
LLM forSoftwareEngineering 
Course Projects

2025-2026



ProjectAssignment

• Teams of 5people

• Select 3 project proposals (at least one T,one A – see later) that you
would like to do

• We will assign you – if possible –one of the projects that you have
chosen

• Team management link (be careful when modifying it!!!) :
https://docs.google.com/spreadsheets/d/1mswRyffUWuquIXr7dreP5c
wSWOM4KOuyURbuvzoozms/edit?gid=0#gid=0

• Deadline for team and proposal selection: November 30

• Assignment of projects and project start:December 1

https://docs.google.com/spreadsheets/d/1mswRyffUWuquIXr7dreP5cwSWOM4KOuyURbuvzoozms/edit?gid=0&gid=0
https://docs.google.com/spreadsheets/d/1mswRyffUWuquIXr7dreP5cwSWOM4KOuyURbuvzoozms/edit?gid=0&gid=0


ProjectEvaluation

• Deadline for project hand-in: before the beginning of next academic
year (September, 2025)

• Deadlines to have the LLM exam registered in a specific session:
• Winter session ->January 31, 2026
• Summer session ->June 30, 2026
• Autumn session ->September 15, 2026

• Project points: 15/30 points

• You will have to discuss the project (20 minutes presentation over
slides, including QCA)



ProjectDelivery

• Project template: https://dbdmg.polito.it/dbdmg_web/wp-
content/uploads/2025/12/Project-template.zip

• Todeliver the project, you have to submit:
• The link to a GitHub project with your replication package
• The document describing your project work, a technical report created

with Overleaf (this must be contained in the GitHub project, under the
/report folder). Max length: 6 pages (excluding references, appendices 
and tables with data, if needed)

https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip
https://dbdmg.polito.it/dbdmg_web/wp-content/uploads/2025/12/Project-template.zip


ProjectCategories

• T(SemEval Task): technical projects in which you will apply LLM 
models to solve SemEval challenges.
• Responsible: prof. Flavio Giobergia

• A (Application): projects in which you will analyze the 
effectiveness of the application of LLMs in various Software 
Engineering tasks.
• Responsible: prof. Riccardo Coppola



ProjectTutorship

You can schedule two 30-minutes slots per team for project 
tutorship.

• T(SemEval Task): send an e-mail to:
• claudio.savelli@polito.it (task 1/4/9/10/12/13)

• lorenzo.vaiani@polito.it (task 2/3/5/6/7/8/11)

• A (Application): send an e-mail to anna.arnaudo@polito.it

mailto:claudio.savelli@polito.it
mailto:claudio.savelli@polito.it
mailto:lorenzo.vaiani@polito.it
mailto:lorenzo.vaiani@polito.it
mailto:anna.arnaudo@polito.it


SemEval Tasks

• https://semeval.github.io/SemEval2026/tasks

https://semeval.github.io/SemEval2026/tasks
https://semeval.github.io/SemEval2026/tasks


A1: LLM Agents forCollaborativeTestCase 
Generation
• Software testing often requires collaboration between testers,

developers, domain experts, and tools. Traditional automated test
generation tools cannot emulate multi-perspective reasoning (e.g.,
user intention, edge case exploration, domain knowledge). Recent
advances in multi-agent LLM architectures allow for collaborative
workflows where agents work differently to generate the same
artefacts.

• Research Questions
• How effective are LLM agents in generating comprehensive and diverse test 

cases?
• Does agent collaboration outperform single-model test generation?
• What patterns of collaboration lead to higher-quality test cases?



A1:Minimum requirements

• Code Under Test. Choose at least 10-20 functions or methods from any of the following
sources:
• public datasets (MBPP, HumanEval, CodeNet subsets)
• past course assignments
• open-source snippets

• System Implementation. The system must include:
• One single-agent baseline
• One multi-agent system with ≥2 roles
• Multiple collaboration patterns (collaborative vs. competitive)

• Evaluation: use at least one of the following evaluation methods:
• Test coverage (e.g., line or branch coverage)
• Mutation testing (e.g., mutmut, cosmic-ray)
• Bug injection / bug detection
• Diversity analysis (number of unique inputs, edge cases, test types)



A2: Architectures forCode Development with 
LLMs

• LLMs can generate code, but single-prompt interactions often fail
on long or complex development tasks. Multi-agent architectures
may improve quality by splitting responsibilities (design, planning,
writing, reviewing, debugging).

• Research Questions
• Which architectures produce higher-quality and more maintainable 

code?

• How do agent coordination strategies impact correctness?

• Does modular role separation improve ode generation?



A2: Minimum requirements

• Choose 10-20 programming tasks (functions, classes, or small modules) from:
• public datasets (HumanEval, MBPP, CodeNet subsets)
• past course assignments
• open-source snippets

• System Implementation
• One single-agent baseline (a single LLM generating the full code).
• One multi-agent system with ≥2distinct roles

• Evaluation: Use at least one of the following evaluation methods:
• functional correctness (unit tests or provided tests)
• static code quality metrics (e.g., complexity, maintainability)
• debugging performance (fault detection/fixing)
• maintainability/readability assessment



A3: AnalysingSoftwareRequirements 
ThroughAbstractions
• Requirements are often ambiguous, inconsistent, and non-

standardized. LLMs can support requirement authoring, but they still 
risk to misinterpret human needs.

