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Association rules

= Objective
= extraction of frequent correlations or pattern from a
transactional database

Tickets at a supermarket

counter = Association rule
diapers = beer

1| Bread, Coke, Mik = 2% of transactions contains
2 | Beer, Bread both items

3 | Beer, Coke, Diapers, Milk = 30% of transactions

4 | Beer, Bread, Diapers, Milkk containing diapers also

5 | Coke, Diapers, Milk contains beer

obo

Association rule mining

= A collection of transactions is given
= a transaction is a set of items
» items in a transaction are not ordered
= Association rule
A, B=C
= A, B = items in the ru/e body
= C = item in the rule head
= The = means co-occurrence
= not causality
= Examples
= cereals, cookies = milk
= age < 40, life-insurance = yes = children = yes
= customer, relationship = data, mining

oBo

Definitions

= [temsetis a set including one or more
items
= Example: {Beer, Diapers}

» k-itemsetis an itemset that contains k ez e, DI

items Beer, Bread

s Support count (#) is the frequency of Beer, Coke, Diapers, Milk

occurrence of an itemset Beer, Bread, Diapers, Mik

= Example: #{Beer,Diapers} = 2

al s w|n| -

Coke, Diapers, Milk

s Supportis the fraction of transactions
that contain an itemset
= Example: sup({Beer, Diapers}) = 2/5
= Frequent itemsetis an itemset whose
support is greater than or equal to a
minsup threshold

oBo

Rule quality metrics

= Given the association rule
A=B

= A, B are itemsets
= Supportis the fraction of transactions containing
both A and B
#{A,B}
ITl
= |T| is the cardinality of the transactional database
= a priori probability of itemset AB
= rule frequency in the database
= Confidenceis the frequency of B in transactions
containing A
sup(A,B)
sup(A)
= conditional probability of finding B having found A
= “strength” of the "="

bBo

Rule quality metrics: example

= From itemset {Milk, Diapers} the
following rules may be derived

Bread, Coke, Milk

= Rule: Milk = Diapers

Beer, Bread
= support

sup=#{Milk,Diapers}/#trans. =3/5=60% Beer, Coke, Diapers, Milk

= confidence
conf=#{Milk,Diapers}/#{Milk}=3/4=75%

Beer, Bread, Diapers, Milk

al s w|n| -

= Rule: Diapers = Milk il EEE, DX

= same support
$=60%
= confidence
conf=#{Milk,Diapers}/#{Diapers}=3/3

=100%

bBo
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» Association rule extraction g~ Association rule extraction

= Brute-force approach

= Given a set of transactions T, association rule = enumerate all possible permutations (i.e., association rules)
.. . . ! P = compute support and confidence for each rule
mining IS the extraction of the rules SatISfymg the = prune the rules that do not satisfy the minsup and minconf
constraints constraints

= Computationally unfeasible

= support 2 minsup threshold = Given an itemset, the extraction process may be split

= confidence = minconfthreshold « first generate frequent itemsets
= The result is = next generate rules from each frequent itemset
= Example

= complete (a//rules satisfying both constraints) « Ttemset

= correct (only the rules satisfying both constraints) {Milk, Diapers} sup=60%
= May add other more complex constraints - Rhllililfi Diapers (conf=75%)
Diapers = Milk (conf=100%)

piG , piG .

& Association rule extraction : Frequent Itemset Generation

Given d items, there
are 24 possible
candidate itemsets

(1) Extraction of frequent itemsets
= many different techniques
= level-wise approaches (Apriori, ...)
= approaches without candidate generation (FP-growth, ...)
= other approaches
= most computationally expensive step
= limit extraction time by means of support threshold
(2) Extraction of association rules
= generation of all possible binary partitioning of each
frequent itemset
= possibly enforcing a confidence threshold

From: Tan,Steinbach, Kumar, Introduction
to Data Mining, McGraw Hill 2006

10

¢; Frequent Itemset Generation : Improving Efficiency
= Brute-force approach = Reduce the number of candidates

