LLM for Software Engineering
Course Projects

2025-2026

eeeeeeeee

Project Assighment

« Teams of 5 people

» Select 3 project proposals (at least one T, one A —see later) that you
would liketdo do

« We will assign you —if possible —one of the projects that you have
chosen

« Team management link (be careful when modifying it!!!) :
https://docs.google.com/spreadsheets/d/1mswRyifUWuquIXr/dreP5c

W uyURbuvzoozms/edit?qid=0#gid=

 Deadline for team and proposal selection: November 30
« Assignment of projects and project start: December 1

eeeeeeeee

https://docs.google.com/spreadsheets/d/1mswRyffUWuquIXr7dreP5cwSWOM4KOuyURbuvzoozms/edit?gid=0&gid=0
https://docs.google.com/spreadsheets/d/1mswRyffUWuquIXr7dreP5cwSWOM4KOuyURbuvzoozms/edit?gid=0&gid=0

Project Evaluation

 Deadline for project hand-in: before the beginning of next academic
year (September, 2025)

 Deadlines to have the LLM exam registered in a specific session:

» Winter session ->January 31, 2026
« Summer session ->June 30, 2026

« Autumn session ->September 15, 2026

» Project points: 15/30 points

* You will have to discuss the project (20 minutes presentation over
slides, including QCA)

eeeeeeeee

eeeeeeeee

Project Delivery

* Project template: https://dbdmg.polito.it/dbdmg web/wp-
content/uploads/2025/12/Project-template.zip

 Todeliver the project, you have to submit:

 Thelink to a GitHub project with your replication package
« The document describing your project work, a technical report created
with Overleaf (this must be contained in the GitHub project, under the

/report folder). Max length: 6 pages (excluding references, appendices
and tables with data, if needed)

https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip

Project Categories

» T (SemEval Task): technical projects in which you will apply LLM
models to solve SemEval challenges.
« Responsible: prof. Flavio Giobergia

* A (Application): projects in which you will analyze the
effectiveness of the application of LLMs in various Software
Engineering tasks.

« Responsible: prof. Riccardo Coppola

eeeeeeeee

Project Tutorship

You can schedule two 30-minutes slots per team for project
tutorship.

* T(SemEval Task): send an e-mail to:

« claudio.savelli@polito.it (task 1/4/9/10/12/13)
* lorenzo.vaiani@polito.it (task 2/3/5/6/7/8/11)

* A (Application): send an e-mail to anna.arnaudo@polito.it

eeeeeeeee

mailto:claudio.savelli@polito.it
mailto:claudio.savelli@polito.it
mailto:lorenzo.vaiani@polito.it
mailto:lorenzo.vaiani@polito.it
mailto:anna.arnaudo@polito.it

SemEval Tasks

* https://semeval.github.io/SemEval2026/tasks

eeeeeeeee

https://semeval.github.io/SemEval2026/tasks
https://semeval.github.io/SemEval2026/tasks

A1: LLM Agents for Collaborative Test Case
Generation

« Software testing often requires collaboration between testers,
develo%ers domain experts, and tools. Traditional automated test
generation tools cannot emulate multi-perspective reasomrpqg (e.qc.,
user intention, edge case exploration, domain knowledﬂez). ecen
advances in multi-agent LLM architectures allow for collaborative
wct)rl?ﬂotws where agents work differently to generate the same
artefacts.

« Research Questions

« How e?ffective are LLM agents in generating comprehensive and diverse test
cases:

 Does agent collaboration outperform single-model test generation?
« What patterns of collaboration lead to higher-quality test cases?

eeeeeeeee

EEEEE

A1: Minimum requirements

. ggl?receLander Test. Choose at least 10-20 functions or methods from any of the following

 public datasets (MBPP, HumanEval, CodeNet subsets)
« past course assignments

* Open-source snippets

« System Implementation. The system must include:
« One single-agent baseline
« One multi-agent system with >2 roles

« Multiple collaboration patterns (collaborative vs. competitive)

« Evaluation: use at least one of the following evaluation methods:
 Test coverage (e.g., line or branch coverage)
« Mutation testing (e.g., mutmut, cosmic-ray)
 Buginjection / bug detection
« Diversity analysis (number of unique inputs, edge cases, test types)

A2: Architectures for Code Development with
LLMs

« LLMs can generate code, but single-prompt interactions often fail
on long or complex development tasks. Multi-agent architectures
may improve quality by splitting responsibilities (design, planning,
writing, reviewing, debugging).

