)
|— smartphoneRequired: Boolean (Boolean value denoting if the smartphone is required to start/finish the parkin
g)
|— vendor: string (Company owner of the vehicle)
L— walking: object
— distance: int32 (Walk distance to reach the vehicle (in meters).)
L— duration: int32 (Duration of the walking trip to reach the vehicle (seconds).)

2. Database Connection (remote database)
A: Use, Install and configure Compass B: Work with the Colab notebook
You can download MongoDBCompass at You can find the notebook with all the instructions at the

https://www.mongodb.com/products/tools/compass following link.

https://colab.research.google.com/drive/Inu3785xgJeSes
qlms

It allows you also to performanalysis on a local cluster,
but wewill skip it for now.
Remember to go to File > Save a copy on Drive before
make anyedit on the file. You can also download the file
as a Jupyter Notebookto run it locally if you want.

Now, you need to create a free cluster to upload the database (if you do not have already one)with the following steps:

1. create a MongoDB account (https://www.mongodb.com/cloud/atlas/register)

2. Select Build a Cluster option (free cluster). The default settings are the ones set to get the account completely free.

Deploy your cluster

Use a template below or set up advanced configuration options. You can also edit these configuration options once the cluster is created.

Q M0 $0.09/hour O Flex From $0.011/hour © Free
Up to $30/month

Dedicated cluster for development For development and testing, with on-demand Forlearning and exploring MongoDB in a cloud
and low-traffi i burst capacity for unpredictable traffic. environment.

1068 268 2VCPUs 5GB shared shared §12MB shared shared

l @ Free forever! Your free clusteris ideal for experimenting in a limited sandbox. You can upgrade to a production cluster anytime.

3. give a name to your cluster (default: clusterQ)

4. Close the connection options (we will return here later)

5. Under Database Access, click on Add New Database User
a. select authentication method with password

b. In the section Database User Privileges, Select the role Read and write to any database in the Built-in Role
sub-section.

c. fill in the form and click on Add User.

d. You can add any Database User Privileges among the provided. Built-in Role > "Read and write to any
database” is the suggested one.

6. Configure remote access by clicking on Network Access
a. click on Add IP Address
b. enter in the Access List Entry field 0.0.0.0/0

7. Get string connection from MongoDB Atlas server

a. Under the “"Database” page from the side menu, select “Clusters”. Now you can see the cluster that you've
created

b. click Connect near the newly created cluster and select Drivers

NoSQL with PyMongo — Practice 4

https://www.mongodb.com/products/tools/compass
https://colab.research.google.com/drive/1nu3785xgJeSe3EMxk1xCh5JIVvSuBxNn#scrollTo=tQ4uBOR-q1ms
https://colab.research.google.com/drive/1nu3785xgJeSe3EMxk1xCh5JIVvSuBxNn#scrollTo=tQ4uBOR-q1ms
https://www.mongodb.com/cloud/atlas/register

c. copy the connection string, similar to:

mongodb+srv:// <user_db_name> : <db_password> @cluster0.kudgw.mongodb.net/?retryWrites=true&w=majority&appName= <cluster_name>
« [Python Notebook] Paste the connection string into the appropriate field in the notebook and Run the cell.
e [MongoDB Compass] On the left panel, go to the Connections section
o Click on add connection (+ sign)
o Paste the connection string and click “Connect”
8. Finally, download the following JSON files locally from the following link.

You can either create a Database, 2 collections, and add the data via Compass, or follow the instructions on the
notebook to create the database ‘lab4’ with pymongo and the set of collections.

3. Analyse the database using visualizations

1. (Bookings) Identify the most common percentage(s) of fuel level at the beginning of the renting period.
2. (Bookings) Identify the most common percentage(s) of fuel level at the end of the renting period.

3. (Parkings) Identify the time range(s) with most parking requests (init date).

4. (Parkings) Identify the time range(s) with most parking requests (final date).
5

. (Parkings) Visualize on the map the vehicles having the fuel level lower than 5%.

. Querying the database

IR

. (Parkings) Find the plates and the parking addresses of the vehicles that begin the booking (end parking) after
2017-09-30 at 6AM.
Hint: it is possible to use the function Date("YYYY-mm-ddTHH:MM:ss")

2. (Parkings) Find the addresses and the level of fuel of the vehicles that during the parking period had at least 70%
of fuel level. Order the results according to descending value of fuel level.

3. (Parkings) Find the plate, the engine type and fuel level for ‘car2go’ vehicles (vendor) with good internal and
external conditions.

4. (Bookings) For the renting that required a walking distance greater than 15 Km (to reach the vehicle),find the hour
and the fuel level at the beginning of the renting period. Order results according to decreasing initial fuel level.

5. Data Aggregation

1. (Bookings) Group documents according to their fuel level at the end of the renting. For each group, select the
average fuel level at the beginning of the renting period.

2. (Bookings) Select the average driving distance for each vendor. On average, for which vendor the users cover
longer distances?

Bonus Queries

1. (Parkings) Find the vehicles parked less than a mile far from Piazza San Carlo (coordinates:
7683016,45067764)H|nt use the operators $geoWithin and $centerSphere .

2. (Parkings) Repeat the query at the previous step using the coordinates of a place of personal interest inTurin (e.g.
Politecnico di Torino) using Open Street Maps to find the exact coordinates(http://www.openstreetmap.org/, inverse
the coordinates order).

NoSQL with PyMongo — Practice 4

http://www.openstreetmap.org/

