

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP

Elena Baralis

Politecnico di Torino

Ambiente controllato di query

- · Sono definite
 - ricerche complesse con struttura prefissata (normalmente parametrica)
 - procedure specifiche di analisi
 - rapporti con struttura prefissata
- È possibile introdurre elementi specifici del settore economico considerato
- È necessario lo sviluppo di codice ad hoc
 - si utilizzano stored procedures, applicazioni contenute in packages, join e aggregazioni predefinite
 - sono disponibili strumenti flessibili per la gestione della reportistica, che permettono di definire layout, periodicità di pubblicazione, liste di distribuzione

Convright - Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 4

Elena Baralis

Operazioni di analisi dei dati

- Calcolo di funzioni aggregate lungo una o più dimensioni
 - necessità di fornire supporto a diversi tipi di funzione aggregata (esempi: media mobile, top ten)
- Operazioni di confronto, essenziali per confrontare l'andamento degli affari (esempio: confronto dei dati delle vendite in mesi diversi)
 - è difficile eseguire confronti utilizzando solo il linguaggio SQL
- Analisi dei dati mediante tecniche di data mining

Copyright – Tutti i diritti riservat

ATA WAREHOUSE: OLAF

Elena Baralis Politecnico di Tor

Ambiente di query ad hoc

- È possibile definire interrogazioni OLAP di tipo arbitrario, progettate al momento dall'utente
 - formulazione delle interrogazioni mediante tecniche point and click, che generano automaticamente istruzioni SQL
 - si possono definire interrogazioni (tipicamente) complesse
 - interfaccia basata sul paradigma dello spreadsheet
- Una sessione di lavoro OLAP permette raffinamenti successivi della stessa interrogazione
- Utile quando i rapporti predefiniti non sono adeguati

Copyright – Tutti i diritti riservat

DATA WAREHOUSE: OLAP -

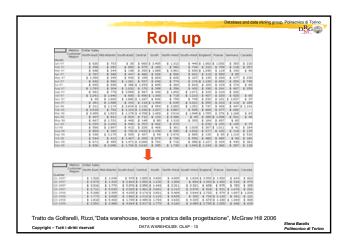
Elena Baralis

Strumenti di interfaccia

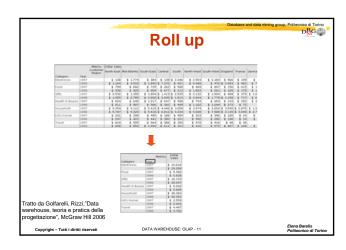
L'utente può interrogare il data warehouse mediante strumenti di vario tipo:

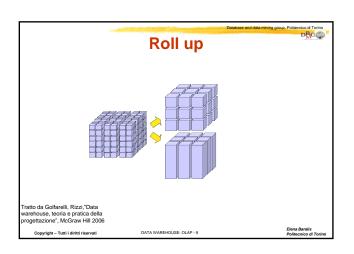
- ambiente controllato di query
- strumenti specifici di query e generazione rapporti
- strumenti di data mining