» Research Questions

« Which architectures produce higher-quality and more maintainable
code?

» How do agent coordination strategies impact correctness?
« Does modular role separation improve ode generation?

eeeeeeeee

AZ2: Minimum requirements

« Choose 10-20 programming tasks (functions, classes, or small modules) from:
 public datasets (HumanEval, MBPP, CodeNet subsets)
 past course assignments
« open-source shippets

« System Implementation
» One single-agent baseline (a single LLM generating the full code).
* One multi-agent system with >2 distinct roles

« Evaluation: Use at least one of the following evaluation methods:
functional correctness (unit tests or provided tests)

static code quality metrics (e.g., complexity, maintainability)
debugging performance (fault detection/fixing)
maintainability/readability assessment

eeeeeeeee

A3: Analysing Software Requirements
Through Abstractions

« Requirements are often ambiguous, inconsistent, and non-
standardized. LLMs can support requirement authoring, but they still
risk to misinterpret human needs.

« For this reason, a more systematic approach, based on the clear
identification of the requirements’ building blocks, may prove
benefits.

« Research Questions

« Can LLMs reliably identify the different abstraction that compose a requirement
(e.g., the main actor, the system response, the precondition...)?

 Does this analysis improve requirements’ clarity and completeness?
« Can LLMs manage nested items?

EEEEE

A3: Minimum requirements

» Requirement Dataset: Choose 30+ requirements from any of the following:
« past course assignments
« open-source software requirement documents
« your own small system description

« Each requirement must be realistic and contain multiple semantic components (e.g.,
actions, conditions, constraints).

» System Implementation. Include:
« One single-agent baseline— An LLM generates requirements or annotates them directly.

« One multi-step or multi-agent workflow that performs semantic decomposition into >4 tags (see
example in the next slide)

 Evaluation. Use at least one of the following evaluation methods:
« annotation accuracy against a small human-created gold standard
« clarity and completeness comparison between flat vs structured outputs

« consistency checking (e.g., detecting contradictions or missing components) <-this is applicable only if
the starting requirements are very high quality

C2 General

Purpose

= The reason why the
functionality described

by the software
requirement needs to
be implemented.

Condition

Something that limits
the scope of
application of the
requirement.

Precondition

A condition that must
hold in the
requirement’s context.
A Precondition is
always also a
Condition.

Action

Something that happens
in the scenario
described by the
software requirement.

Trigger

An event establishing a
temporal context and a
causal link that constrains
the requirement's
applicability. A Trigger is
also a Condition.

Entity

Something involved in
the actions described
in the reguirement.

Can be both human or
not (e.g., the system).

a

Main_actor

The main user of the
functionality described
by the regquirement
The main actor is often
also an Entity.

System_response

The behaviour of the
system in the described
scenaria. A
System_response is
always also an Action.

The product shall be available during normal business hours . As long as the user has access to the client PC

Purpose

Action

Condition

Action

eeeeeeeee

A4: Generating and Correcting Design
Diagrams with LLMs

. Desmﬁ;n diagrams (UML class diagrams, sequence diagrams, state
machines) are essential for software engineering but often
missing or outdated. LLMs can help generate diagrams from text
or correct existing diagrams.

« Research Questions
« How accurate are LLMs at generating formal design diagrams from natural
language?
« Can multi-agent pipelines improve diagram consistency?

« How effective are LLMs at detecting and correcting structural errors in
diagrams?

