

Classification: definition

- Given
 - a collection of class labels
 - a collection of data objects labelled with a class label
- Find a descriptive profile of each class, which will allow the assignment of unlabeled objects to the appropriate class

Definitions

- Training set
 - Collection of labeled data objects used to learn the classification model
- Test set
 - Collection of labeled data objects used to validate the classification model

7

Classification techniques

- Decision trees
- Classification rules
- Association rules
- Neural Networks
- Naïve Bayes and Bayesian Networks
- k-Nearest Neighbours (k-NN)
- Support Vector Machines (SVM)
- **...**

Evaluation of classification techniques

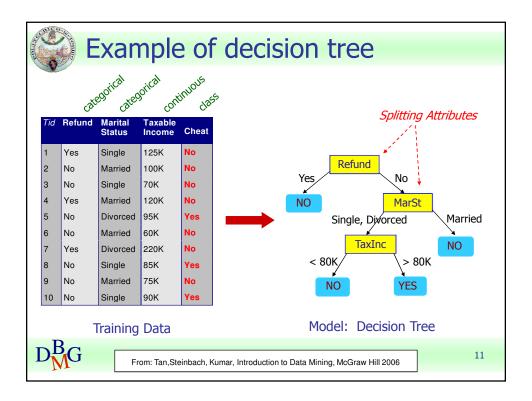
- Accuracy
 - quality of the prediction
- Efficiency
 - model building time
 - classification time
- Scalability
 - training set size
 - attribute number
- Robustness
 - noise, missing data
- Interpretability
 - model interpretability
 - model compactness

