
Data Base and Data Mining Group of Politecnico di Torino

DB
MG

Disk-based pattern mining

Turin, May 13th 2009

Elena Baralis, Tania Cerquitelli
Politecnico di Torino

2DB
MG

Main-memory frequent pattern mining

Continuous improvement with respect to baseline 
techniques for efficient computation of frequent itemsets

Item-covers [Zak00]
COFI-Tree [El-04] 
Patricia-Trie [Pie03]
Prefix-Trie: Prefix-Tree [Gra03], AFOPT [LiL03]
Array-based: LCM v.2 [Uno04] 
Hybrid structures: LCM v.3 [Uno05], CGAT [Bas06]

Silver bullet not yet available
every technique works better with a given data distribution



3DB
MG

Incremental mining of frequent patterns

Many real-life databases are updated by 
periodically incoming business information

E.g., data evolve over time
Most techniques require frequent itemset 
recomputation
Some algorithms incrementally update ad-hoc 
data structures to simplify extraction

CATS-Tree [Che03] 
CanTree [Leu05]
FP-Tree based structure [Adn06]
INUP_Tree [HeZ07]
I-Forest [Bar08]

4DB
MG

Large scale frequent pattern mining

Technological advances allow gathering an 
increasingly large amount of data 

e.g., in the science, engineering, and business 
areas
database size > 100 GB

Our ability to collect data far outstrips our 
capability to analyze it efficiently

advanced strategies to speed up and scale up 
data mining algorithms are needed



5DB
MG

Large scale frequent pattern mining

Main-memory data mining algorithms 
exploit ad-hoc main-memory data structures to efficiently 
extract knowledge

memory resident data structures to represent the original dataset 
in main-memory
rely on the available physical memory
may run out of memory when the analysis is performed on very 
large databases [Goe04,Vaa04] 

are computationally complex 

To overcome the main memory size bottleneck
disk-based frequent pattern mining algorithms

6DB
MG

Disk-based frequent pattern mining

The analysis is split in two steps
Given the original dataset, a persistent (possibly 
lossy) representation of its data is stored in 
secondary memory 

clever and compact data structures are needed

Itemset extraction is performed on relevant 
portions of these data structures

only a reduced portion of data is loaded into main 
memory to be processed by the current mining 
process



7DB
MG

Proposed approaches

Disk-based approaches
B+tree-based indices [Ram02]
Inverted Matrix [El03] 
Diskmine [Gra04] 
TDD and ST-Merge Method: suffix-tree [Tat04,Tia05]
I/O conscious optimizations [Bue06]
TRELLIS: suffix tree indexing [Pho07]
DRFP-tree [Adb09]

Tight integration of pattern extraction in a relational 
DBMS 

IMine index integrated into PostgreSQL [Bar05,Bar09] 

8DB
MG

B+tree-based indices
Proposed by Ramesh et al. in [Ram02]

For a vertical data representation (ECLAT-Based [Zak00])
for each item, the list of transactions (tidlist) containing the item is stored 
uses tidlist intersections to compute the support of an itemset
coarse grained index: Itemset ID is the key and the tidlist is a variable 
length data field
fine grained index: (Itemset ID, tid) is the key and no data field is 
associated with the key

For a horizontal data representation (APRIORI-Based [Agr94])
transactions are stored as (tid, itemset)
coarse grained index: tid is the key and the itemset is a variable length 
data field
fine grained index: (tid,item) is the key and no data field is associated with 
the key

Drawback
performance is usually worse than, or at best comparable to, flat file 
mining



9DB
MG

Inverted Matrix
Proposed by ElHajj and Zaiane in [El03] 

A disk-based data structure is exploited to store the original dataset
inverted matrix layout

each item is associated with all transactions in which it occurs (i.e., an 
inverted index)
each transaction is associated with items using pointers

The COFI-Tree (Co-Occurrence Frequent Item Tree) main-memory 
data structure

similar to the conditional FP-Tree
used to generate the frequent itemsets

Drawback
It is specifically suited for very sparse datasets, characterized by a 
significant number of items with unitary support

10DB
MG

Diskmine

Proposed by Grahne and Zhu in [Gra04] 
Large databases are materialized on disk in different 
projected databases whose size fits in main memory

recursive projections to partition the data until it fits in main 
memory

The in-memory FPgrowth algorithm is exploited to mine 
the projected data sets

the complete set of frequent itemsets is computed by taking the 
union of the itemsets mined from each projection

Drawbacks
It requires several (costly) accesses to the potentially 
large number of projected datasets
It may need significant disk space to store projections



11DB
MG

I/O conscious optimizations

Proposed by Buehrer et al. in [Bue06]
A slight variation of the FP-Tree data structure to 
compactly represent original database on disk

each node stores item identifier, local support, and node father
pointer 
node link pointers and global support are stored in a separate 
structure

Approximate hash sorting techniques to minimize the 
number of page faults during the prefix-tree construction

frequent transactions are redistributed into a partition of blocks 
and approximately sorted
each block is implemented as a separate file on disk 
the global prefix-tree is built by processing the files in order 