= Prune the search space
= complete set of candidates is 24

= Reduce the number of transactions

= each itemset in the lattice is a candidate
frequent itemset

= scan the database to count the support of each = Prune transactions as the size of itemsets increases
candidate « reduce |T|
= match each transaction against every candidate = Reduce the number of comparisons

= Complexity ~ O(|T| 2dw) = Equalto |T| 2¢

= Use efficient data structures to store the candidates

= |T| is number of transactions or transactions

= d is number of items
= W is transaction length

piG n piG 2
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: The Apriori Principle

"If an itemset is frequent, then all of its
subsets must also be frequent”

= The support of an itemset can never exceed
the support of any of its subsets

= It holds due to the antimonotone property
of the support measure

= Given two arbitrary itemsets A and B
if A < B then sup(A) = sup(B)

= It reduces the number of candidates

piG 2

B

The Apriori Principle

9
From: Tan,Steinbach, Kumar, Introduction
to Data Mining, McGraw Hill 2006

Found to be !
Infrequent \

piG 1

& Apriori Algorithm [Agro4]
= Level-based approach
= at each iteration extracts itemsets of a given length k

= Two main steps for each level

= (1) Candidate generation
= Join Step

generate candidates of length k+1 by joining frequent itemsets
of length k

= Prune Step

apply Apriori principle: prune length k+1 candidate itemsets
that contain at least one k-itemset that is not frequent

= (2) Frequent itemset generation
= scan DB to count support for k+1 candidates
= prune candidates below minsup

: Apriori Algorithm [Agro4]

= Pseudo-code
C,: Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items};
for (k= 1; L, '=0; k++) do
begin
Gy, = candidates generated from Lj;
for each transaction ¢in database do
increment the count of all candidates in .,
that are contained in ¢
L.; = candidates in G,,, satisfying minsup
end
return U, [

» Generating Candidates

= Sort L, candidates in lexicographical order
= For each candidate of length k
= Self-join with each candidate sharing same L, ; prefix
= Prune candidates by applying Apriori principle
= Example: given L;={abc abd, acd, ace, bcdy
= Self-join
» abcd from abcand abd
= acde from acd and ace
= Prune by applying Apriori principle
= acdeis removed because adeis not in L;
. C={abcdy

piG y

- Apriori Algorithm: Example

Example DB
TID ltems
1 {AB}
2 {B,C,D}
3 {A,C,D,E}
4 {AD,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 | {B,C,E}
minsup>1

piG 2
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.: Generate candidate 1-itemsets ¢: Prune infrequent candidates in C;
Example DB Example DB
TID ltems TID ltems
1 {AB} G 1 {AB} G
2 {B,C,D} . itemsets|sup 2 {B,C,D} < itemsets|sup
3 | {AC,DE} 1=DB M |7 3 | {ACD,E} 1% DB A |7
4| apE | A" | @ |8 4| pE | 29" | ® |8 m L=C
5 | {AB,C} © |7 5 | {ABC} |7 1=
6 | {AB,C,D} D} | 5 6 | {AB,CD} {D} | 5
7 {B,C} {E} |3 7 {B.C} {E} |3
8 | {ABC} 8 | {ABC}
9 | {AB,D} 9 | {ABD} | = All itemsets in set C, are frequent
10 | {B,CE} 10 | {B.CE} according to minsup>1
minsup>1 minsup>1
D‘}é/‘G 19 D‘}é/‘G 20

» Generate candidates from Z, » Count support for candidates in C,
G, G %

itemsets itemsets itemsets | sup
Ly {AB} Ly AB} | o | {ABY | 5
itemsets|sup {A,C} itemsets|sup {A,C} DB {A,C} 4
Ay | 7 {AD} Ay | 7 {AD} | ¢an | fAD} | 4
B |8 {AE} B} |8 {AE} {AE} | 2
€y |7 {B,C} €y |7 {B,C} {B.C} | 6
Oy | 5 ‘ {B.D} Oy | 5 ‘ {B.D} ‘ {B.D} | 3
{E} |3 {B.E} {E} |3 {B,E} {BE} | 1
{C.D} {C,D} {cb} | 3
{C.E} {C,E} {CE} | 2
{D,E} {D,E} {DE} | 2

