Disk-based pattern mining

Data Base and Data Mining Group of Politecnico di Torino

Elena Baralis, Tania Cerquitelli
Politecnico di Torino

Turin, May 13t 2009

Main-memory frequent pattern mining

= Continuous improvement with respect to baseline
techniques for efficient computation of frequent itemsets

= Item-covers [Zak00]

= COFI-Tree [EI-04]

= Patricia-Trie [Pie03]

= Prefix-Trie: Prefix-Tree [Gra03], AFOPT [LiLO3]

= Array-based: LCM v.2 [Uno04]

= Hybrid structures: LCM v.3 [Uno05], CGAT [Bas06]

= Silver bullet not yet available
= every technique works better with a given data distribution




FET%

‘34' Incremental mining of frequent patterns

= Many real-life databases are updated by
periodically incoming business information
= E.g., data evolve over time

= Most techniques require frequent itemset
recomputation

= Some algorithms incrementally update ad-hoc
data structures to simplify extraction

CATS-Tree [Che03]

CanTree [Leu05]

FP-Tree based structure [Adn06]

INUP_Tree [Hez07]

= |-Forest [Bar08]

Q g Large scale frequent pattern mining

= Technological advances allow gathering an
increasingly large amount of data

= €.7g., in the science, engineering, and business
areas

= database size > 100 GB
= Our ability to collect data far outstrips our
capability to analyze it efficiently

= advanced strategies to speed up and scale up
data mining algorithms are needed

DG




A

i Large scale frequent pattern mining

R

= Main-memory data mining algorithms

= exploit ad-hoc main-memory data structures to efficiently
extract knowledge

= memory resident data structures to represent the original dataset
in main-memory

= rely on the available physical memory

= may run out of memory when the analysis is performed on very
large databases [Goe04,Vaa04]

= are computationally complex

= To overcome the main memory size bottleneck
= disk-based frequent pattern mining algorithms

D\'\3,\G ;

“ Disk-based frequent pattern mining

= The analysis is split in two steps

= Given the original dataset, a persistent (possibly
lossy) representation of its data is stored in
secondary memory
= Clever and compact data structures are needed

= Itemset extraction is performed on relevant
portions of these data structures

= only a reduced portion of data is loaded into main
memory to be processed by the current mining
process




AT

Proposed approaches

e

i}
-

¥

Sad

= Disk-based approaches
= B+tree-based indices [RamO02]
= Inverted Matrix [EIO3]
= Diskmine [Gra04]
= TDD and ST-Merge Method: suffix-tree [Tat04,Tia05]
= 1/0 conscious optimizations [Bue06]
= TRELLIS: suffix tree indexing [PhoQ7]
= DRFP-tree [Adb09]
= Tight integration of pattern extraction in a relational
DBMS
= IMine index integrated into PostgreSQL [Bar05,Bar09]

D\'\3,\G :

B+tree-based indices

= Proposed by Ramesh et al. in [Ram02]
= For a vertical data representation (ECLAT-Based [Zak00])
= for each item, the list of transactions (tidlist) containing the item is stored
= uses tidlist intersections to compute the support of an itemset

= coarse grained index: Itemset ID is the key and the tidlist is a variable
length data field

= fine grained index: (Itemset ID, tid) is the key and no data field is
associated with the key

= For a horizontal data representation (APRIORI-Based [Agr94])
= transactions are stored as (tid, itemset)

= coarse grained index: tid is the key and the itemset is a variable length
data field

= fine grained index: (tid,item) is the key and no data field is associated with
the key
= Drawback
= performance is usually worse than, or at best comparable to, flat file
B mining

pBG ;




+ Inverted Matrix

e

= Proposed by ElHajj and Zaiane in [EIO3]
= A disk-based data structure is exploited to store the original dataset

= inverted matrix layout

each item is associated with all transactions in which it occurs (i.e., an
inverted index)

each transaction is associated with items using pointers

= The COFI-Tree (Co-Occurrence Frequent Item Tree) main-memory
data structure

= Similar to the conditional FP-Tree
= used to generate the frequent itemsets
= Drawback

= It is specifically suited for very sparse datasets, characterized by a
significant number of items with unitary support

Diskmine

= Proposed by Grahne and Zhu in [Gra04]
= Large databases are materialized on disk in different
projected databases whose size fits in main memory

= recursive projections to partition the data until it fits in main
memory

= The in-memory FPgrowth algorithm is exploited to mine
the projected data sets

= the complete set of frequent itemsets is computed by taking the
union of the itemsets mined from each projection

= Drawbacks

= It requires several (costly) accesses to the potentially
large number of projected datasets

= It may need significant disk space to store projections

DG .