12DB
MG

Improving spatial data locality 
objective: reducing the number of reads when accessing the prefix-tree 
in a bottom-up fashion
the global prefix-tree is reallocated in virtual memory to obtain the tree in 
depth-first order

Improving temporal data locality 
objective: maximizing reuse of the prefix tree once it is fetched into main 
memory
the tree is broken down into fixed size blocks of memory (page blocks) 
along paths of the tree from the leaf nodes to the root
blocks may be partially overlapped

Drawbacks
Data locality requirements are different for different data structures 
and mining algorithms
Different I/O conscious techniques should be devised for different 
mining approaches

I/O conscious optimizations



13DB
MG

IMine
Proposed by Baralis et al. in [Bar09] 

Index integrated into PostgreSQL
The index provides a complete representation of the original 
database

a prefix-tree, stored in a relational table, encodes in a unique 
structure the complete dataset

no support threshold enforced
each node of the tree contains supplementary information to 
support more flexible data access methods
a B+Tree structure provides selective access to the prefix-tree 
disk blocks during the extraction process 

Data access functions
support the enforcement of various constraint categories (e.g., 
support constraint, item constraint)
support different extraction approaches

projection-based algorithms (e.g., FP-growth [Han00])
level-based algorithms (e.g., APRIORI [Agr94])
array-based algorithms (e.g., LCM v.2 [Uno04])

14DB
MG

I/O optimization strategies 
Correlation analysis is performed to discover data accessed 
together
Correlated information is stored in the same block to minimize the 
number of physical data blocks read during the mining process 

Frequent pattern extraction
Available implementations for 

FPGrowth [Han00]
LCM v.2 [Uno04]

Algorithms characterized by 
different in-memory data representations (e.g., array list, prefix-tree) 
different techniques for visiting the search space

Drawbacks
Can not deal with dataset size > 50 GB
Depends on PostgreSQL internals evolution

IMine



15DB
MG

Query languages
Complex extraction requests cannot be specified 
directly in the mining process

Constraints on support&confidence (easy!)
Constraints on rule structure
Constraints on correlation structure

Proposed approaches
Data mining query languages

DMQL [Han96]
MINE RULE [Meo96]
RULE-QL [Tuz02]

Drawbacks
Focus on language expressiveness, not on 
performance
No implementations in real systems

16DB
MG

Querying frequent patterns
Discovered knowledge needs to be efficiently stored 
and accessed

postprocessing of large mining results
Proposed approaches

Disk-based structures to efficiently store mined 
knowledge

Group bitmap index [Mor98] 
CFP-Tree (Condensed Frequent Pattern-Tree) [Liu03,Liu07]

Drawbacks
Size of extracted rule set (also with compact forms) is 
larger than original dataset
Proposed approaches are not able to deal with large scale 
results (e.g., GB of data)



17DB
MG

Open research issue
Proposed algorithms do not scale well when applied 
to current very large databases

DB size > 100 GB
Dealing with disk-resident data 

is the most promising option
apart from special hardware solutions (e.g., parallel systems)

affects performance 
retrieving data from disk is significantly slower than accessing
data in RAM

requires ad-hoc approaches
techniques for cache and buffer management

Should leverage on techniques for database system 
indexing

18DB
MG

Future directions
Study and design novel hybrid disk-based data 
representations 

to compactly store huge amounts of data on secondary 
memory 

for any data distribution (e.g., dense, sparse)
for varying data distributions over the same dataset

examples: tree-based structure, array-based structure, 
hash table, bitmap indices

Clever physical data representations 
to reduce the number (and cost!) of disk reads 
to limit the amount of memory used in the mining process
should exploit data locality



19DB
MG

Future directions

Study and design novel data retrieval algorithms 
to directly manage I/O 

objective: selectively loading in main memory only the 
projection of the original database useful for the 
current mining process

exploit clever physical representations
disk-resident memory can be directly managed by the 
programmer through the file system

hard to program, system dependent 

Exploit “best” frequent pattern algorithm for the 
dataset at hand

analyze data distribution
define selection options

20DB
MG

Mining structural patterns

Graph databases
Databases with data modeled as graphs 

e.g., XML documents, web logs, citation networks, 
chemical structures

Graph pattern mining, with and without 
constraints, means to find the common 
substructures from a collection of graphs

Graph databases are very large and sometimes 
cannot be mined in main memory



21DB
MG

Mining structural patterns
Different ad-hoc data structures have been devised to 
efficiently perform the frequent graph pattern mining from 
graph databases

Main-memory approach
AGM (Apriori-like algorithm) [Ino00] 
FSM [Kur01]
SUBDUE (approximate algorithm) [Kur01] 
gSpan (depth-first approach) [Yan02]

Disk-based approach
GraphMiner (Index support for gSpan algorithm) [Wan04, Wan05]

Frequent tree pattern mining
Main-memory approach

FREQT [Asa02]
TREEMINER [Zak02]

Drawback
Proposed approaches are not able to deal with terabytes of data