• For this reason, a more systematic approach, based on the clear
identification of the requirements’ building blocks, may prove
benefits.

• Research Questions
• Can LLMs reliably identify the different abstraction that compose a requirement

(e.g., the main actor, the system response, the precondition…)?

• Does this analysis improve requirements’ clarity and completeness?

• Can LLMs manage nested items?



A3: Minimumrequirements
• Requirement Dataset: Choose 30+requirements from any of the following:

• past course assignments
• open-source software requirement documents
• your own small system description

• Each requirement must be realistic and contain multiple semantic components (e.g.,
actions, conditions, constraints).

• System Implementation. Include:
• One single-agent baseline→ An LLM generates requirements or annotates them directly.
• One multi-step or multi-agent workflow that performs semantic decomposition into ≥4 tags (see

example in the next slide)

• Evaluation. Use at least one of the following evaluation methods:
• annotation accuracy against a small human-created gold standard
• clarity and completeness comparison between flat vs structured outputs
• consistency checking (e.g., detecting contradictions or missing components) <- this is applicable only if

the starting requirements are very high quality





A4: Generatingand CorrectingDesign 
Diagrams withLLMs
• Design diagrams (UML class diagrams, sequence diagrams, state 

machines) are essential for software engineering but often 
missing or outdated. LLMs can help generate diagrams from text 
or correct existing diagrams.

• Research Questions
• How accurate are LLMs at generating formal design diagrams from natural

language?
• Can multi-agent pipelines improve diagram consistency?
• How effective are LLMs at detecting and correcting structural errors in 

diagrams?



A4: Minimumrequirements

• Design Artifacts: Choose 3–5 software components (e.g., small systems, class
hierarchies, workflows) from:
• past course assignments
• open-source documentation
• your own designed examples

• System Implementation. Include:
• One single-agent baseline→ An LLM generates or corrects diagrams directly from text.
• One multi-agent workflow with ≥2 roles

• Evaluation. Use at least one of the following evaluation methods:
• structural accuracy against a small human-created gold standard
• consistency checking between diagram elements (e.g., missing methods, invalid relations)
• error-detection and correction effectiveness



Reference paper: https://dl.acm.org/doi/abs/10.1145/3674805.3690741

https://dl.acm.org/doi/abs/10.1145/3674805.3690741


A5: Analysis of Linguistic Stereotypes in 
GenerativeAI

• Generative models (LLMs, text-to-image systems) often reproduce 
cultural or linguistic stereotypes. Detecting such bias in generated 
outputs requires systematic linguistic analysis and structured 
evaluation.

• Research Questions
• What types of linguistic stereotypes do LLMs reproduce?

• Does prompt structure (zero-shot, role prompting, chain-of-thought) 
amplify or reduce bias?

• Can multi-agent critique frameworks reduce stereotypical outputs?



A5: Minimumrequirements

• Choose a set of linguistic varieties or cultural groups that may reveal stereotypical
patterns in generated text, such as:
• American English vs. African American English (AAE)
• Northern vs. Southern Italian varieties

• Create 10–15 prompts per variety (descriptions, dialogues, character sketches).

• System Design. Include:
• One single-agent baseline→ An LLM generates responses directly from each prompt.
• One multi-agent workflow with ≥2 roles

• Evaluation. Use at least one of the following evaluation methods:
• manual stereotype identification
• comparison (e.g., how descriptions differ between American English vs. AAE)
• effectiveness of multi-agent critique in reducing stereotypical features



Reference paper: https://www.nature.com/articles/s41586-024-07856-5

https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5

	Diapositiva 1: LLM for Software Engineering Course Projects 2025-2026
	Diapositiva 2: Project Assignment
	Diapositiva 3: Project Evaluation
	Diapositiva 4: Project Delivery
	Diapositiva 5: Project Categories
	Diapositiva 6: Project Tutorship
	Diapositiva 7: SemEval Tasks
	Diapositiva 8: A1: LLM Agents for Collaborative Test Case Generation
	Diapositiva 9: A1: Minimum requirements
	Diapositiva 10: A2: Architectures for Code Development with LLMs
	Diapositiva 11: A2: Minimum requirements
	Diapositiva 12: A3: Analysing Software Requirements Through Abstractions
	Diapositiva 13: A3: Minimum requirements
	Diapositiva 14
	Diapositiva 15: A4: Generating and Correcting Design Diagrams with LLMs
	Diapositiva 16: A4: Minimum requirements
	Diapositiva 17
	Diapositiva 18: A5: Analysis of Linguistic Stereotypes in Generative AI
	Diapositiva 19: A5: Minimum requirements
	Diapositiva 20