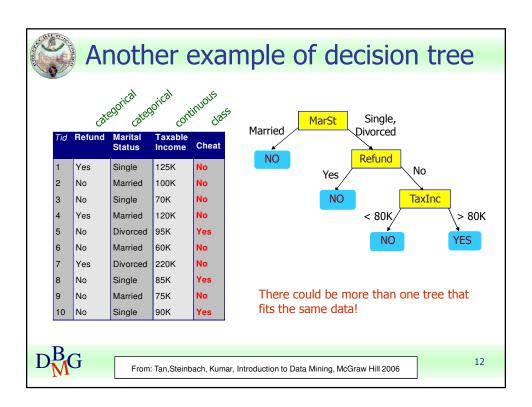
9

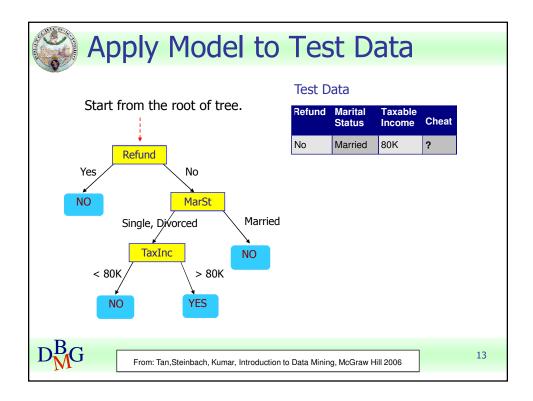
Decision trees

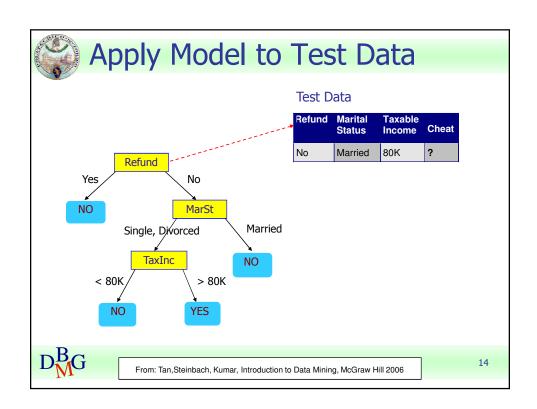
Elena Baralis

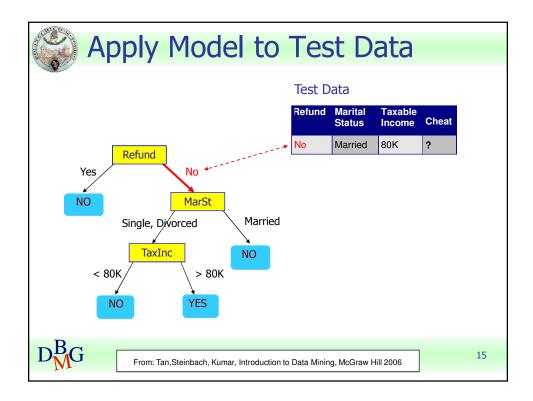
Politecnico di Torino

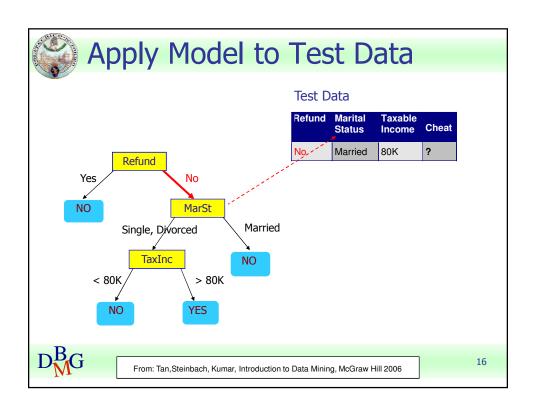


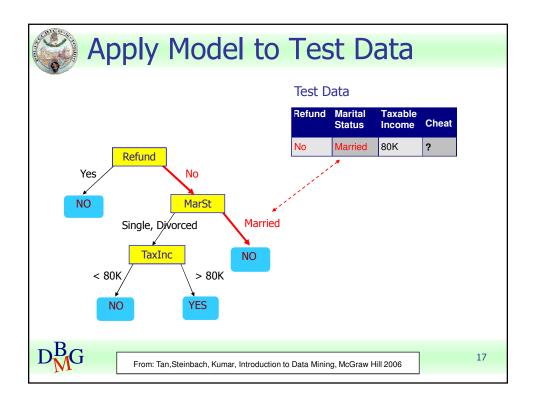


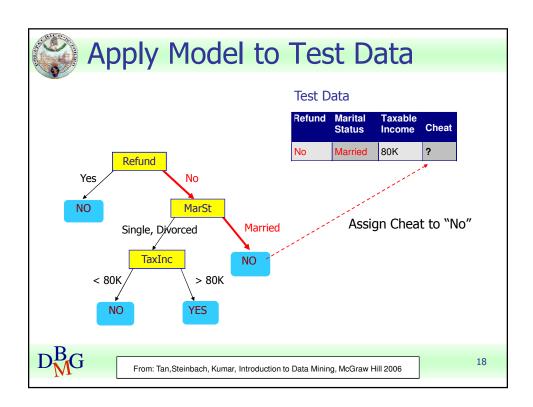








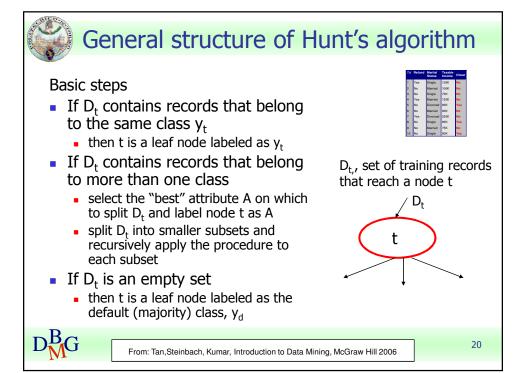


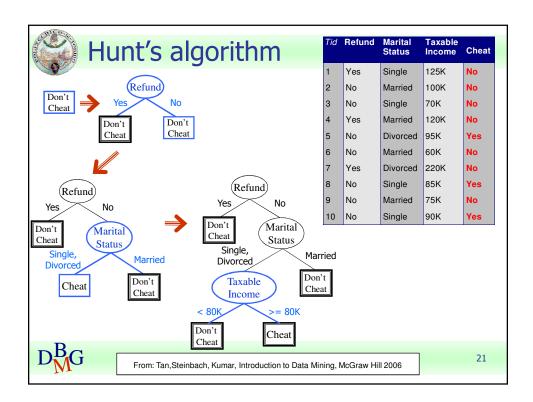


Decision tree induction

- Many algorithms to build a decision tree
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5, C5.0
 - SLIQ, SPRINT