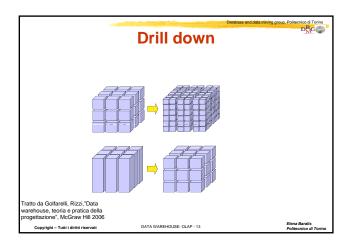
Copyright – Tutti i diritti riservati

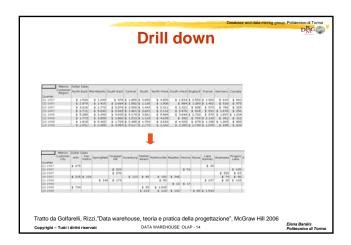

DATA WAREHOUSE: OLAP - 3

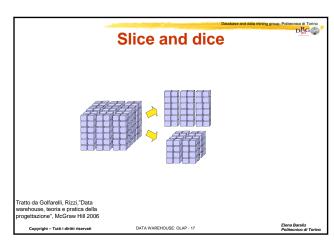
Elena Baralis Politecnico di Te

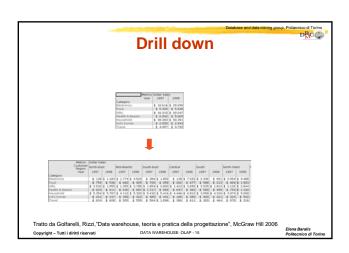


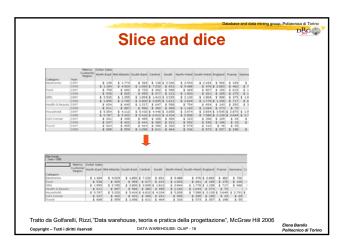


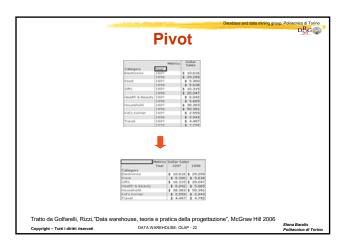




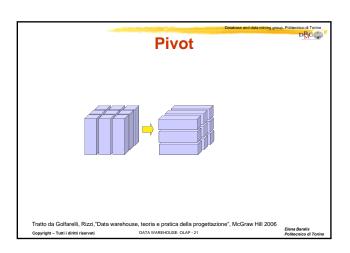












Estensioni del linguaggio SQL

- · Gli strumenti di interfaccia richiedono
 - nuove funzioni aggregate
 - funzioni aggregate utilizzate per le analisi economiche (media mobile, mediana, ...)
 - · posizione nell'ordinamento
 - funzioni per la generazione di rapporti
 - definizione di totali parziali e cumulativi
- Lo standard ANSI ha accettato la proposta di nuove funzioni OLAP
 - incorporate nei prodotti a partire da DB2 UDB 7.1, Oracle 8i v2

Copyright - Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 2

Elena Baralis

Funzioni OLAP in SQL

- Nuova classe di funzioni aggregate (funzioni OLAP) caratterizzate da:
 - finestra di calcolo, all'interno di cui è possibile specificare il calcolo di funzioni aggregate
 - possibilità di calcolare totali cumulativi e media mobile
 - nuove funzioni aggregate per ricavare la posizione nell'ordinamento (ranking)

Copyright - Tutti i diritti riservat

DATA WAREHOUSE: OLAP - 28

Elena Baralis

Estensioni del linguaggio SQL

- · Gli strumenti di interfaccia richiedono
 - operatori per il calcolo di più raggruppamenti (group by) diversi nello stesso momento
- Lo standard SQL-99 (SQL3) ha esteso la clausola group by di SQL

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 2

Elena Baralis Politecnico di Tori

Finestra di calcolo

- Nuova clausola window caratterizzata da:
 - partizionamento: divide le righe in gruppi, senza collassarle (diverso da group by)
 - assenza di partizionamento: un solo gruppo
 - ordinamento delle righe separatamente all'interno di ogni partizione (simile a order by)
 - finestra di aggregazione: definisce il gruppo di righe su cui l'aggregato è calcolato, per ciascuna riga della partizione

Copyright – Tutti i diritti riserva

DATA WAREHOUSE: OLAP - 2

Elena Baralis Politecnico di To

Base di dati di esempio

Vendite(Città,Mese,Importo)

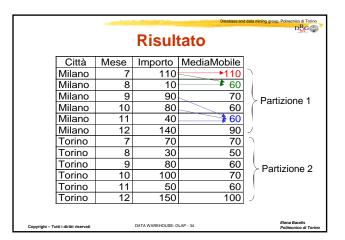
Città	Mese	Importo
Milano	7	110
Milano	8	10
Milano	9	70
Milano	10	90
Milano	11	35
Milano	12	135
Torino	7	70
Torino	8	35
Torino	9	80
Torino	10	95
Torino	11	50
Torino	12	120

pyright – Tutti i diritti riservati DATA WAREHOUSE: OLAP - 2

Esempio

- Visualizzare, per ogni città e mese
 - l'importo delle vendite
 - la media rispetto al mese corrente e ai due mesi precedenti, separatamente per ogni città

Copyright – Tutti i diritti riservati


DATA WAREHOUSE: OLAP - 30

Esempio

- · Partizionamento in base alla città
 - il calcolo della media è azzerato ogni volta che cambia la città
- Ordinamento in base al mese per calcolare la media mobile sul mese corrente insieme ai due mesi precedenti
 - senza ordinamento, il calcolo sarebbe privo di significato
- Dimensione della finestra di calcolo: riga corrente e le due righe precedenti

