
1

Pag. 1

Database Management Systems Physical access to data

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

Database Management Systems

Physical Access to Data

1
DB

MG

DBMS Architecture

OPTIMIZER

MANAGEMENT OF ACCESS

METHODS

BUFFER MANAGER

CONCURRENCY CONTROL

RELIABILITY MANAGEMENT

SQL INSTRUCTION

System

Catalog

Index Files

Data Files

DATABASE

DATABASE

2

DB
MG

3

Physical Access Structures

Data may be stored on disk in different formats
to provide efficient query execution

Different formats are appropriate for different
query needs

Physical access structures describe how data is
stored on disk

DB
MG

4

Access Method Manager

Transforms an access plan generated by the
optimizer into a sequence of physical access
requests to (database) disk pages

It exploits access methods

An access method is a software module

It is specialized for a single physical data structure

It provides primitives for

reading data

writing data

DB
MG

5

Access method

Selects the appropriate blocks of a file to be
loaded in memory

Requests them to the Buffer Manager

Knows the organization of data into a page

can find specific tuples and values inside a page

DB
MG

6

Organization of a disk page

Different for different access methods

Divided in

Space available for data

Space reserved for access method control
information

Space reserved for file system control information

2

Pag. 2

Database Management Systems Physical access to data

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

7

Remarks

Tuples may have varying size

Varchar types

Presence of Null values

A single tuple may span several pages

When its size is larger than a single page

e.g., for BLOB or CLOB data types

DB
MG

Database Management Systems

Physical Access Structures

8

DB
MG

9

Physical Access Structures

Physical access structures describe how data is
stored on disk to provide efficient query
execution

SQL select, update, …

In relational systems

Physical data storage

Sequential structures

Hash structures

Indexing to increase access efficiency

Tree structures (B-Tree, B+-Tree)

Unclustered hash index

Bitmap index

DB

MG
10

Sequential Structures

Tuples are stored in a given sequential order

Different types of structures implement different
ordering criteria

Available sequential structures

Heap file (entry sequenced)

Ordered sequential structure

DB
MG

11

Heap file

Tuples are sequenced in insertion order
insert is typically an append at the end of the file

All the space in a block is completely exploited
before starting a new block

Delete or update may cause wasted space
Tuple deletion may leave unused space

Updated tuple may not fit if new values have larger size

Sequential reading/writing is very efficient

Frequently used in relational DBMS
jointly with unclustered (secondary) indices to support
search and sort operations

DB
MG

12

Ordered sequential structures

The order in which tuples are written depends on
the value of a given key, called sort key

A sort key may contain one or more attributes

the sort key may be the primary key

Appropriate for

Sort and group by operations on the sort key

Search operations on the sort key

Join operations on the sort key

when sorting is used for join

3

Pag. 3

Database Management Systems Physical access to data

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

13

Ordered sequential structures

Problem

preserving the sort order when inserting new
tuples

it may also hold for update

Solution

Leaving a percentage of free space in each block
during table creation

On insertion, dynamic (re)sorting in main memory of
tuples into a block

Alternative solution

Overflow file containing tuples which do not fit into
the correct block

DB
MG

14

Ordered sequential structures

Typically used with B+-Tree clustered (primary)
indices

the index key is the sort key

Used by the DBMS to store intermediate
operation results

DB
MG

15

Tree structures

Provide “direct” access to data based on the
value of a key field

The key includes one or more attributes

It does not constrain the physical position of
tuples

The most widespread in relational DBMS

DB
MG

16

General characteristics

One root node

DB
MG

Tree structure

U1

17
DB

MG
18

General characteristics

One root node

Many intermediate nodes

Nodes have a large fan-out

Each node has many children

4

Pag. 4

Database Management Systems Physical access to data

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

Tree structure

U1

19
DB

MG
20

General characteristics

One root node

Many intermediate nodes

Nodes have a large fan-out

Each node has many children

Leaf nodes provide access to data

Clustered

Unclustered

DB
MG

Tree structure

U1

DATA

21
DB

MG
22

B-Tree and B+-Tree

Two different tree structures for indexing

B-Tree

Data pages are reached only through key values by
visiting the tree

B+-Tree

Provides a link structure allowing sequential access
in the sort order of key values

DB
MG

B-Tree structure

U1

DATA

23
DB

MG

B+-Tree structure

U1

DATA

24

5

Pag. 5

Database Management Systems Physical access to data

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

25

B-Tree and B+-Tree

Two different tree structures for indexing

B-Tree

Data pages are reached only through key values by
visiting the tree

B+-Tree

Provides a link structure allowing sequential access
on the sort order of key values

B stands for balanced

Leaves are all at the same distance from the root

Access time is constant, regardless of the searched
value

DB
MG

26

Clustered

The tuple is contained into the leaf node

Constrains the physical position of tuples in a
given leaf node

The position may be modified by splitting the node,
when it is full

Also called key sequenced

Typically used for primary key indexing

DB
MG

Clustered B+-Tree index

U1

Data Data Data Data

27
DB

MG
28

Unclustered

The leaf contains physical pointers to actual data

The position of tuples in a file is totally
unconstrained

Also called indirect

Used for secondary indices

DB
MG

Unclustered B+-Tree index

U1

Data

29
DB

MG
30

Example: Unclustered B+-Tree index

STUDENT (StudentId, Name, Grade)