D‘}E’AG 21 D‘}E’AG 2

Prune infrequent candidates in C, » Generate candidates from £,
Tl A
G G, L, itez:;e)ts susp itemsets
itemsets itemsets | sup - g {A,B,C}
L AB) | yu | (AB) | 5 'te{:j;)ts 2 Eﬁigi j {AB.,D}
itemsets|sup {A,C} DB {A,C} 4 (AC) 4 {A’E} 2 {A,B,E}
{g«} 7 {AD} | ccan | fAD} | 4 AaD} | 4 B0 | 6 q {A,g,D)
B} |8 {AE} {AE} | 2 (AE} | 2 ®D) | 3 {AC.E}
© |7 q {8.C} q {8C) | 6 q B0 | 6 oy | 3 {AD.E}
o} |5 {B.D} B0} | 3 B0 | 3 P ©.00)
® ls] | B o} | 3 og | 2| [P
{C.D} {CD} | 3 ©CE | 2 :
{CE} {CE} | 2 DE | 2
{D.E} {DE} | 2 '
D‘}é/‘G 23 D‘}é/‘G 2
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- Apply Apriori principle on C;

L, G

itemsets| sup itemsets
{AB} | 5 {A,B,C}
{AC} | 4 {A,B,D}
{AD} | 4

{AE} | 2 {A,C,D}
©C) | 6 M) acE)
{B,D} | 3 {A,D,E}
{Cby | 3 {B,C,D}
{CE} | 2 {C,D,E}
{DE}y | 2

= Prune {AB,E}
= Its subset {B,E} is infrequent ({B,E} is not in L)

piG .

# Count support for candidates in C;

' L, G C;
m{:;e)ts SUSP itemsets itemsetJS sup

, {ABC} 3¢ FaBGH 3
Eﬁigi j {ABD}| pp :{{A,’B:D}}: 2
e ) ACD) scan | tA.C,D}| 2
(B.C} | 6 q {A,C,E} ‘ Eﬁgg 12
®D} | 3 {AD.E) B.CD}| 2
©D) | 3 {B,C.D} eog
CE} | 2 {C.D.E} DB
{DE} | 2

piG 2

: Prune infrequent candidates in C;

- Lz G C.

|te{;173e)ts susp lomshls itemsefs sup L
{A:C} 4 {AB.C}| 30 {ABC} 3 itemsets| sup
(AD} | 4 {£.8.0) S'CDaBn {ABD}| 2 (ABC 3
(AE) | 2 (ACD) 2 {ABD}| 2
BC) | 6 B (hce| M AcD) 2
(8D} | 3 (AD.E} {ADE}| 2
{cpy| 3 B.C.D) (B.CD}| 2
{CE | 2 {C.D,E}

{DE | 2

= {A,C,E} and {C,D,E} are actually infrequent
= They are discarded from C;

piG 7

» Generate candidates from L;

Ly
itemsets| s
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

c
=

G
q itemsets
{A,B,C,D}

NNNN W

piG .

- Apply Apriori principle on C,

Ly
itemsets| s
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

c
=

G
q itemsets
{A,B,C,D}

NNNN W

= Check if {A,C,D} and {B,C,D} belong to L;
= [;contains all 3-itemset subsets of {A,B,C,D}
= {A,B,C,D} is potentially frequent

piG s

» Count support for candidates in C,

Ly
itemsets| s
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

c
=
-
E
o
@
O

q itemsets itemsets [sup|
{A,B,C,D} {AB,C,D}| 1

NNNN W

piG .
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: Prune infrequent candidates in C,