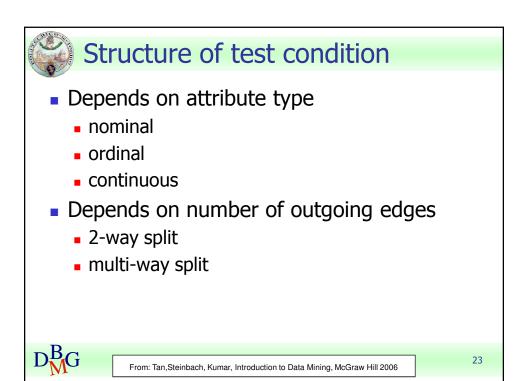
From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

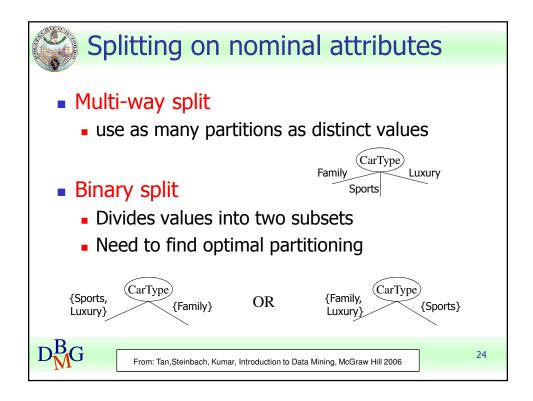


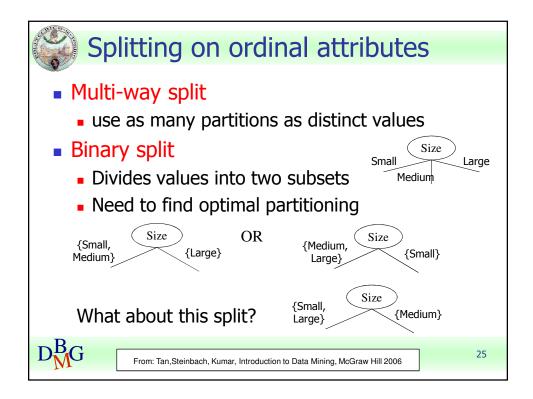


Decision tree induction

- Adopts a greedy strategy
 - "Best" attribute for the split is selected locally at each step
 - not a global optimum
- Issues
 - Structure of test condition
 - Binary split versus multiway split
 - Selection of the best attribute for the split
 - Stopping condition for the algorithm



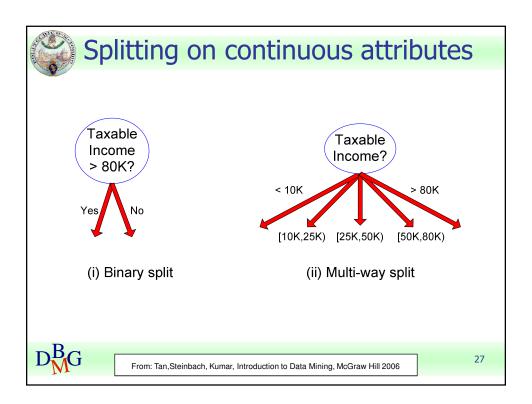


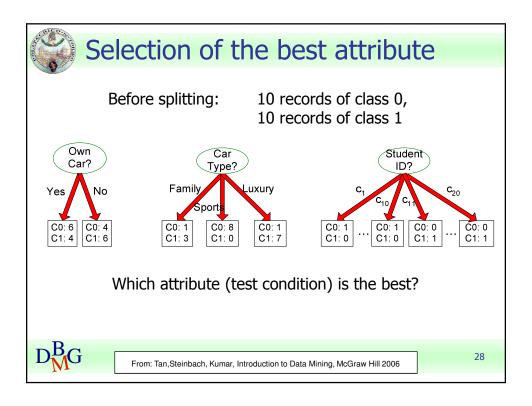


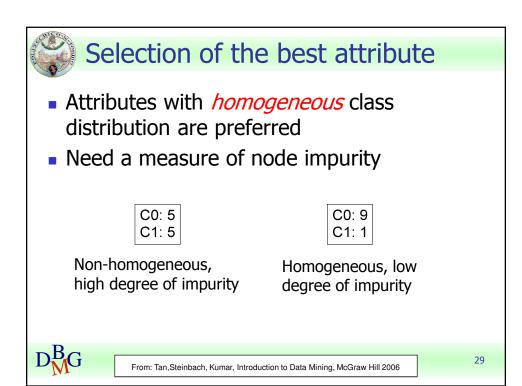


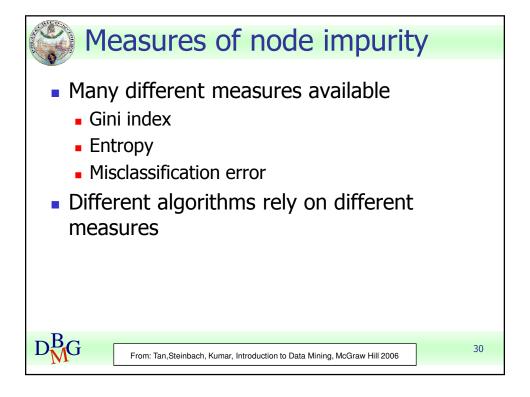
From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

