
 

  

Version #1     

Big data processing and analytics 
January 27, 2026  

Student ID ______________________________________________________________  

First Name ______________________________________________________________  

Last Name ______________________________________________________________  

The exam is open book 

Part I  

Answer the following questions. There is only one right answer for each question. 

 1. (2 points) Consider the following Spark Streaming applications. 

(Application A) 

from pyspark.streaming import StreamingContext 

# Create a Spark Streaming Context object 

ssc = StreamingContext(sc, 10) 

 

# Process the DStream associated with the TCP socket localhost:9999 

resDStreamA = ssc.socketTextStream("localhost", 9999)\ 

                    .map(lambda s: 1)\ 

                    .reduce(lambda v1, v2: v1+v2)\ 

                    .window(20, 10)\ 

                    .count() 

 

# Print the result on the standard output 

resDStreamA.pprint() 

# Start the computation 

ssc.start() 

ssc.awaitTerminationOrTimeout(360) 

ssc.stop(stopSparkContext=False) 

 

(Application B) 

from pyspark.streaming import StreamingContext 

# Create a Spark Streaming Context object 

ssc = StreamingContext(sc, 10) 

 



 

  

Version #1     

# Process the DStream associated with the TCP socket localhost:9999 

resDStreamB = ssc.socketTextStream("localhost", 9999)\ 

                    .map(lambda s: 1)\ 

                    .reduce(lambda v1, v2: v1+v2)\ 

                    .window(20, 10)\ 

                    .reduce(lambda v1, v2: v1+v2) 

 

# Print the result on the standard output 

resDStreamB.pprint() 

# Start the computation 

ssc.start() 

ssc.awaitTerminationOrTimeout(360) 

ssc.stop(stopSparkContext=False) 

 

(Application C) 

from pyspark.streaming import StreamingContext 

# Create a Spark Streaming Context object 

ssc = StreamingContext(sc, 10) 

 

# Process the DStream associated with the TCP socket localhost:9999 

resDStreamC = ssc.socketTextStream("localhost", 9999)\ 

                    .map(lambda s: 1)\ 

                    .window(20, 10)\ 

                    .count() 

 

# Print the result on the standard output 

resDStreamC.pprint() 

# Start the computation 

ssc.start() 

ssc.awaitTerminationOrTimeout(360) 

ssc.stop(stopSparkContext=False) 

 

Suppose each batch of the input stream contains at least one input string. Which 

one of the following statements is true?  

 a) Independently of the content of the input stream, resDStreamA and resDStreamB 

always contain the same values, while resDStreamC may contain different values 

with respect to resDStreamA and resDStreamB. 



 

  

Version #1     

 b) Independently of the content of the input stream, resDStreamA and resDStreamC 

always contain the same values, while resDStreamB may contain different values 

with respect to resDStreamA and resDStreamC. 

 c) Independently of the content of the input stream, resDStreamB and resDStreamC 

always contain the same values, while resDStreamA may contain different values 

with respect to resDStreamB and resDStreamC. 

 d) Independently of the content of the input stream, resDStreamA, resDStreamB, 

and resDStreamC always contain the same values. 

 

 2. (2 points) Consider the following MapReduce application for Hadoop. 

DriverBigData.java 

/* Driver class */ 
package it.polito.bigdata.hadoop; 

import ….;  
 

/* Driver class */ 

public class DriverBigData extends Configured implements Tool { 

  @Override 

public int run(String[] args) throws Exception { 

    int exitCode; 

    Configuration conf = this.getConf(); 

    // Define a new job 

    Job job = Job.getInstance(conf); 

    // Assign a name to the job 

    job.setJobName("MapReduce - Question"); 

// Set the path of the input file/folder for this job 

FileInputFormat.addInputPath(job, new Path("inputFolder/")); 

// Set the path of the output folder for this job 

FileOutputFormat.setOutputPath(job, new Path("outputFolder/")); 

// Specify the class of the Driver for this job 

job.setJarByClass(DriverBigData.class); 

