Data mining on very large databases

Elena Baralis, Tania Cerquitelli

Politecnico di Torino http://dbdmg.polito.it/twiki/bin/view/Public/WebHome

Torino, may 13th 2009

Outline

- Data mining fundamentals
- Association rules fundamentals
- Disk-based pattern mining
- Other research topics

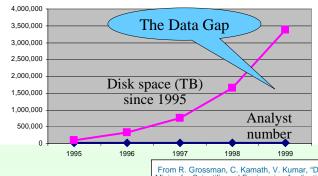
Data mining fundamentals

Elena Baralis, Tania Cerquitelli

Politecnico di Torino

Data analysis

- Most companies own huge databases containing
 - operational data
 - textual documents
 - experiment results
- These databases are a potential source of useful information



Data analysis

- Information is "hidden" in huge datasets
 - not immediately evident
 - human analysts need a large amount of time for the analysis
 - most data is never analyzed at all

From R. Grossman, C. Kamath, V. Kumar, "Data Mining for Scientific and Engineering Applications'

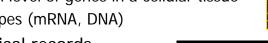
5

Data mining

- Non trivial extraction of
 - implicit
 - previously unknown
 - potentially useful

information from available data

- Extraction is automatic
 - performed by appropriate algorithms
- Extracted information is represented by means of abstract models
 - denoted as pattern



Example: biological data

- Microarray
 - expression level of genes in a cellular tissue
 - various types (mRNA, DNA)

- personal and demographic data
- exam results

CLID	PATIENT ID	shx013: 49A34	shi060: 45A9	shq077: 52A28	shx009: 4A34	shα014: 61A31	shq082: 99A6	shq083: 46A15	shx008: 41A31
IMAGE:74	ISG20 in	-1.02	-2.34	1.44	0.57	-0.13	0.12	0.34	-0.51
IMAGE:76	TNFSF13	-0.52	-4.06	-0.29	0.71	1.03	-0.67	0.22	-0.09
IMAGE:36	LOC93343	-0.25	-4.08	0.06	0.13	0.08	0.06	-0.08	-0.05
IMAGE:23	(ITGA4 in	-1.375	-1.605	0.155	-0.015	0.035	-0.035	0.505	-0.865

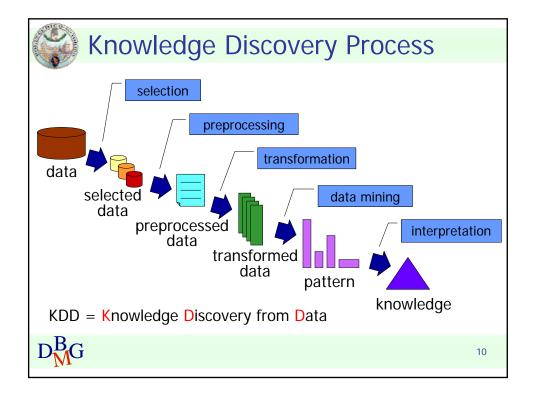
Textual data in public collections

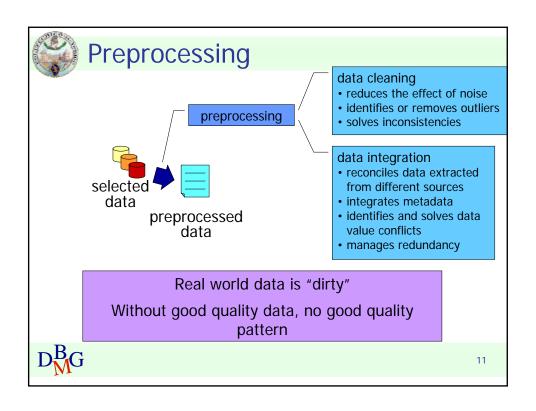
- heterogeneous formats, different objectives
- scientific literature (PUBMed)
- ontologies (Gene Ontology)

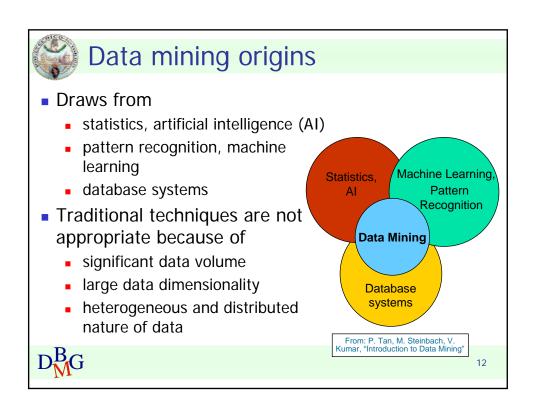
Biological analysis objectives

- Clinical analysis
 - detecting the causes of a pathology
 - monitoring the effect of a therapy
 - ⇒ diagnosis improvement and definition of new specific therapies
- Bio-discovery
 - gene network discovery
 - analysis of multifactorial genetic pathologies
- Pharmacogenesis
 - lab design of new drugs for genic therapies

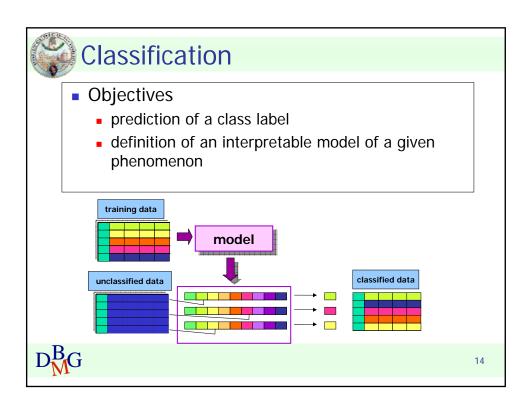
How can data mining contribute?