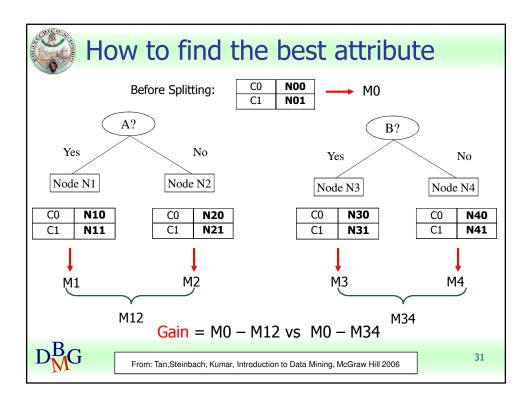
more computationally intensive

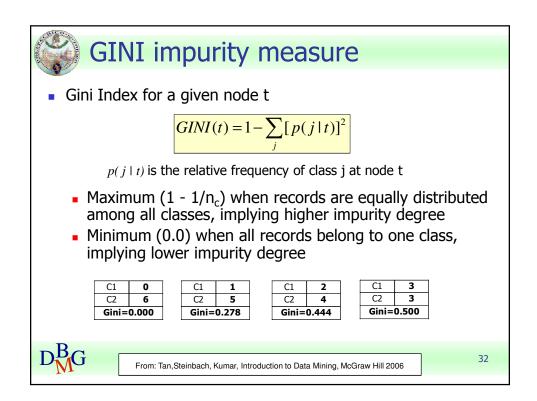












Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

33

Splitting based on GINI

- Used in CART, SLIQ, SPRINT
- When a node p is split into k partitions (children), the quality of the split is computed as

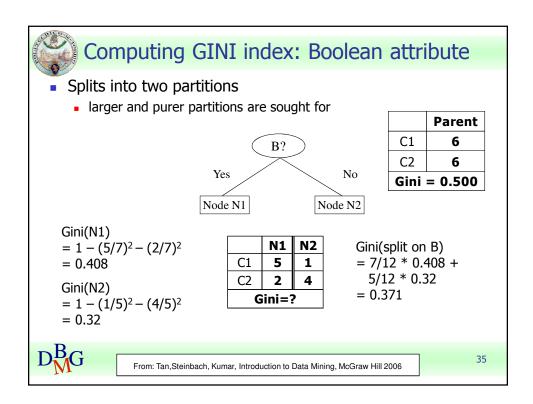
$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