// Set job input format 

job.setInputFormatClass(TextInputFormat.class); 

// Set job output format 

job.setOutputFormatClass(TextOutputFormat.class); 

// Set map class 

job.setMapperClass(MapperBigData.class); 



 

  

Version #1     

// Set map output key and value classes 

job.setMapOutputKeyClass(IntWritable.class); 

job.setMapOutputValueClass(IntWritable.class); 

 

// Set the number of reducers to 0 - Map only job 

job.setNumReduceTasks(0); 

// Execute the job and wait for completion 

if (job.waitForCompletion(true) == true) 

    exitCode = 0; 

else 

    exitCode = 1; 

return exitCode; 

} 

  /* Main of the driver */ 
  public static void main(String args[]) throws Exception { 
     int res = ToolRunner.run(new Configuration(), new DriverBigData(), args); 
     System.exit(res); 

   } 
} 

------------------------------------------------------------------------------------------------------

MapperBigData.java 

/* Mapper class */ 

package it.polito.bigdata.hadoop; 
import …; 

class MapperBigData extends 

  Mapper<LongWritable, // Input key type 

    Text, // Input value type 

    IntWritable, // Output key type 

    IntWritable> { // Output value type 

 int c1, c2; 

protected void setup(Context context) { 

   c1 = 0; 

   c2 = 0; 

 } 

 protected void map(LongWritable key, // Input key type 

   Text value, // Input value type 

   Context context) throws IOException, InterruptedException { 

  // If the value starts with "S", increment c1. Otherwise, c2. 

  if (value.toString().startsWith("S")) 



 

  

Version #1     

   c1++; 

  else 

   c2++; 

 } 

 protected void cleanup(Context context) throws IOException, InterruptedException { 

  // Emit the pair (c1, c2) 

  context.write(new IntWritable(c1), new IntWritable(c2)); 

 } 

} 

Suppose that inputFolder contains the files Names1.txt and Names2.txt. Suppose the 

HDFS block size is 512 MB.  

Content of Names1.txt and Names2.txt: 

Filename (size and number of lines) Content 

Names1.txt (34 bytes – 5 lines) Michael 

Lucas 

Sophia 

Sophia 

Simons 

Names2.txt (24 bytes – 4 lines) Anna 

Sophia 

Simon 

Samuel 

Suppose we run the above MapReduce application (note that the input folder is set to 

inputFolder/).  

What is a possible output generated by running the above application?  

a) The content of the output folder is as follows. 

-rw-r--r-- 1 paolo paolo 4 set 3 14:00 part-m-00000 

-rw-r--r-- 1 paolo paolo 4 set 3 14:00 part-m-00001 

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS 

The content of the two part files is as follows.  

Filename (number of lines)  Content 

part-m-00000 (1 line) 3     2 

part-m-00001 (1 line) 3     1 

b) The content of the output folder is as follows. 



 

  

Version #1     

-rw-r--r-- 1 paolo paolo 4 set 3 14:00 part-m-00000 

-rw-r--r-- 1 paolo paolo 4 set 3 14:00 part-m-00001 

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS 

The content of the two part files is as follows.  

Filename (number of lines) Content 

part-m-00000 (1 line) 2     2 

part-m-00001 (1 line) 3     1 

c)  The content of the output folder is as follows. 

-rw-r--r-- 1 paolo paolo 4 set 3 14:00 part-m-00000 

-rw-r--r-- 1 paolo paolo 4 set 3 14:00 part-m-00001 

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS 

The content of the two part files is as follows.  

Filename (number of lines)   Content 

part-m-00000 (1 line) 6     3 

part-m-00001 (1 line) 0     0 

d) The content of the output folder is as follows. 

-rw-r--r-- 1 paolo paolo 4 set 3 14:00 part-m-00000 

-rw-r--r-- 1 paolo paolo 0 set 3 14:00 _SUCCESS 

The content of the part file is as follows.  