Ly
itemsets| s
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

c
=

41 DB
G scan S

= (e = i

NNNN W

= {A,B,C,D} is actually infrequent
= {A,B,C,D} is discarded from C,

piG a

- Final set of frequent itemsets

Example DB Ly L,

itemsets|sup itemsets| sup

T —tems oy |7 AB)} | 5

2 T oo ® |8 AC) | 4

. |7 {AD} | 4

3 | {AC,D,E} o |5 {AE} 2

fotee | mp Lm ) jEale

6 | {AB,CD} L oo |3

7 (B,C} itemsets| sup {C’E} >

8 | {ABCH ABL) 3 DpE | 2
s | pon nobl:
10 {B,C,E} {A’D’E} >
minsup>1 {B:C:D} 2

piG 2

Counting Support of Candidates

= Scan transaction database to count support of
each itemset
= total number of candidates may be large
= one transaction may contain many candidates
= Approach [Agr94]
= candidate itemsets are stored in a hash-tree
= /eafnode of hash-tree contains a list of itemsets and counts
= interior node contains a hash table
= subset function finds all candidates contained in a
transaction
= match transaction subsets to candidates in hash tree

piG s

Performance Issues in Apriori

= Candidate generation

= Candidate sets may be huge

» 2-itemset candidate generation is the most critical
step

= extracting long frequent intemsets requires
generating all frequent subsets

= Multiple database scans

= n+1 scans when longest frequent pattern length
isn

piG 2

: Factors Affecting Performance

= Minimum support threshold
= lower support threshold increases number of frequent itemsets
= larger number of candidates
= larger (max) length of frequent itemsets
Dimensionality (number of items) of the data set
= more space is needed to store support count of each item
= if number of frequent items also increases, both computation and
I/O costs may also increase
= Size of database
= since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions
= Average transaction width
= transaction width increases in dense data sets

= may increase max length of frequent itemsets and traversals of
hash tree
= number of subsets in a transaction increases with its width

piG s

Improving Apriori Efficiency

= Hash-based itemset counting [Yu95]

= A k-itemset whose corresponding hashing bucket count is
below the threshold cannot be frequent

= Transaction reduction [Yu95]

= A transaction that does not contain any frequent k-itemset is
useless in subsequent scans

= Partitioning [Sav96]

= Any itemset that is potentially frequent in DB must be frequent
in at least one of the partitions of DB

piG s
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&+ Improving Apriori Efficiency

= Sampling [T0i96]

= mining on a subset of given data, lower support threshold + a
method to determine the completeness

= Dynamic Itemset Counting [Motw98]

= add new candidate itemsets only when all of their subsets are
estimated to be frequent

piG 7

FP-growth Algorithm [Han00]

= Exploits a main memory compressed
rappresentation of the database, the FP-tree
= high compression for dense data distributions
= less so for sparse data distributions
= complete representation for frequent pattern mining
= enforces support constraint
= Frequent pattern mining by means of FP-growth
= recursive visit of FP-tree
= applies divide-and-conquer approach
= decomposes mining task into smaller subtasks
= Only two database scans
= count item supports + build FP-tree

piG s

» FP-tree construction
‘ Example DB

= (1) Count item support and prune

TID| Items i(te)ms below minst%J thresho?d

! {A.B} = (2) Build Header Table by sorting

2 {B.C.D} items in decreasing support order

3 {A,C,D,E}

4 {AD,E} Header Table

5 {AB,C} ltem | sup

6 | {AB,C,D} Br| 8

7 {B,C} {AY]| 7

8 {A,B,C} ©cy 7

9 {A.B.D} {D}| 5

10 {B,C,E} {E}| 3
minsup>1

piG s

» FP-tree construction
Example DB

. .
(1) Count item support and prune
T:D '{t:\rg? items below minsup threshold

= (2) Build Header Table by sorting
2 {B.C.D} items in decreasing support order
i {?ACI’DDI’EE) = (3) Create FP-tree