Convictor - Tutti i diritti ricenzati DATA WAREHOUSE: OLAP - 31

Esempio

SELECT Città, Mese, Importo,
 AVG(Importo) OVER Wavg AS MediaMobile
FROM Vendite

WINDOW Wavg AS (PARTITION BY Città ORDER BY Mese ROWS 2 PRECEDING)

Copyright - Tutti i diritti riservati DATA WAREHOUSE: OLAP - 32

Osservazioni

- E` necessario specificare l'ordinamento, perché l'aggregazione richiesta utilizza le righe in modo ordinato
 - l'ordinamento indicato non corrisponde ad un ordine predefinito delle righe in output
- Quando la finestra è incompleta, il calcolo è effettuato sulla parte presente
 - è possibile specificare che, se la finestra è incompleta, il risultato deve essere NULL
- E` possibile specificare più finestre di calcolo diverse

ght - Tutti i diritti riservati DATA WAREHOUSE: OLAP - 35

Esempio

SELECT Città, Mese, Importo,

AVG(Importo) OVER (PARTITION BY Città
ORDER BY Mese
ROWS 2 PRECEDING)

AS MediaMobile FROM Vendite

Finestra di aggregazione

- La finestra mobile su cui è effettuato il calcolo dell'aggregato può essere definita
 - a livello fisico, formando il gruppo mediante conteggio delle righe
 - esempio: la riga corrente e le due righe precedenti
 - a livello logico, formando il gruppo in base alla definizione di un intervallo intorno alla chiave di ordinamento
 - esempio: il mese corrente e i due mesi precedenti

Elena Baralis

Definizione intervallo fisico

- Tra un estremo inferiore e la riga corrente
 ROWS 2 PRECEDING
- Tra un estremo inferiore e uno superiore
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING
 ROWS BETWEEN 3 PRECEDING AND 1 PRECEDING
- Tra l'inizio (o la fine) della partizione e la riga corrente

ROWS UNBOUNDED PRECEDING (o FOLLOWING)

Copyright - Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 37

Elena Baralis

Raggruppamento logico

- Adatto per dati "sparsi", che hanno interruzioni nella seguenza
 - esempio: manca un mese nella seguenza
 - non è possibile specificare più di una chiave di ordinamento
 - è possibile utilizzare solo tipi di dato numerici o data come chiave di ordinamento (consentono di scrivere espressioni aritmetiche)

Copyright - Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 40

Elena Baralis

Raggruppamento fisico

- Adatto per dati che non hanno interruzioni nella sequenza
 - esempio: non manca nessun mese nella sequenza
 - è possibile specificare più di una chiave di ordinamento
 - il raggruppamento ignora le separazioni
 - esempio: ordinamento per mese e anno
 - non occorrono formule per specificare come calcolare la finestra

Copyright – Tutti i diritti riservat

DATA WAREHOUSE: OLAP - 3

Elena Baralis Politecnico di Tori

Applicazioni

- · Calcolo di aggregati mobili
 - l'aggregato è calcolato su una finestra che "scorre" sui dati
 - esempi: media mobile, somma mobile
- · Calcolo di totali cumulativi
 - il totale (cumulativo) è incrementato aggiungendo una riga alla volta
- · Confronto tra dati dettagliati e dati complessivi

Copyright – Tutti i diritti riservat

DATA WAREHOUSE: OLAP - 41

Elena Baralis Politecnico di To

Definizione intervallo logico

- Si utilizza il costrutto range, con la stessa sintassi dell'intervallo fisico
- E` necessario definire la distanza tra gli estremi dell'intervallo e il valore corrente sulla chiave di ordinamento
- Esempio

RANGE 2 MONTH PRECEDING

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 39

Elena Baralis Politecnico di Torin

Calcolo di totali cumulativi

- Visualizzare, per ogni città e mese
 - l'importo delle vendite
 - l'importo cumulativo delle vendite al trascorrere dei mesi, separatamente per ogni città

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 42

Calcolo di totali cumulativi

- · Partizionamento in base alla città
 - il calcolo della somma cumulativa è azzerato ogni volta che cambia la città
- Ordinamento (crescente) in base al mese per calcolare la somma al passare dei mesi
 - senza ordinamento, il calcolo sarebbe privo di significato
- Dimensione della finestra di calcolo: dalla riga iniziale della partizione alla riga corrente

