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Data set types
� Record

� Tables

� Document Data

� Transaction Data

� Graph
� World Wide Web

� Molecular Structures

� Ordered
� Spatial Data

� Temporal Data

� Sequential Data

� Genetic Sequence Data
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Tabular Data

� A collection of records

� Each record is characterized by a fixed set of 
attributes Tid Refund Marital 

Status 

Taxable 

Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Document Data

� Each document becomes a `term' vector, 
� each term is a component (attribute) of the vector,

� the value of each component is the number of times the 
corresponding term occurs in the document. 
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Transaction Data

� A special type of record data, where 
� each record (transaction) involves a set of items.  

� For example, consider a grocery store.  The set of 
products purchased by a customer during one shopping 
trip constitute a transaction, while the individual products 
that were purchased are the items. 

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Graph Data 

� Examples: Generic graph and HTML Links 
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<a href="papers/papers.html#bbbb">

Data Mining </a>

<li>

<a href="papers/papers.html#aaaa">

Graph Partitioning </a>
<li>

<a href="papers/papers.html#aaaa">

Parallel Solution of Sparse Linear System of Equations </a>

<li>

<a href="papers/papers.html#ffff">

N-Body Computation and Dense Linear System Solvers
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Chemical Data 

� Benzene Molecule: C6H6
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Ordered Data 

� Sequences of transactions

An element of 
the sequence

Items/Events
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Ordered Data 

� Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC

CGCAGGGCCCGCCCCGCGCCGTC

GAGAAGGGCCCGCCTGGCGGGCG

GGGGGAGGCGGGGCCGCCCGAGC

CCAACCGAGTCCGACCAGGTGCC

CCCTCTGCTCGGCCTAGACCTGA

GCTCATTAGGCGGCAGCGGACAG

GCCAAGTAGAACACGCGAAGCGC

TGGGCTGCCTGCTGCGACCAGGG
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Ordered Data

� Spatio-Temporal Data

Average Monthly 
Temperature of 
land and ocean

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

11DB
MG

Attribute types 

� There are different types of attributes

� Nominal
� Examples: ID numbers, eye color, zip codes

� Ordinal
� Examples: rankings (e.g., taste of potato chips on a scale from 

1-10), grades, height in {tall, medium, short}

� Interval
� Examples: calendar dates, temperatures in Celsius or Fahrenheit.

� Ratio
� Examples: temperature in Kelvin, length, time, counts 
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Properties of Attribute Values 

� The type of an attribute depends on which of the 
following properties it possesses:
� Distinctness:  =  ≠

� Order:  <  >  

� Addition:  +  -

� Multiplication: * /

� Nominal attribute: distinctness

� Ordinal attribute: distinctness & order

� Interval attribute: distinctness, order & addition

� Ratio attribute: all 4 properties
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Discrete and Continuous Attributes 

� Discrete Attribute
� Has only a finite or countably infinite set of values

� Examples: zip codes, counts, or the set of words in a collection of 
documents 

� Often represented as integer variables.   

� Note: binary attributes are a special case of discrete attributes 

� Continuous Attribute
� Has real numbers as attribute values

� Examples: temperature, height, or weight.  

� Practically, real values can only be measured and represented using a 
finite number of digits.

� Continuous attributes are typically represented as floating-point 
variables.  
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Data Quality 

� What kinds of data quality problems?

� How can we detect problems with the data? 

� What can we do about these problems? 

� Examples of data quality problems: 
� Noise and outliers 

� missing values 

� duplicate data 
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Noise

� Noise refers to modification of original values
� Examples: distortion of a person’s voice when talking on a 
poor phone and “snow” on television screen

Two Sine Waves Two Sine Waves + Noise
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Outliers

� Outliers are data objects with characteristics that 
are considerably different than most of the other 
data objects in the data set
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Missing Values

� Reasons for missing values
� Information is not collected 
(e.g., people decline to give their age and weight)

� Attributes may not be applicable to all cases 
(e.g., annual income is not applicable to children)

� Handling missing values
� Eliminate Data Objects

� Estimate Missing Values

� Ignore the Missing Value During Analysis

� Replace with all possible values (weighted by their 
probabilities)
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Important Characteristics of Structured Data

� Dimensionality
� Curse of Dimensionality

� Sparsity
� Only presence counts

� Resolution
� Patterns depend on the scale 
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Data Preprocessing