5 {AB.C} For each transaction ¢in DB

6

7

8

= order transaction ¢items in
{AB,C,D} decreasing support order

{B.C} = same order as Header Table
{AB,C} = insert transaction £in FP-tree
9 {A,B,D} = use existing path for common prefix
10 {B,C,E} = create new branch when path
becomes different
minsup>1

piG 0

FP-tree construction

Trénsaction Sorted transaction

TID | ltems TID | ltems
1 {A,B} q 1 {B,A}

FP-tree

Header Table
Iltem | sup
{B}| 8
A 7
C 7
{D}| 5
{E}H 3

piG 41

FP-tree construction

Trénsaction Sorted transaction

TID | ltems q TID | ltems
2 | {B,C,D} 2 | {BCD}

Header Table
Iltem | sup
{B}| 8
{A}
{c}
{D}
{E}

w o NN

piG o
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FP-tree construction

@
Transaction Sorted transaction
TID | ltems

TID | ltems
3 |{ACDE} q 3 |{ACD,E}

Header Table

Item

sup

{B}
{A}
€}
{D}
{E}

8

7
7
5
3

oBo

43

.
Transaction

FP-tree construction

Sorted transaction

TID | ltems

4 | {ADE}

q TID | ltems
4 | {ADE}

Header Table

Item

sup

{B}
{A}
€}
{D}
{E}

8

w o NN

oBo

Transaction

FP-tree construction

Sorted transaction

TID | ltems

5 | {ABC}

q TID | ltems
5 | {BAC}

Header Table

Item

sup

{B}
{A}
C}
{D}
{E}

8

7
7
5
3

oBo

Transaction

FP-tree construction

Sorted transaction

TID | ltems

6 |{AB,CD}

q TID | ltems
6 {BACD}

Header Table

Item

sup

{B}
{A}
€}
{D}
{E}

8

w o NN

oBo

FP-tree construction

Transaction

Sorted transaction

TID | ltems TID | ltems
7 {B,C} q 7 {B,C}

Header Table
Iltem | sup
{B}| 8
A 7
C 7
{D}| 5
{E}H 3

bBo

FP-tree construction

Transaction

Sorted transaction

TID | ltems

8 | {ABC}

q TID | ltems
8 | {BAC}

Header Table
Iltem | sup
{B}| 8
{A}
{c}
{D}
{E}

w o NN

bBo
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:¢ FP-tree construction

Trénsaction Sorted transaction

TID | ltems q TID | ltems
9 | {AB,D} 9 | {BAD}

Header Table
Iltem | sup
{B}| 8
A 7
€ 7
{D}| 5
{E}H 3

oBo

¢; FP-tree construction

Trénsaction Sorted transaction

TID | ltems q TID | ltems
10| {B,C,E} 10| {B,C,E}

Header Table
Iltem | sup
{B}| 8
A 7
{C 7
{D}| 5
{E}H 3

oBo

: Final FP-tree

Header Table
Iltem | sup
B8 f-
Ay 7 4.

€| 7

{D}| 5

{EH 3 }°

Item pointers are used to assist
frequent itemset generation

oBo

FP-growth Algorithm

= Scan Header Table from lowest support item up

= For each item i in Header Table extract frequent
itemsets including item i and items preceding it in
Header Table
= (1) build Conditional Pattern Base for item i (i-CPB)
= Select prefix-paths of item i from FP-tree
= (2) recursive invocation of FP-growth on i-CPB

oBo

52

: Example

4

= Consider item D and extract frequent itemsets including
= D and supported combinations of items A, B, C

Header Table
Iltem | sup

<> Conditional Pattern Base of D

= (1) Build D-CPB
= Select prefix-paths of item D from FP-tree

£

Header Table
Iltem | sup
By 8 f----— ’
A 7 4L
C}| 7 r .

N
Frequent
itemset:

D, sup(D) =5

bBo

Elena Baralis, Silvia Chiusano
Politecnico di Torino




Database Management Systems Association Rules
Fundamentals

G Conditional Pattern Base of D
Header Table
Item | sup

<> Conditional Pattern Base of D
Header Table
. Item | sup
-------- ’ ) : B} 8 f---r
{AY| 7

Header Table

Header Table

Item | sup Item | sup

By 8 By 8 |- ’

{A} Py A 7 1.
C : B : ~D: Cy| 7 f-
D-CPB__ \ D-CPB %
Ttems [sup |t Ttems [sup |t
BACH 1 |} BACH 1 |}