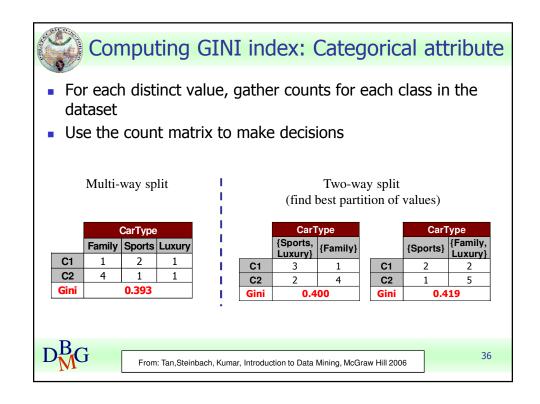
where

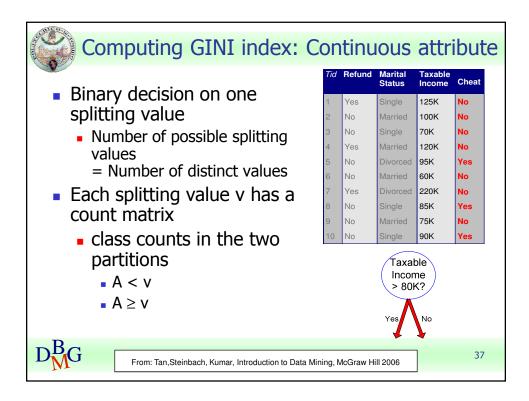
 n_i = number of records at child i

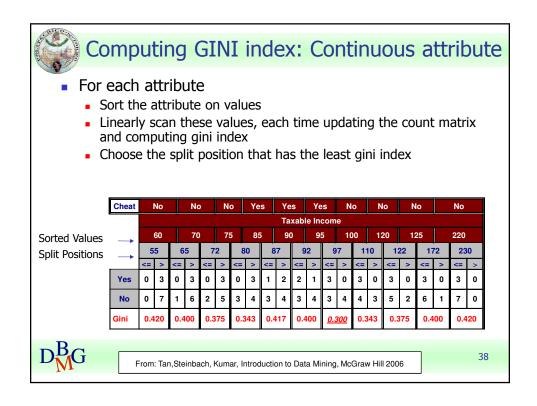
n = number of records at node p

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006









Entropy impurity measure (INFO)

Entropy at a given node t

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

 $p(j \mid t)$ is the relative frequency of class j at node t

- Maximum (log n_c) when records are equally distributed among all classes, implying higher impurity degree
- Minimum (0.0) when all records belong to one class, implying lower impurity degree
- Entropy based computations are similar to GINI index computations

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

39

Examples for computing entropy

$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Splitting Based on INFO

Information Gain

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n_i is number of records in partition i

- Measures reduction in entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits yielding a large number of partitions, each small but pure

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

41

Splitting Based on INFO

Gain Ratio

GainRATIO_{split} =
$$\frac{GAIN_{Split}}{SplitINFO}$$
 | $SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n}$$

Parent Node, p is split into k partitions n_i is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO). Higher entropy partitioning (large number of small partitions) is penalized
- Used in C4.5
- Designed to overcome the disadvantage of **Information Gain**

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Classification error impurity measure

Classification error at a node t

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node
 - Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

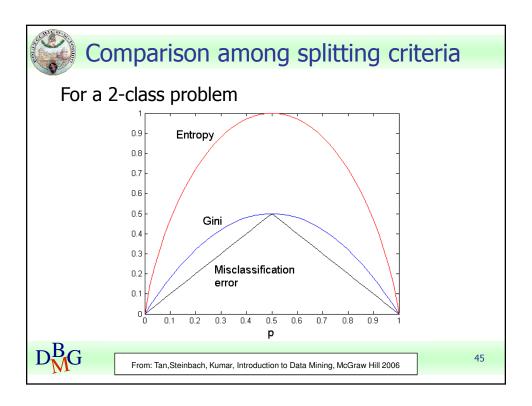
From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

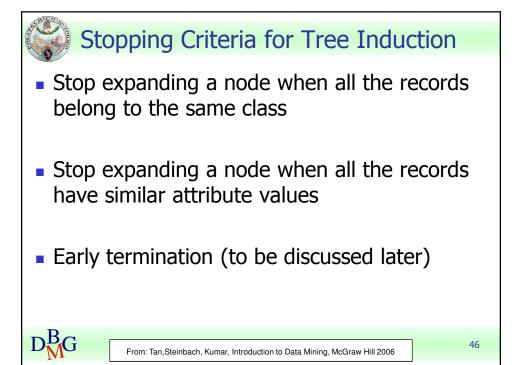
43

Examples for computing error

 $Error(t) = 1 - \max_{i} P(i \mid t)$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006





Decision Tree Based Classification

- Advantages
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets
- Disadvantages
 - accuracy may be affected by missing data