Copyright - Tutti i diritti riservat

DATA WAREHOUSE: OLAP - 4

Elena Baralis

Confronto tra dati dettagliati e dati complessivi

- · Visualizzare, per ogni città e mese
 - l'importo delle vendite
 - l'importo totale delle vendite sul periodo completo per la città corrente

DATA WAREHOUSE: OLAP - 4

Elena Baralis

Calcolo di totali cumulativi

SELECT Città, Mese, Importo,

SUM(Importo) OVER (PARTITION BY Città
ORDER BY Mese

ROWS UNBOUNDED PRECEDING)

AS SommaCumul

FROM Vendite

pyright – Tutti i diritti riservati DATA WAREHOUSE: OLAP -

Confronto tra dati dettagliati e dati complessivi

- · Partizionamento in base alla città
 - il calcolo del totale complessivo è azzerato ogni volta che cambia la città
- Non è necessario l'ordinamento
 - il totale complessivo è calcolato indipendentemente dall'ordinamento
- Non è necessaria la finestra di calcolo
 - è l'intera partizione

Copyright – Tutti i diritti riserva

DATA WAREHOUSE: OLAP - 47

Elena Baralis Politecnico di Tor

Calcolo di totali cumulativi: risultato Città Mese Importo SommaCumul Milano 110 **1**20 Milano 8 10 9 **₽**210 Milano 90 Partizione 1 10 290 Milano 80 Milano 11 40 330 12 Milano 140 470 Torino 7 70 70 8 30 100 Torino 9 Torino 80 180 Partizione 2 10 100 280 Torino Torino 11 50 330 Torino 12 150 480

Confronto tra dati dettagliati e dati complessivi Mese Importo ImpTotale Città Milano 110 470 Milano 8 10 Milano 9 90 470 Partizione 1 Milano 10 80 470 Milano 11 40 470 12 140 470 Milano 70 480 Torino 8 Torino 30 480 Torino 9 80 480 Partizione 2 10 100 480 Torino 11 480 Torino 50 12 150 480 Torino

Confronto tra dati dettagliati e dati complessivi

- · Visualizzare, per ogni città e mese
 - l'importo
 - il rapporto tra l'importo della riga corrente per le vendite e il totale complessivo
 - il rapporto tra l'importo della riga corrente per le vendite e il totale complessivo per città
 - il rapporto tra l'importo della riga corrente per le vendite e il totale complessivo per mese

Copyright – Tutti i diritti riservati

ATA WAREHOUSE: OLAP - 50

Confronto tra dati dettagliati e dati complessivi

Città	Mese	Importo	PercTotale	PercCittà	PercMese
Milano	7	110	110/950	110/470	110/180
Milano	8	10	10/950	10/470	10/40
Milano	9	90	90/950	90/470	90/170
Milano	10	80	80/950	80/470	80/180
Milano	11	40	40/950	40/470	40/90
Milano	12	140	140/950	140/470	140/290
Torino	7	70	70/950	70/480	70/180
Torino	8	30	30/950	30/480	30/40
Torino	9	80	80/950	80/480	80/170
Torino	10	100	100/950	100/480	100/180
Torino	11	50	50/950	50/480	50/90
Torino	12	150	150/950	150/480	150/290
Copyright – Tutti i diritti riservati		DATA	WAREHOUSE: OLAP - 53		Elena Baralis Politecnico di Ti

Confronto tra dati dettagliati e dati complessivi

- Tre finestre di calcolo diverse
 - totale complessivo: nessun partizionamento
 - totale per città: partizionamento per città
 - totale per mese: partizionamento per mese
- Non è necessario l'ordinamento per nessuna finestra
 - il totale complessivo è calcolato indipendentemente dall'ordinamento
- · La finestra di calcolo è sempre l'intera partizione

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 51

Elena Baralis

Group by e finestre

- E` possibile abbinare l'uso di finestre con il raggruppamento eseguito dalla clausola group by
- La "tabella temporanea" generata dall'esecuzione della clausola group by (con eventuale calcolo di funzioni aggregate abbinate al group by) diviene l'operando a cui applicare le operazioni definite per la window

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 54

Esempio

- Si supponga che la tabella Vendite contenga informazioni sulle vendite con granularità giornaliera
- Visualizzare, per ogni città e mese
 - l'importo delle vendite
 - la media rispetto al mese corrente e ai due mesi precedenti, separatamente per ogni città