Filename (number of lines) Content 

part-m-00000 (1 line) 6     3 

 

 



 

  

Version #1     

Part II  
  

TourismPolito is an international company that tracks tourists as they visit points of interest 

(POIs) worldwide. Statistics about tourists and POIs are computed from the following input 

data files collected over the last thirty years. 

 

• Tourists.txt 

o Tourists.txt is a textual file containing information about the tourists managed by 

TourismPolito. There is one line for each tourist. The total number of tourists 

exceeds 300,000,000. Tourists.txt is large. Its content cannot be stored in one 

in-memory Java/Python variable.  

o Each line of Tourists.txt has the following format  

▪ CodT,Name,Surname,City,Country  

where CodT is the unique tourist identifier, Name and Surname are the 

tourist’s name and surname, respectively, while City and Country are the 

city and country where the tourist resides, respectively. 

▪  For example, the following line  

T10,Paolo,Garza,Carmagnola,Italy  

means that the name and surname of the tourist with CodT identifier T10 

are Paolo and Garza, respectively, and the tourist lives in Carmagnola 

(Italy). 

 

• POIs.txt  

o POIs.txt is a textual file containing information about the points of interest (POIs) 

worldwide. There is one line for each POI. The total number of POIs stored in 

POIs.txt exceeds 400,000,000. POIs.txt is large. Its content cannot be stored in 

one in-memory Java/Python variable.  

o Each line of POIs.txt has the following format 

▪ POIID,name,category,latitude,longitude,POICountry 

where POIID is the POI’s unique identifier, Name is its name, latitude and 

longitude are its geolocation, and POICountry is the country where that 

POI is located. 

▪ For example, the following line  

POI23,Egyptian Museum,Museum,45.0684433,7.6844128,Italy 

means that the POI with POIID POI23 is named the Egyptian Museum, 

is a museum (category=Museum), and is located in Italy 

(POICountry=Italy) at the position (latitude = 45.0684433, longitude = 

7.6844128). 

 

• Visits.txt  

o Visits.txt is a textual file containing information about who visited each POI and 

when. There is one line for each visit. The total number of visits recorded in 



 

  

Version #1     

Visits.txt exceeds 1,000,000,000. Visits.txt is large. Its content cannot be stored 

in one in-memory Java/Python variable.  

o Each line of Visits.txt has the following format 

▪ CodT,StartTimestamp,POIID,Duration 

where CodT is the identifier of the tourist who started visiting the POI 

identified by POIID at the time StartTimestamp. StartTimestamp is a 

timestamp in the format YYYY/MM/DD-HH:MM. The visit lasted Duration 

minutes.  

▪ For example, the following line  

U10,2022/11/07-21:40,POI23,48.5 

means that the tourist U10 started visiting the POI POI23 on November 

7, 2022, at 21:40. The visit lasted 48.5 minutes. 

 

Note that each tourist can visit many POIs but at different timestamps, and each 

POI can be visited by many users at the same timestamp. Moreover, the same 

tourist may visit each POI several times (a new line associated with a different 

StartTimestamp is inserted in Visits.txt for each visit to the same POI by the same 

tourist). Note that the combination (CodT, StartTimestamp) is the primary key in 

Visits.txt. 

 

Exercise 1 – MapReduce and Hadoop (8 points)  

Exercise 1.1 

The managers of TourismPolito are interested in performing some analyses about POIs. 

Design a single application, based on MapReduce and Hadoop, and write the 

corresponding Java code, to address the following point:  

1. Countries with many POIs but a few POI categories. The application selects the 

countries where the number of POIs is greater than 10,000, and their POIs are overall 

associated with at most 2 categories. Suppose the total number of distinct categories is 

1000 (that value can be considered small). The selected countries are stored in the 

output HDFS folder. 

Output format (one line for each selected country): 

country 

Suppose that the input is POIs.txt and has already been set. Suppose that the name of the 

output folder has already been set.  