.42 1/0 conscious optimizations

= Proposed by Buehrer et al. in [Bue06]

= A slight variation of the FP-Tree data structure to
compactly represent original database on disk

= each node stores item identifier, local support, and node father
pointer

= node link pointers and global support are stored in a separate
structure
= Approximate hash sorting techniques to minimize the
number of page faults during the prefix-tree construction

= frequent transactions are redistributed into a partition of blocks
and approximately sorted

= each block is implemented as a separate file on disk
= the global prefix-tree is built by processing the files in order

D\'\3,\G N

/O conscious optimizations

= Improving spatial data locality

= objective: reducing the number of reads when accessing the prefix-tree
in a bottom-up fashion

= the global prefix-tree is reallocated in virtual memory to obtain the tree in
depth-first order

= Improving temporal data locality

= objective: maximizing reuse of the prefix tree once it is fetched into main
memory

= the tree is broken down into fixed size blocks of memory (page blocks)
along paths of the tree from the leaf nodes to the root

= blocks may be partially overlapped
= Drawbacks

= Data locality requirements are different for different data structures
and mining algorithms

= Different 1/0 conscious techniques should be devised for different
mining approaches

DG 2




IMine

. Proposed by Baralis et al. in [Bar09]

= Index integrated into PostgreSQL
= The index provides a complete representation of the original
database

a prefix-tree, stored in a relational table, encodes in a unique
structure the complete dataset

no support threshold enforced

each node of the tree contains supplementary information to
support more flexible data access methods

a B+Tree structure provides selective access to the prefix-tree
disk blocks during the extraction process
= Data access functions
= support the enforcement of various constraint categories (e.g.,
support constraint, item constraint)

= support different extraction approaches
projection-based algorithms (e.g., FP-growth [Han00])
level-based algorithms (e.g., APRIORI [Agro4])
array-based algorithms (e.g., LCM v.2 [Uno04])

= 1/0 optimization strategies

= Correlation analysis is performed to discover data accessed
together

= Correlated information is stored in the same block to minimize the
number of physical data blocks read during the mining process
= Frequent pattern extraction

= Available implementations for
FPGrowth [Han00]
LCM v.2 [Uno04]

= Algorithms characterized by
different in-memory data representations (e.g., array list, prefix-tree)
different techniques for visiting the search space

= Drawbacks
= Can not deal with dataset size > 50 GB
= Depends on PostgreSQL internals evolution

DG .




AL

4+ Query languages

e

-

P

= Complex extraction requests cannot be specified
directly in the mining process

= Constraints on support&confidence (easy!)
= Constraints on rule structure
= Constraints on correlation structure

= Proposed approaches

= Data mining query languages
= DMQL [Han96]
= MINE RULE [Me096]
= RULE-QL [Tuz02]

= Drawbacks

= Focus on language expressiveness, not on
performance

= No implementations in real systems

D\'\3,\G 5

* Querying frequent patterns

= Discovered knowledge needs to be efficiently stored
and accessed
= postprocessing of large mining results

= Proposed approaches

= Disk-based structures to efficiently store mined
knowledge

= Group bitmap index [Mor98]
= CFP-Tree (Condensed Frequent Pattern-Tree) [Liu03,Liu07]
= Drawbacks
= Size of extracted rule set (also with compact forms) is
larger than original dataset

= Proposed approaches are not able to deal with large scale
results (e.g., GB of data)

DG s




SRS TS
A 4
L

& Open research issue

Sad

= Proposed algorithms do not scale well when applied
to current very large databases

= DB size > 100 GB

= Dealing with disk-resident data
= IS the most promising option
= apart from special hardware solutions (e.g., parallel systems)

= affects performance

= retrieving data from disk is significantly slower than accessing
data in RAM

= requires ad-hoc approaches
= techniques for cache and buffer management
= Should leverage on techniques for database system
indexing

D\'\3,\G .

\ g ¢ Future directions

. 'Study and design novel Aybrid disk-based data
representations

= to compactly store huge amounts of data on secondary
memory
= for any data distribution (e.g., dense, sparse)
= for varying data distributions over the same dataset

= examples: tree-based structure, array-based structure,
hash table, bitmap indices
= Clever physical data representations
= to reduce the number (and cost!) of disk reads
= to limit the amount of memory used in the mining process
= should exploit data /ocality

DG .




i Future directions

= Study and design novel data retrieval algorithms
to directly manage 1/0

= Objective: selectively loading in main memory only the
projection of the original database useful for the
current mining process
= exploit clever physical representations

= disk-resident memory can be directly managed by the
programmer through the file system
= hard to program, system dependent
= Exploit “best” frequent pattern algorithm for the
dataset at hand
= analyze data distribution
= define selection options

D\'\3,\G "

Mining structural patterns

= Graph databases

= Databases with data modeled as graphs

= €.9., XML documents, web logs, citation networks,
chemical structures

= Graph pattern mining, with and without
constraints, means to find the common
substructures from a collection of graphs

= Graph databases are very large and sometimes
cannot be mined in main memory

DG 2




Wes: Mining structural patterns

o T

= Different ad-hoc data structures have been devised to
efficiently perform the frequent graph pattern mining from
graph databases
= Main-memory approach
= AGM (Apriori-like algorithm) [Ino00]
« FSM [Kur01]
= SUBDUE (approximate algorithm) [Kur01]
= gSpan (depth-first approach) [Yan02]
= Disk-based approach
= GraphMiner (Index support for gSpan algorithm) [Wan04, Wan05]

= Frequent tree pattern mining
= Main-memory approach
« FREQT [Asa02]
« TREEMINER [Zak02]

= Drawback
= Proposed approaches are not able to deal with terabytes of data

D\'\3,\G .