{BA} | 1 {BA} |1

{BC |1

D‘%‘G 57 D‘%‘G 58

g s> Conditional Pattern Base of D
Header Table = (1) Build D-CPB
ltem | sup ) = Select prefix-paths of item D from FP-tree
{BY| 8 fp-----"° D-CPB D-condii D-conditional
w71l conditional FP-tree
al 7 [ Items |sup Header Table
= = : 1 Ay 4 -
\ y BC |1 ‘ @ 3 -
Ttems [sup |t “ey 11 AN
BAC [ 1 || @ |1
{BA |1
{BC |1
AaC |1
RN = (2) Recursive invocation of FP-growth on D-CPB
D{?/‘G 59 D‘%‘G 60

Elena Baralis, Silvia Chiusano
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& Conditional Pattern Base of DC s> Conditional Pattern Base of DC
= (1) Build DC-CPB = (1) Build DC-CPB
= Select prefix-paths of item C from D-conditional FP-tree = Select prefix-paths of item C from D-conditional FP-tree
- D-conditional
Itezsc qup D-conditional FP-tree DC-CPB DC-conditional DC-conditional
{BAC}| 1 reader Table Items [sup Header Table FP-tree
{B:rA,} 1 IEEAH; S:P S {AB} | 1 Ttem | sup “,_
B |1 ‘ & 3 b w1 q B 2 -
{AC |1 RINEN] 8 |1 {BY| 2 j---_.
@ |1 N ’ DC-CPB
\l Items [sup
{AB} | 1
Fi i :
Beé?iirg(g?:r;‘ieta gx 1 = (2) Recursive invocation of FP-growth on DC-CPB
D{?/‘G 61 D‘%‘G 62

:Conditional Pattern Base of DCB
= (1) Build DCB-CPB = (1) Build DCB-CPB

= Select prefix-paths of item B from DC-conditional FP-tree = Select prefix-paths of item B from DC-conditional FP-tree
DC-CPB DC-conditional DC-conditional DCB-CPB

Ttems |sup Header Table FP-tree = Item A is infrequent in DCB-CPB

ABY | 1 Ttem | su ltems | sup i

{A, p - R a1 = Ais removed from DCB-CPB

g i q - » DCB-CPB is empty

7
e
l ’ DCB-CPB

Items |sup 1
Frequent itemset:

{Ay |1
DCB, sup(DCE) = 2 = (2) The search backtracks to DC-CBP

D{?/‘G 63 D‘%‘G 64

Conditional Pattern Base of DB

= (1) Build DCA-CPB = (1) Build DB-CPB
= Select prefix-paths of item A from DC-conditional FP-tree = Select prefix-paths of item B from D-conditional FP-tree
D-CPB . D-conditional
DC-CPB DC-conditional DC-conditional Ttems Tsu D-conditional FP-tree
Ttems |sup Header Table FP-tree P Header Table
{BAC} | 1
{AB} |1 Item | sup - P {B,A} 1
{Ay |1 - {BC |1
& 11 &2 g ’ Ao |1
l {A} 1

. DCA-CPB is empty
I';Eiq”ent(g%"/:;e“z (no transactions)
, SUp =
Frequent itemset: a4 2
= (2) The search backtracks to D-CBP DB, sup(DB) = 3

D{?/‘G 65 D‘%‘G 66

Elena Baralis, Silvia Chiusano
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- Conditional Pattern Base of DB :Conditional Pattern Base of DBA

= (1) Build DB-CPB = (1) Build DBA-CPB
= Select prefix-paths of item B from D-conditional FP-tree = Select prefix-paths of item A from DB-conditional FP-tree

DB-conditional

DB-CPB Header Table
DB-conditional Items |sup [ Ttems [sup | DB-conditional
FP-tree {A} | 2 q -] FP-tree
. DBA-CPB is empty
Frequent itemset: (no transactions)

