Politecnico di Torino
Database Management Systems

February 6 2012

Trigger - Draft solution

1. (8 Points) The following relations are given (primary keys are underlined, optional attributes are
denoted with *):

PRODUCT (ProductCode, PName, Price, ProductPoints)

LOYALTY_CARD (CardCode, CustomerName, TotalPoints)

PURCHASE (PurchaseCode, ProductCode, Date, CardCode*, NumberOfItems)
PRIZE (PrizeCode, PrizeDescription, NeededPoints)

NOTIFICATION _REQUEST (NCode, CardCode, PrizeCode, PrizeDescription)

A supermarket wants to manage some activities relating to loyalty cards. For each loyalty card, the
LOYALTY_CARD table contains the total points (attribute TotalPoints) acquired by a customer. The
PRIZE table describes the available prizes. For each prize, the NeededPoints attribute defines the
value of the prize in points. Write the triggers managing the following activities.

(1) Assignment of points for a purchase and possible selection of the prize. Write the trigger to update
the state of the loyalty card of the customer who made the purchase. When a new purchase is made
(insert in the PURCHASE table), the total points achieved by the customer must be updated. For each
product, the ProductPoints attribute contains the points related to the purchase of a single item. To
calculate the total points achieved in the purchase, you should consider the total number of purchased
items (attribute NumberOfItems). When the product is not worth the acquisition of any points, the
attribute ProductPoints is equal to zero. Note that purchases are not necessarily associated with
a loyalty card. When the purchase is not associated with a loyalty card, the value of the CardCode
attribute is NULL and the LOYALTY_CARD table should not be updated.

Next, you must check if the total points accumulated by the customer allow her to obtain a prize, i.e., if
there is at least one prize having value (attribute NeededPoints) less than or equal to the total points
accumulated by the customer. If so, among the prizes that can be received with the accumulated
points, the prize with the maximum value must be chosen. Assume that there is at most one prize
satisfying this condition. Finally, a request to notify the possibility of receiving the selected prize for
the cardholder must be inserted in the NOTIFICATION REQUEST table. The NCode primary key is a
counter, which should be incremented each time a new notification request is inserted (note that fully
processed notification requests could be removed from database).



creat
after
for e
when
decla
myP
N n
Pn
Z n
PCo

begin

e trigger PointsUpdate
insert on purchase

ach row

(NEW.CardCode IS NOT NULL)

re

rizeDescription varchar(10);

umber;

umber;

umber;

de number;

--read points for the product

sel
fro
whe

if

ect ProductPoints into P
m PRODUCT
re ProductCode = :NEW.ProductCode;

(P <> 0) then

--update loyalty card

update LOYALTY_CARD

set TotalPoints = TotalPoints + P * :NEW.NumberOfItems
where CardCode = :NEW.CardCode;

--read maximum needed points for a prize
select max(NeededPoints) INTO Z
from PRIZE
where NeededPoints <= (select TotalPoints
from LOYALTY_CARD
where CardCode = :NEW.CardCode);

if (Z IS NOT NULL) then

-—- select the prize

select PrizeCode, PrizeDescription into PCode, myPrizeDescription
from PRIZE

where NeededPoints = Z;

—--read maximum NCode
select max(NCode) into
from NOTIFICATION_REQUEST;

if (N IS NULL) then
N := 0;
end if;



—-—insert notification
insert into NOTIFICATION_REQUEST (NCode, CardCode, PrizeCode, PrizeDescription)
values (N+1, :NEW.CardCode, PCode, myPrizeDescription);
end if;
end if;

end;

(2) Integrity constraint on the maximum value in points for a product. For each product, the value in
points (attribute ProductPoints in the PRODUCT table) can not exceed 1/10 of the sale price (attribute
Price). Write the trigger managing the integrity constraint, by assigning the maximum value, equal
to 1/10 of the sale price, when the maximum allowed value is exceeded.

EVENT: insert on PRODUCT

update of Price, ProductPoints on PRODUCT
EXECUTION GRANULARITY: row level (one tuple at a time is checked)
EXECUTION MODE: before (to correct comnstraint violation)
CONDITION: ProductPoints > Price/10
ACTION: assign ProductPoints := Price/10

create or replace trigger checkProductPoints
before insert or update of ProductPoints, Price on PRODUCT
for each row
when (NEW.ProductPoints > NEW.Price/10)
begin
:NEW.ProductPoints := :NEW.Price/10;
end;