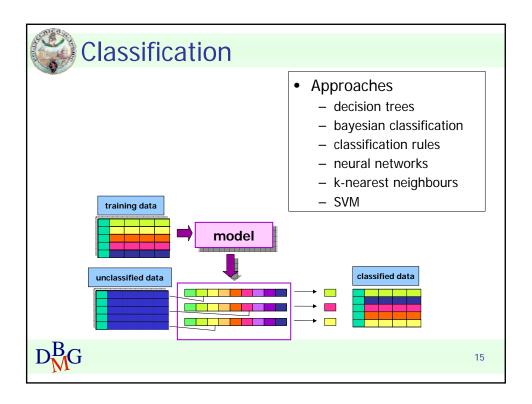


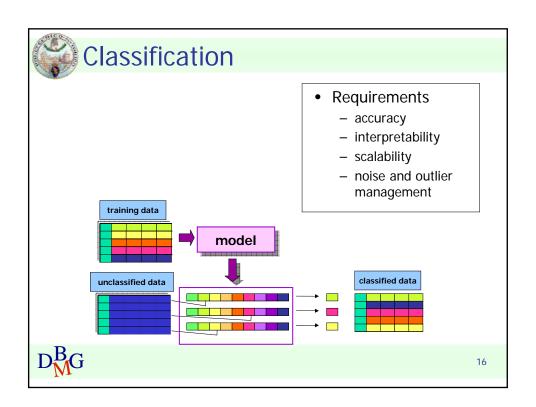


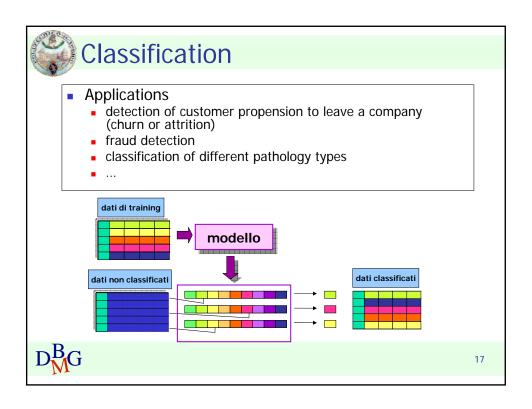

Data mining contributions

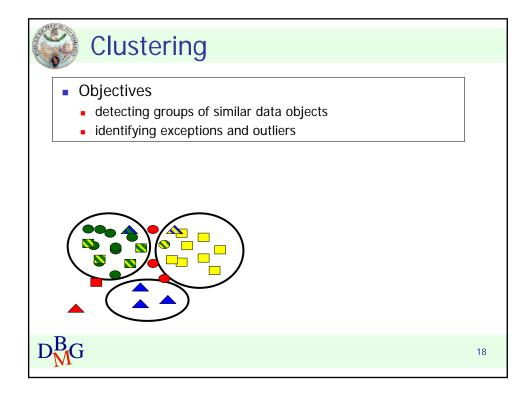
- Pathology diagnosis
 - classification
- Selecting genes involved in a specific pathology
 - feature selection
 - clustering
- Grouping genes with similar functional behavior
 - clustering
- Multifactorial pathologies analysis
 - association rules
- Detecting chemical components appropriate for specific therapies
 - classification

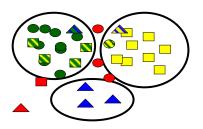




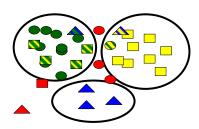

Analysis techniques


- Descriptive methods
 - Extract interpretable models describing data
 - Example: client segmentation
- Predictive methods
 - Exploit some known variables to predict unknown or future values of (other) variables
 - Example: "spam" email detection





- Approaches
 - partitional (K-means)
 - hierarchical
 - density-based (DBSCAN)
 - SOM


- Requirements
 - scalability
 - management of
 - noise and outliers
 - large dimensionality
 - interpretability

19

Clustering

- Applications
 - customer segmentation
 - clustering of documents containing similar information
 - grouping genes with similar expression pattern
 - .

Association rules

- Objective
 - extraction of frequent correlations or pattern from a transactional database

Tickets at a supermarket counter

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diapers, Milk
4	Beer, Bread, Diapers, Milk
5	Coke, Diapers, Milk

- Association rule diapers ⇒ beer
 - 2% of transactions contains both items
 - 30% of transactions containing diapers also contains beer

21

Association rules

- Applications
 - market basket analysis
 - cross-selling
 - shop layout or catalogue design

Tickets at a supermarket counter

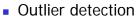
TID	Items				
1	Bread, Coca Cola, Milk				
2	Beer, Bread				
3	Beer, Coca Cola, Diapers, Milk				
4	Beer, Bread, Diapers, Milk				
5	Coca Cola, Diapers, Milk				

Association rule

 $\text{diapers} \Rightarrow \text{beer}$

- 2% of transactions contains both items
- 30% of transactions containing diapers also contains beer

Other data mining techniques


- Sequence mining
 - ordering criteria on analyzed data are taken into account

- example: motif detection in proteins
- Time series and geospatial data
 - temporal and spatial information are considered
 - example: sensor network data

- prediction of a continuous value
- example: prediction of stock quotes

example: intrusion detection in network traffic analysis

23

Open issues

- Scalability to huge data volumes
- Data dimensionality
- Complex data structures, heterogeneous data formats
- Data quality
- Privacy preservation
- Streaming data