DBA, sup(DBA) = 2
= (2) The search backtracks to D-CBP J

D‘}E’AG 67 D‘}E’AG 68

DB-conditional
DB-CPB Header Table

Items |sup Items |sup
A |2 ‘ @ 2 -

= (2) Recursive invocation of FP-growth on DB-CPB

- Conditional Pattern Base of DA Frequent itemsets with prefix D

&
= (1) Build DA-CPB = Frequent itemsets including D and supported
= Select prefix-paths of item A from D-conditional FP-tree combinations of items B,A,C
D-CPB D-conditional D—c'?;ﬂtéce)nal Example DB
Items |sup Header Table
{BAC} | 1 TID ltems '
{BA} |1 1 {A,B} itemsets| sup
B,C 1 2 | {BCD} {D} 5
{B,C}
AC 3 | {ACD,E} {AD} | 4
{AC |1
A : 4 | {ADE} 8D} | 3
{A} 1 . C.D 3
: DA-CPB is empty 5 {A,B,C} {C.D}
l (no transactions) 6 | {AB,C,D} {ABD}| 2
{ACD}| 2
Frequent itemset: l ; iBéCé {BCD}| 2
DA, sup(DA) = 4 {AB,C}
B B 9 | {ABD} | minsup>1
DN‘G 69 DN‘G 10 | {B,.C,E} 70

* Other approaches

= Many other approaches to frequent itemset extraction = Some itemsets are redundant because they have
= some covered later identical support as their supersets
= May exploit a different database representation R R T S A L i i i
11 1111000 000 0O0O0O0UO0OTO0O0O0OOO0OOO0 0 0
= represent the tidset of each item [Zak00] R R o o ¢ 000 b 00000000000
. 511 1 1111 0000 0000O0UO0GO0O0O0O0O0O0O0 0 0 0
Horizontal [6]o o 000011111 111110000°0°U0TG0O0O0 0
Data Layout Vertical Data Layout o o 6 0 90 141 111111 10000000000
TID] items ATBTCIDTE Moo o 0 0 0 0 11111 111110000050000.0
1 |ABE 111 2]2]1 [di]o o 0000000 O0GO0U O O0O0O0O0 T 111 111111
2 |B,C,.D 4 | 2| 3] 4| 3 [12]0 o oooooooooooooo::::::::::
3 |cE 5/514|5/|6 Heo o o 0 0 0 000 0000000 4144111111
4 [ACD 6| 7| 8|9 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
5 [AB.C.D 7|89 . W (10
NS g |10 = Number of frequent itemsets =3x>
8 [AB,C k
190 'S’C'D From: Tan,Steinbach, Kumar, Iniroduction to Data Mining, McGraw Hil 2006 = A compact representation is needed

D‘IE’/‘G 7 D‘IE’/‘G [ From: Tan.Steinbach, Kumar, Introduction to Data Mining, McGraw Hil 2006 | 72
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Iltemsets

oBG

Maximal
Itemsets

Infrequent

aximal Frequent Itemset

An itemset is frequent maximal if none of its immediate supersets
is frequent

[ From: Tan,Steinbach, Kumar, Inroduction to Data Mining, McGraw Hil 2006 |

73

# Closed Itemset

= An itemset is closed if none of its immediate
supersets has the same support as the itemset

itemset | sup
TID Items A 4 itemset sup
1 {AB} B | 5 (ABCH | 2
2 {B,C,D} {C} 3 {A.B,D} 3
3 {A,B,C,D} {D} 4 {A,C,D} 2
4 | {ABD} AB | 4 {B.C.D} 3
5 A,B,C,D 2
{: } {A,C} 2 {A,B,C,D} 2
{A,D} 3
{B,C} 3
{B,D} 4
{C,D} 3
D‘g’/‘G From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 7

 Maximal vs Closed Itemsets Maximal vs Closed Frequent Itemsets
TID [ items - renesctionos Minimum support =2 ot maximl
1 | ABC
2 ABCD Closed Tnd
3 BCE maximal
4 | ACDE
5 | DE
#Closed=9
B #Maximal = 4
Not supported by{:.——""’
B any transactions =TT Ty B
DW From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 | 7 DW | From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 76
¢ Maximal vs Closed Itemsets } Effect of Support Threshold
= Selection of the appropriate minsup
Frequent threshold is not obvious
Itemsets
= If minsyp is too high
Ff:;i‘:it = itemsets including rare but interesting items may
Itemsets be lost
example: pieces of jewellery (or other expensive
Maximal products)
requel . .
temsets = If minsup is too low
« it may become computationally very expensive
= the number of frequent itemsets becomes very
large
B From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 .