� Aggregation

� Sampling

� Dimensionality Reduction

� Feature subset selection

� Feature creation

� Discretization and Binarization

� Attribute Transformation
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Aggregation

� Combining two or more attributes (or objects) into a 
single attribute (or object)

� Purpose
� Data reduction

� Reduce the number of attributes or objects

� Change of scale
� Cities aggregated into regions, states, countries, etc

� More “stable” data
� Aggregated data tends to have less variability 
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Aggregation

Standard Deviation of Average 
Monthly Precipitation

Standard Deviation of Average 
Yearly Precipitation

Variation of Precipitation in Australia
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Data reduction

� It generates a reduced representation of the 
dataset. This representation is smaller in volume, 
but it can provide similar analytical results
� sampling 

� It reduces the cardinality of the set

� feature selection
� It reduces the number of attributes

� discretization
� It reduces the cardinality of the attribute domain
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Sampling 

� Sampling is the main technique employed for data
selection.

� It is often used for both the preliminary investigation
of the data and the final data analysis.

� Statisticians sample because obtaining the entire
set of data of interest is too expensive or time
consuming.

� Sampling is used in data mining because
processing the entire set of data of interest is too
expensive or time consuming.
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Sampling … 

� The key principle for effective sampling is the 
following: 
� using a sample will work almost as well as using the 
entire data sets, if the sample is representative

� A sample is representative if it has approximately the 
same property (of interest) as the original set of data  
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Types of Sampling
� Simple Random Sampling

� There is an equal probability of selecting any particular 
item

� Sampling without replacement
� As each item is selected, it is removed from the 
population

� Sampling with replacement
� Objects are not removed from the population as they are 
selected for the sample.   

� In sampling with replacement, the same object can be picked up 
more than once

� Stratified sampling
� Split the data into several partitions; then draw random 
samples from each partition
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Curse of Dimensionality

� When dimensionality 
increases, data becomes 
increasingly sparse in the 
space that it occupies

� Definitions of density and 
distance between points, 
which is critical for 
clustering and outlier 
detection, become less 
meaningful

• Randomly generate 500 points

• Compute difference between max and min 
distance between any pair of points
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Dimensionality Reduction

� Purpose:
� Avoid curse of dimensionality

� Reduce amount of time and memory required by data 
mining algorithms

� Allow data to be more easily visualized

� May help to eliminate irrelevant features or reduce noise

� Techniques
� Principle Component Analysis

� Singular Value Decomposition

� Others: supervised and non-linear techniques
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Dimensionality Reduction: PCA

� Goal is to find a projection that captures the 
largest  amount of variation in data

x2

x1

e
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Feature Subset Selection

� Another way to reduce dimensionality of data

� Redundant features 
� duplicate much or all of the information contained in one 
or more other attributes

� Example: purchase price of a product and the amount of 
sales tax paid

� Irrelevant features
� contain no information that is useful for the data mining 
task at hand

� Example: students' ID is often irrelevant to the task of 
predicting students' GPA
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Feature Subset Selection

� Techniques:
� Brute-force approach:

� Try all possible feature subsets as input to data mining 
algorithm

� Embedded approaches:
� Feature selection occurs naturally as part of the data mining 
algorithm

� Filter approaches:
� Features are selected before data mining algorithm is run

� Wrapper approaches:
� Use the data mining algorithm as a black box to find best 
subset of attributes
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Feature Creation

� Create new attributes that can capture the 
important information in a data set much more 
efficiently than the original attributes

� Three general methodologies:
� Feature Extraction

� domain-specific

� Mapping Data to New Space

� Feature Construction
� combining features 
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Mapping Data to a New Space

Two Sine Waves Two Sine Waves + Noise Frequency

� Fourier transform

�Wavelet transform
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Discretization

� It splits the domain of a continuous attribute in a 
set of intervals
� It reduces the cardinality of the attribute domain

� Techniques
� N intervals with the same width W=(vmax – vmin)/N

� Easy to implement

� It can be badly affected by outliers and sparse data

� Incremental approach

� N intervals with (approximately) the same cardinality
� It better fits sparse data and outliers

� Non incremental approach

� clustering
� It fits well sparse data and outliers
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Discretization

Data Equal interval width

Equal frequency K-means
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Attribute Transformation

� A function that maps the entire set of values of a 
given attribute to a new set of replacement 
values such that each old value can be identified 
with one of the new values
� Simple functions: xk, log(x), ex, |x|

� Standardization and Normalization 
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Normalization

� It is a type of data transformation
� The values of an attribute are scaled so as to fall 
within a small specified range, typically [-1,+1] or 
[0,+1]

� Techniques
� min-max normalization

� z-score normalization

� decimal scaling
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Similarity and Dissimilarity

� Similarity
� Numerical measure of how alike two data objects are.