T1 T6 T10

19 34 34

T2 T3 T5

22 30 33

T4 T7

30 34

T8 T9

40 50

DATA FILE FOR STUDENT TABLE

33 34 34 34 40

(T5) (T6) (T10) (T7) (T8)

50

(T9)

12<=Grade < 19
19 56

56< Grade <=78

19 <= Grade <= 56

12 78

Grade < 12

Grade > 78

12 <= Grade <= 78

33 44

19 <= Grade < 33 44< Grade <= 56

33 <= Grade <= 44

19 22 30 30

(T1) (T2) (T3) (T4)

LEAF

30

6

Pag. 6

Database Management Systems Physical access to data

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

31

Example: Clustered B+-Tree index

STUDENT (StudentId, Name, Grade)

12<=Grade < 19
19 56

56< Grade <=78

19 <= Grade <= 56

33 44

19 <= Grade < 33 44< Grade <= 56

33 <= Grade <= 44

12 78

Grade < 12

Grade > 78

12 <= Grade <= 78

LEAF

T5

33

T6

34

T10

34

T7

34

T8

40

T9

50

T1

19

T2

22

T3

30

T4

30

T9

50

DATA FILE FOR STUDENT TABLE

31
DB

MG
32

Advantages and disadvantages

Advantages

Very efficient for range queries

Appropriate for sequential scan in the order of the
key field

Always for clustered, not guaranteed otherwise

Disadvantages

Insertions may require a split of a leaf

possibly, also of intermediate nodes

computationally intensive

Deletions may require merging uncrowded
nodes and re-balancing

DB
MG

33

Hash structure

It guarantees direct and efficient access to data
based on the value of a key field

The hash key may include one or more attributes

Suppose the hash structure has B blocks

The hash function is applied to the key field value
of a record

It returns a value between 0 and B-1 which defines
the position of the record

Blocks should never be completely filled

To allow new data insertion

DB
MG

Example: hash index

STUDENT (StudentId, Name, Grade)

TUPLE T1

StudentId = 50

TUPLE T4

StudentId = 75

H(StudentId =50)=1

H(StudentId =75)=1

BLOCK 0

BLOCK 1

BLOCK 2

T1 50

T4 75

DATA FILE FOR STUDENT TABLE

34

DB
MG

35

Hash index

Advantages

Very efficient for queries with equality predicate on
the key

No sorting of disk blocks is required

Disadvantages

Inefficient for range queries

Collisions may occur

DB
MG

36

Unclustered hash index

It guarantees direct and efficient access to data
based on the value of a key field

Similar to hash index

Blocks contain pointers to data

Actual data is stored in a separate structure

Position of tuples is not constrained to a block

Different from hash index

7

Pag. 7

Database Management Systems Physical access to data

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

Example: Unclustered hash index

STUDENT (StudentId, Name, Grade)

T1 30

T2 40

DATA FILE FOR

STUDENT TABLE

BLOCK 0

BLOCK 1

BLOCK 2

INDEX BLOCKS

TUPLE T1

GRADE = 30

TUPLE T2

GRADE = 40

H(GRADE=30)=1

H(GRADE=40)=1

30 → T1

40 → T2

37
DB

MG
38

Bitmap index

It guarantees direct and efficient access to data
based on the value of a key field

It is based on a bit matrix

The bit matrix references data rows by means of
RIDs (Row IDentifiers)

Actual data is stored in a separate structure

Position of tuples is not constrained

DB
MG

39

Bitmap index

The bit matrix has

One column for each different value of the indexed
attribute

One row for each tuple

Position (i, j) of the matrix is

1 if tuple i takes value j

0 otherwise

RID Val1 Val2 … Valn

1 0 0 … 1

2 0 0 … 0

3 0 0 … 1

4 1 0 … 0

5 0 1 … 0

DB
MG

Example: Bitmap index

T2

T4

DATA FILE

FOR EMPLOYEE

TABLE

EMPLOYEE (EmployeeId, Name, Job)

Domain of Job attribute = {Engineer, Consultant, Manager, Programmer, Secretary, Accountant}

RID Eng. Cons. Man. Prog. Secr. Acc.

1 0 0 1 0 0 0

2 0 0 0 1 0 0

3 0 0 0 0 1 0

4 0 0 0 1 0 0

5 1 0 0 0 0 0

Prog.

0

1

0

1

0

40

DB
MG

41

Bitmap index

Advantages

Very efficient for boolean expressions of predicates

Reduced to bit operations on bitmaps

Appropriate for attributes with limited domain
cardinality

Disadvantages

Not used for continuous attributes

Required space grows significantly with domain
cardinality