• Write only the content of the Mapper and Reducer classes (map and reduce methods. 

setup and cleanup if needed). The Driver class must not be reported/implemented. 

• Use the following two specific multiple-choice questions (Exercises 1.2 and 1.3) to 

specify the number of instances of the reducer class for each job. 



 

  

Version #1     

• If you need personalized classes, report for each of them: 
o the name of the class 
o attributes/fields of the class (data type and name) 
o personalized methods (if any), e.g., the content of the toString() method if 

you override it 
o do not report the get and set methods. Suppose they are "automatically 

defined" 
 
 

Exercise 1.2 - Number of instances of the reducer - Job 1 

Select the number of instances of the reducer class of the first Job 

 (a) 0 

 (b) exactly 1 

 (c) any number >=1 (i.e., the reduce phase can be parallelized) 
 

Exercise 1.3 - Number of instances of the reducer - Job 2 

Select the number of instances of the reducer class of the second Job 

 (a) One single job is needed 

 (b) 0 

 (c) exactly 1 

 (d) any number >=1 (i.e., the reduce phase can be parallelized) 
 

 

Exercise 2 – Spark (19 points)  

The managers of TourismPolito asked you to develop a single Spark-based application, 

either using RDDs or Spark SQL, to address the following tasks. The application inputs are 

the paths to the three input files. The outputs are stored in two output folders (associated 

with the outputs of Parts 1 and 2, respectively). 

1. Tourist(s) with the most visits to Italian POIs. The first part of this application selects the 

tourist(s) associated with the maximum number of visits to POIs located in Italy. Each 

line in Visits.txt is a visit. Select all the tourists associated with the maximum number of 

visits to POIs located in Italy. Store the result in the first HDFS output folder. 

Specifically, store one of the selected tourists per output line. For each of the selected 

tourists, store the CodT. Suppose the maximum number of visits to POIs located in 

Italy is at least one.  

Output format of each output line (first part output format): 

CodT 

2. Number of distinct visited categories for each tourist in 2024 by considering Italian 

POIs. For each tourist, the second part of this application counts the number of distinct 

POI categories the tourist visited in 2024, considering only POIs located in Italy. The 

application returns 0 for the tourists who never visited POIs located in Italy during the 

year 2024. Store the result in the second HDFS output folder. The number of output 

lines is equal to the total number of tourists. Specifically, there is one output line for 

each tourist, and the output format is as follows (second part output format): 



 

  

Version #1     

 

CodT, Number of distinct POI categories the tourist visited in 2024 by considering only 

POIs located in Italy 

Note. Some tourists did not visit POIs that are located in Italy during the year 2024. 

The output is CodT,0 for those tourists. 

Example for the second part. 

In this small example, suppose there are only three tourists. The identifiers of these 

tourists are T1, T2, and T3.  

In this small example, suppose there are only the following five POIs in Italy: 

• POI1. Its category is ‘Museum’. 

• POI2. Its category is ‘Museum’. 

• POI3. Its category is ‘Restaurant’. 

• POI4. Its category is ‘Railway station’. 

• POI5. Its category is ‘Hotel’. 

Suppose that T1 visited the following Italian POIs during the year 2024: 

• POI1 

• POI2 

• POI3 

Suppose that T2 visited the following Italian POIs during the year 2024: 

• POI1 

• POI4 

Suppose that T3 visited no Italian POIs during the year 2024. 

 

 

The second output folder must contain the following output lines in this case: 

• T1,2 

• T2,2 

• T3,0 

 

• You do not need to write imports. Focus on the content of the main method. 

• Only if you use Spark SQL, suppose the first line of each file contains the header 
information/the name of the attributes. Suppose, instead, there are no header lines if 
you use RDDs.  

• Suppose both Spark Context sc and SparkSession spark have already been set.  

• Please comment your solution by stating the meaning of the fields you intend to 
process with each instruction, e.g., key=(product id, date), value=(category, year) 

 


	Part I
	Part II
	Exercise 1.1