D‘}E’AG 78
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Interestingness Measures

= A large number of pattern may be extracted
= rank patterns by their interestingness
= Objective measures
= rank patterns based on statistics computed from data
= initial framework [Agr94] only considered support and
confidence
= other statistical measures available
= Subjective measures

= rank patterns according to user interpretation [Silb98]
= interesting if it contradicts the expectation of a user
= interesting if it is actionable

piG »

Confidence measure: always reliable?

= 5000 high school students are given
= 3750 eat cereals
= 3000 play basket
= 2000 eat cereals and play basket

= Rule
play basket = eat cereals
sup = 40%, conf = 66,7%
is misleading because eat cereals has sup 75% (>66,7%)

- E:‘Orl]) Iﬁ—gqﬁaelﬁlss,do?y basket |not basket [total
rule head cereals 2000 1750 3750
= negative not cereals 1000 250 1250
correlation total 3000 2000 5000

Correlation or lift

rA=B
P(4,B)  conf(r)
P(A)P(B)  sup(B)

Correlation =

= Statistical independence
= Correlation = 1

= Positive correlation
= Correlation > 1

= Negative correlation
= Correlation < 1

piG o

 Example

= Association rule
play basket = eat cereals
has corr = 0.89
= negative correlation
= but rule
play basket = not (eat cereals)
has corr = 1,34

piG @

Measure Formula

Mutnal Iformation (M) | sy g s nna e Ty
J-Measure (J) max (P(A, B) log( 54242) + P(AB) log(5T2),
P4, B) log(54R) + P(AB) log( 522 ))
max (P(4)[P(B|4)* + P(BIAY] + P@)[PBIAS + PBIAY]

#

1 | g-coefficient PR I :) = 7€) J ) M-
P(A) PB) (1—P(A))(1- P(B))

2 | GoodmanKruskal's (A) s maxs P “"""ﬁ?.t.‘:‘,“;&‘,‘:f:.’;:‘;;; P(A3)—mazs P(Bx)

i P(A,B)P(Z,5)
3 | Odds ratio (a) éﬁﬁ -
v P(4BYP(AB)-PABIPGD) _ at

4| Y@ P(A,B)P(AB)LP(A,B) P(AB) — atl

5 | Yulew ¥ p(4,5)P(A5)—/P(4,5 -
/P(4,B)P(AB) +/P(ABP(A,B) _Vatl

6 | Kappa (x) BlaB}P(A5)F A P(D)_ P& P(E

RPE-PORE)
7
8

9 | Gini index (G)

—P(B)' - P(B)*,
P(B)[P(A|B)" + P(A|B)’] + P(B)[P(4B)" + P(A|B)"]

—P(4y - PAP)

10 | Support (s) P(A,B)

11 | Confidence (c) max(P(B|A), P(A|B))

12 | Laplace (L) max ( “TESHE, SR

13 | Convietion (V) max (PEIE), POUEL

14 | Interest (I) %;L;,‘E,,L

: s

B (IS) 'P(A)P(B)

16 | Piatetsky-Shapiro’s (PS) | P(4,B)— P(A)P(B)

17 | Certainty factor (F) max (EBATHE PlAlnE)

18 | Added Value (AV) max(P(B|4) — P(B), P(A|B) - P(A))

) PUABVPEE) _ y 1-P(4)P(B)-PAIP(E
B 19 | Collective strength () PP PR@ ¢ 1-P(hB)-P(AD)
G i
DM 20 | Jaceard (¢) SR 1
21 | Klosgen (%) /P(4, B)max(P(B|4) — P(B), P(AlB) — P(4))
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