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

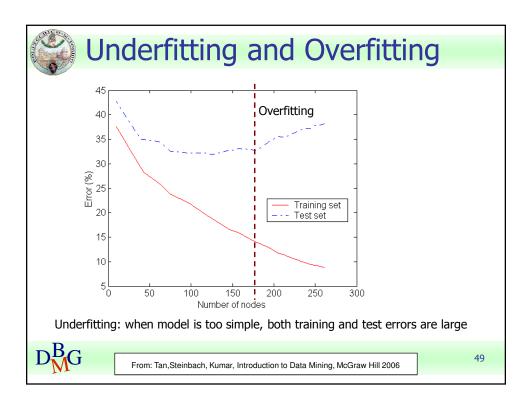
47

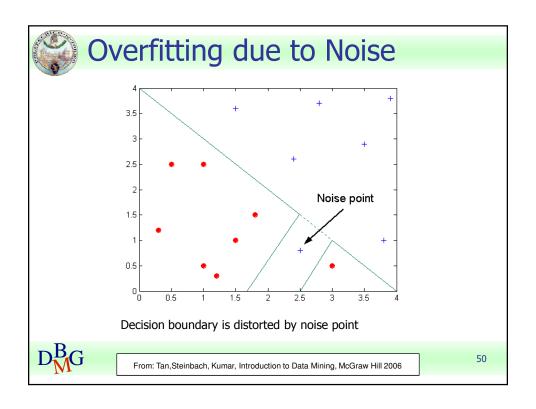
Practical Issues of Classification

- Underfitting and overfitting
- Missing Values
- Costs of Classification

 ${\sf D_M^B}\!{\sf G}$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006





How to address overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

51

How to address overfitting

- Post-pruning
 - Grow decision tree to its entirety
 - Trim the nodes of the decision tree in a bottomup fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Handling missing attribute values

- Missing values affect decision tree construction in three different ways
 - Affects how impurity measures are computed
 - Affects how to distribute instance with missing value to child nodes
 - Affects how a test instance with missing value is classified

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

53

Other issues

- Data Fragmentation
- Search Strategy
- Expressiveness
- Tree Replication

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Data fragmentation

- Number of instances gets smaller as you traverse down the tree
- Number of instances at the leaf nodes could be too small to make any statistically significant decision

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

55

Search strategy

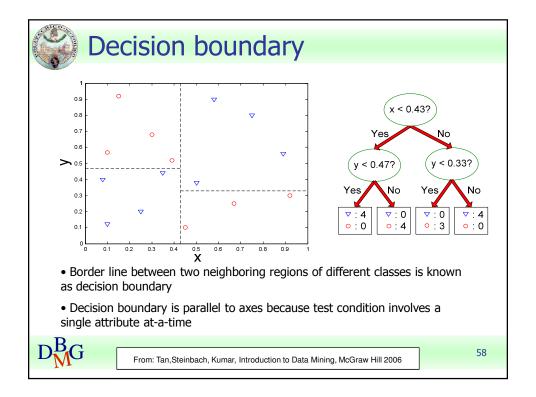
- Finding an optimal decision tree is NP-hard
- The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
- Other strategies?
 - Bottom-up
 - Bi-directional

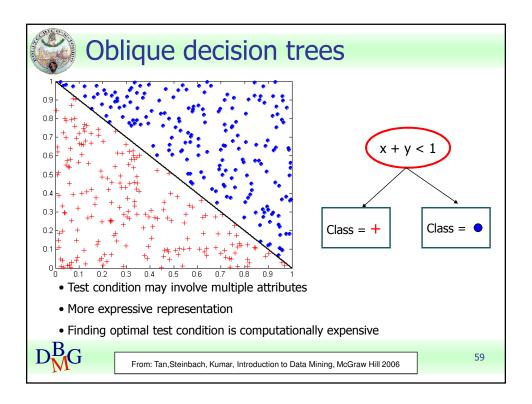
From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

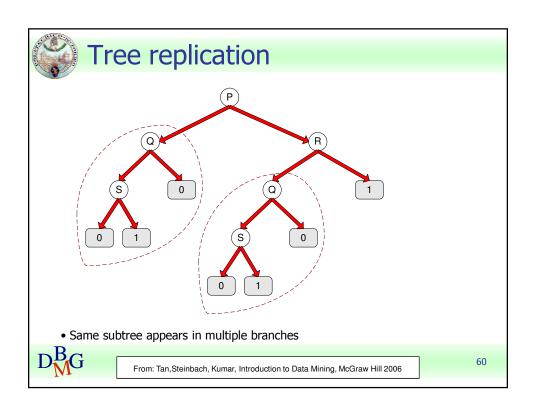
Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: parity function:
 - Class = 1 if there is an even number of Boolean attributes with truth value = True
 - Class = 0 if there is an odd number of Boolean attributes with truth value = True
 - For accurate modeling, must have a complete tree
- Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006