Copyright - Tutti i diritti riserva

DATA WAREHOUSE: OLAP - 5

ena Baralis

Funzioni di ranking

- Funzioni per calcolare la posizione di un valore all'interno di una partizione
 - funzione rank(): calcola la posizione, lasciando intervalli vuoti successivi alla presenza di "pari merito"
 - esempio: 2 primi, subito dopo vi è il terzo nella graduatoria
 - funzione denserank(): calcola la posizione, senza lasciare intervalli vuoti successivi alla presenza di "pari merito"
 - esempio: 2 primi, subito dopo vi è il secondo nella graduatoria

Copyright - Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 58

Elena Baralis

Esempio

- E` necessario raggruppare i dati per mese e calcolare l'importo totale per mese prima di effettuare il calcolo della media mobile
 - si usa la clausola group by per calcolare il totale mensile
- La tabella temporanea generata dalla prima aggregazione diviene l'operando su cui definire la finestra di calcolo

Copyright – Tutti i diritti riservat

DATA WAREHOUSE: OLAP - 5

Elena Baralis Politecnico di Torini

Esempio

- Visualizzare, per ogni città nel mese di dicembre
 - l'importo delle vendite
 - la posizione nella graduatoria

rright – Tutti i diritti riservati DATA WAI

Elena Baralis Politecnico di Tor

Esempio

SELECT Città, Mese, SUM(Importo) AS TotMese,

AVG(SUM(Importo)) OVER (PARTITION BY Città

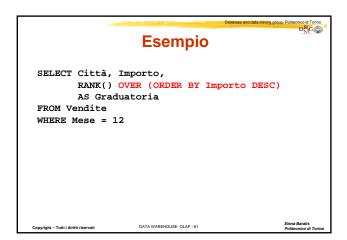
ORDER BY Mese

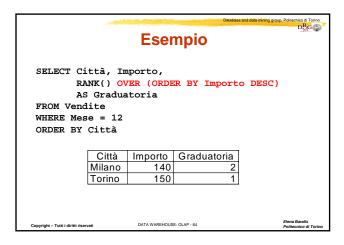
ROWS 2 PRECEDING)

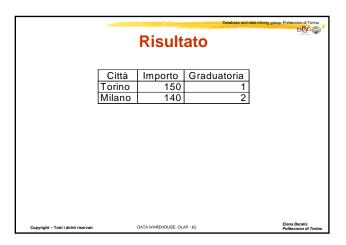
AS MediaMobile FROM Vendite, ... WHERE <cond. join> GROUP BY Città, Mese

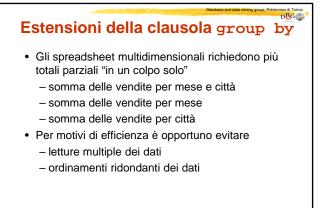
Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 57


Esempio


- · Non occorre partizionamento
 - una sola partizione che include tutte le città
- Ordinamento in base all'importo per stilare la graduatoria
 - senza ordinamento, il calcolo sarebbe privo di significato
- · La finestra di calcolo è l'intera partizione


Copyright – Tutti i diritti riserva


DATA WAREHOUSE: OLAP - 60

Ordinamento del risultato L'ordinamento del risultato è ottenuto mediante la clausola order by può essere diverso dall'ordinamento delle finestre di calcolo Esempio: ordinare il risultato dell'esempio precedente in ordine alfabetico di città Copyright – Tutti i diritti riservati DATA WAREHOUSE: CLAP - 63

• Lo standard SQL-99 ha esteso la sintassi della clausola group by • rollup per calcolare le aggregazioni su tutti i gruppi ottenuti togliendo in ordine una colonna per volta dall'insieme specificato di colonne • cube per calcolare le aggregazioni su tutte le possibili combinazioni delle colonne specificate • grouping sets per specificare un elenco di raggruppamenti richiesti (diversi da quelli ottenibili con le due clausole precedenti) • () per richiedere totali generali (nessun raggruppamento)

Rollup: esempio

- Si considerino le seguenti tabelle
 - Tempo(<u>Tkey</u>,Giorno,Mese,Anno,...)
 - Supermercato(Skey,Città,Regione,...)
 - Prodotto(Pkey,NomeP,Marca,...)
 - Vendite(Skey, Tkey, Pkey, Importo)
- Calcolare il totale delle vendite nel 2000 per le seguenti diverse combinazioni di attributi
 - prodotto, mese e città
 - mese, città
 - città