� Is higher when objects are more alike.

� Often falls in the range [0,1]

� Dissimilarity
� Numerical measure of how different are two data objects

� Lower when objects are more alike

� Minimum dissimilarity is often 0

� Upper limit varies

� Proximity refers to a similarity or dissimilarity
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Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.
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Euclidean Distance

� Euclidean Distance

Where n is the number of dimensions (attributes) and pk and 
qk are, respectively, the kth attributes (components) or data 
objects p and q.

� Standardization is necessary, if scales differ.
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Euclidean Distance

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

Distance Matrix

p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0
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Minkowski Distance

� Minkowski Distance is a generalization of Euclidean 
Distance

Where r is a parameter, n is the number of dimensions 
(attributes) and pk and qk are, respectively, the kth attributes 
(components) of data objects p and q.
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Minkowski Distance: Examples

� r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 
� A common example of this is the Hamming distance, which is just the 
number of bits that are different between two binary vectors

� r = 2.  Euclidean distance

� r → ∞.  “supremum” (Lmax norm, L∞ norm) distance. 
� This is the maximum difference between any component of the vectors

� Do not confuse r with n, i.e., all these distances are 
defined for all numbers of dimensions.
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Minkowski Distance

Distance Matrix

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

L1 p1 p2 p3 p4

p1 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

L2 p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0

L∞∞∞∞ p1 p2 p3 p4

p1 0 2 3 5

p2 2 0 1 3

p3 3 1 0 2

p4 5 3 2 0
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Common Properties of a Distance

� Distances, such as the Euclidean distance, 
have some well known properties.

1. d(p, q) ≥ 0 for all p and q and d(p, q) = 0 only if 
p = q. (Positive definiteness)

2. d(p, q) = d(q, p) for all p and q. (Symmetry)
3. d(p, r) ≤ d(p, q) + d(q, r) for all points p, q, and r.  

(Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data 
objects), p and q.

� A distance that satisfies these properties is a 
metric
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Common Properties of a Similarity

� Similarities, also have some well known 
properties.

1. s(p, q) = 1 (or maximum similarity) only if p = q. 

2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data 
objects), p and q.
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Similarity Between Binary Vectors

� Common situation is that objects, p and q, have only 
binary attributes

� Compute similarities using the following quantities
M01 = the number of attributes where p was 0 and q was 1

M10 = the number of attributes where p was 1 and q was 0
M00 = the number of attributes where p was 0 and q was 0

M11 = the number of attributes where p was 1 and q was 1

� Simple Matching and Jaccard Coefficients 
SMC =  number of matches / number of attributes 

=  (M11 + M00) / (M01 + M10 + M11 + M00)

J = number of 11 matches / number of not-both-zero attributes values
= (M11) / (M01 + M10 + M11) 
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SMC versus Jaccard: Example

p =  1 0 0 0 0 0 0 0 0 0    
q =  0 0 0 0 0 0 1 0 0 1

M01 = 2   (the number of attributes where p was 0 and q was 1)

M10 = 1   (the number of attributes where p was 1 and q was 0)

M00 = 7   (the number of attributes where p was 0 and q was 0)

M11 = 0   (the number of attributes where p was 1 and q was 1)

SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / (2+1+0+7) = 
0.7

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0
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Cosine Similarity

� If d1 and d2 are two document vectors, then
cos( d1, d2 ) = (d1 • d2) / ||d1|| ||d2|| ,

where • indicates vector dot product and || d || is the norm of vector d.

� Example:

d1 =  3 2 0 5 0 0 0 2 0 0 

d2 =  1 0 0 0 0 0 0 1 0 2

d1 • d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)
0.5 =  (42) 0.5 = 

6.481

||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)
0.5 = (6) 0.5 = 2.245

cos( d1, d2 ) = .3150
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Combining Similarities

� Sometimes attributes are of many different 
types, but an overall similarity is needed.
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Combining Weighted Similarities

� May not want to treat all attributes the same.
� Use weights wk which are between 0 and 1 and sum to 1. 
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