EEEEE

A4: Minimum requirements

 Design Artifacts: Choose 3-5 software components (e.g., small systems, class
hierarchies, workflows) from:

« past course assignments
« open-source documentation
 your own designed examples

« System Implementation. Include:
* One single-agent baseline— An LLM generates or corrects diagrams directly from text.
« One multi-agent workflow with >2 roles

« Evaluation. Use at least one of the following evaluation methods:
» structural accuracy against a small human-created gold standard
« consistency checking between diagram elements (e.g., missing methods, invalid relations)
« error-detection and correction effectiveness

miro @ e-commerce v 2% E")‘ Pgv F 3
Create with Al (D4 X Exit Diagramming

D B & &

Type

Flowchart Mind Map Entity Relationship

2 » H ¥

UML Sequence UML Class

Maya

We need a diagram for an e-commerce
solution that has the following
requirements: - manages online sales -
product listings - inventory - customer
shopping carts - order processing -
payments

B R O>-9N

.+ Generate Diagram

a

~ — S - o+ O

Reference paper: https://dl.acm.org/doi/abs/10.1145/3674805.3690741

C2 General

https://dl.acm.org/doi/abs/10.1145/3674805.3690741

eeeeeeeee

A5: Analysis of Linguistic Stereotypes in
Generative Al

» Generative models (LLMs, text-to-image systems) often reproduce
cultural or linguistic stereotypes. Detecting such bias in generated

outputs requires systematic linguistic analysis and structured
evaluation.

» Research Questions

« What types of linguistic stereotypes do LLMs reproduce?

« Does prompt structure (zero-shot, role prompting, chain-of-thought)
amplify or reduce bias?

« Can multi-agent critique frameworks reduce stereotypical outputs?

AS: Minimum requirements

« Choose a set of lingujstic varieties or cultural groups that may reveal stereotypical
patterns in generated text, such as:

« American English vs. African American English (AAE)
 Northern vs. Southern Italian varieties

 Create 10—-15 prompts per variety (descriptions, dialogues, character sketches).

 System Design. Include:

« One single-agent baseline— An LLM generates responses directly from each prompt.
« One multi-agent workflow with >2 roles

« Evaluation. Use at least one of the following evaluation methods:
« manual stereotype identification
« comparison (e.g., how descriptions differ between American English vs. AAE)
« effectiveness of multi-agent critique in reducing stereotypical features

eeeee

| am so happy when | wake

| |

| |

' upfrom a bad dream | Aperson who says 'is
, because they feel tooreal - “}‘ N

\ |

., -------------- b 1

i | be so happy when | wake ' > reicae i

: up from a bad dream cus : A person who says (: is
. they be feelin too real ' " ‘}' -

\ |

————————————————

Reference paper: https://www.nature.com/articles/s41586-024-07856-5

brlliant
dirty
intelligent
lazy
stupid

brilliant
dirty
intelligent
lazy
stupid

https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5

	Diapositiva 1: LLM for Software Engineering Course Projects 2025-2026
	Diapositiva 2: Project Assignment
	Diapositiva 3: Project Evaluation
	Diapositiva 4: Project Delivery
	Diapositiva 5: Project Categories
	Diapositiva 6: Project Tutorship
	Diapositiva 7: SemEval Tasks
	Diapositiva 8: A1: LLM Agents for Collaborative Test Case Generation
	Diapositiva 9: A1: Minimum requirements
	Diapositiva 10: A2: Architectures for Code Development with LLMs
	Diapositiva 11: A2: Minimum requirements
	Diapositiva 12: A3: Analysing Software Requirements Through Abstractions
	Diapositiva 13: A3: Minimum requirements
	Diapositiva 14
	Diapositiva 15: A4: Generating and Correcting Design Diagrams with LLMs
	Diapositiva 16: A4: Minimum requirements
	Diapositiva 17
	Diapositiva 18: A5: Analysis of Linguistic Stereotypes in Generative AI
	Diapositiva 19: A5: Minimum requirements
	Diapositiva 20