Copyright – Tutti i diritti riservat

DATA WAREHOUSE: OLAP - 6

Elena Baralis

Cube: esempio

- Calcolare il totale delle vendite nel 2000 per tutte le combinazioni dei seguenti attributi
 - prodotto, mese, città
- Si devono calcolare le seguenti aggregazioni:
 - prodotto, mese, città
 - prodotto, mese
 - mese, città
 - prodotto, città
 - prodotto
 - mese
 - città
 - nessun raggruppamento

Copyright - Tutti i diritti riservat

DATA WAREHOUSE: OLAP - 7

Elena Baralis

Rollup: esempio

SELECT Città, Mese, Pkey,
SUM(Importo) AS TotVendite
FROM Tempo T, Supermercato S, Vendite V
WHERE T.Tkey = V.Tkey
AND S.Skey = V.Skey

AND Anno = 2000
GROUP BY ROLLUP (Città, Mese, Pkey)

• L'ordinamento delle colonne in rollup determina quali aggregati sono calcolati

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 6

Elena Baralis Politecnico di Tor

Cube: esempio

SELECT Città, Mese, Pkey,
SUM(Importo) AS TotVendite
FROM Tempo T, Supermercato S, Vendite V
WHERE T.Tkey = V.Tkey
AND S.Skey = V.Skey

AND S.Skey - V.Skey

AND Anno = 2000

GROUP BY CUBE (Città, Mese, Pkey)

• L'ordinamento delle colonne in cube è ininfluente

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 7

Elena Baralis

Rollup: risultato

Città	Mese	Pkey	TotVendite
Milano	7	145	110
Milano	7	150	10
Milano			
Milano	7	NULL	8500
Milano	8		
Milano	NULL	NULL	150000
Torino			150
Torino		NULL	2500
Torino	NULL	NULL	135000
NULL	NULL	NULL	25005000

•I "superaggregati" sono rappresentati con NULL

Copyright – Tutti i diritti riservat

DATA WAREHOUSE: OLAP - 69

Elena Baralis Politecnico di Torin

Calcolo del cubo

- Si considerano le proprietà distributive e algebriche delle funzioni aggregate
 - le funzioni aggregate distributive (min, max, sum, count) possono essere calcolate a partire da aggregazioni su un numero maggiore di attributi (con granularità maggiore)
 - Esempio: dall'importo totale su prodotto e mese, si calcola l'importo totale per mese
 - per le funzioni aggregate algebriche (avg, ...) è possibile il calcolo a partire da aggregazioni su un numero maggiore di atttributi (con granularità maggiore), pur di memorizzare opportuni risultati intermedi
 - Esempio: per la media serve conoscere
 - il valore della media nel gruppo
 - il numero di elementi per gruppo

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 7

Elena Baralis Politecnico di Torino

Calcolo del cubo

- Per rendere più efficiente il calcolo del cubo, si usano le proprietà distributive/algebriche delle funzioni aggregate
 - si usano i risultati di group by già calcolati
 - l'operazione di rollup richiede una sola operazione di ordinamento
 - il cubo può essere visto come una combinazione di più operazioni di rollup (in ordine opportuno)
 - si sfruttano operazioni di sort già eseguite (anche parzialmente)
 - è possibile utilizzare l'ordinamento delle colonne (A,B) per ordinare (A,C)

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 73

Elena Baralis

Grouping Set: esempio

- Calcolare il totale delle vendite nel 2000 per le seguenti combinazioni di attributi
 - mese
 - mese, città, prodotto
- Eseguire un rollup richiederebbe il calcolo di aggregati aggiuntivi

Copyright – Tutti i diritti riservat

DATA WAREHOUSE: OLAP - 74

Elena Baralis Politecnico di Tor

DBG (S)

Grouping Set: esempio

SELECT Città, Mese, Pkey,
SUM(Importo) AS TotVendite
FROM Tempo T, Supermercato S, Vendite V
WHERE T.Tkey = V.Tkey
AND S.Skey = V.Skey
AND Anno = 2000
GROUP BY GROUPING SETS
(Mese, (Città, Mese, Pkey))

Copyright – Tutti i diritti riservati

DATA WAREHOUSE: OLAP - 75

Elena Baralis