Rule-based classification

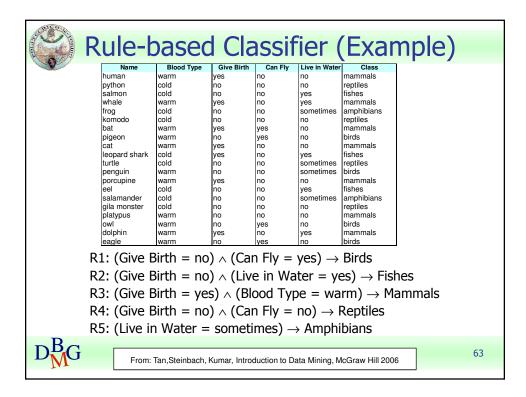
Elena Baralis

Politecnico di Torino

Rule-based classifier

- Classify records by using a collection of "if...then..." rules
- Rule: (*Condition*) $\rightarrow y$
 - where
 - *Condition* is a conjunction of attributes
 - v is the class label
 - *LHS*: rule antecedent or condition
 - *RHS*: rule consequent
- Examples of classification rules
 - (Blood Type=Warm) ∧ (Lay Eggs=Yes) → Birds
 - (Taxable Income < 50K) ∧ (Refund=Yes) → Evade=No

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006



Rule-based classification

 A rule r covers an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

Rule R1 covers a hawk => Bird

Rule R3 covers the grizzly bear => Mammal

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Rule-based classification

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

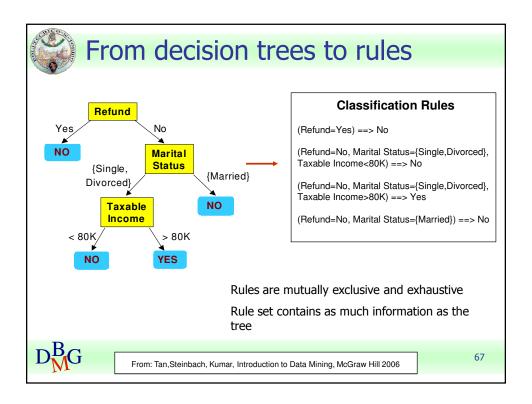
From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

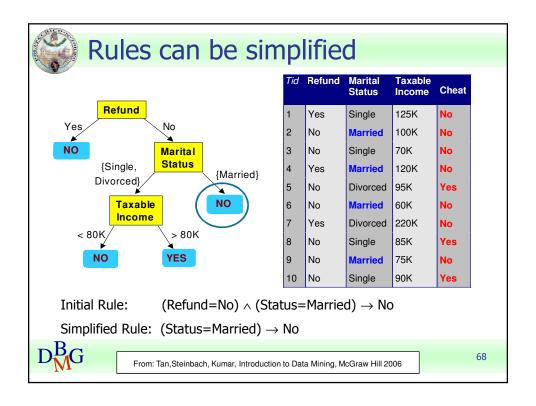
65

Characteristics of rules

- Mutually exclusive rules
 - Classifier contains mutually exclusive rules if the rules are independent of each other
 - Every record is covered by at most one rule
- Exhaustive rules
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

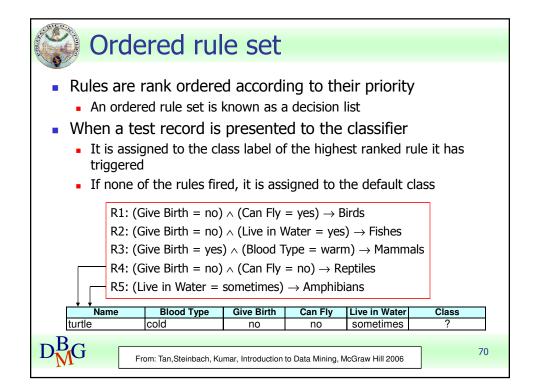




Effect of rule simplification

- Rules are no longer mutually exclusive
 - A record may trigger more than one rule
 - Solution?
 - Ordered rule set
 - Unordered rule set use voting schemes
- Rules are no longer exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006



Building classification rules

- Direct Method
 - Extract rules directly from data
 - e.g.: RIPPER, CN2, Holte's 1R
- Indirect Method
 - Extract rules from other classification models (e.g. decision trees, neural networks, etc).
 - e.g: C4.5rules

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

71

Advantages of rule-based classifiers

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Associative classification

Elena Baralis

Politecnico di Torino

Associative classification

 The classification model is defined by means of association rules

(*Condition*) \rightarrow *y*

- rule body is an itemset
- Model generation
 - Rule selection & sorting
 - based on support, confidence and correlation thresholds
 - Rule pruning

 Database coverage: the training set is covered by selecting topmost rules according to previous sort

Associative classification

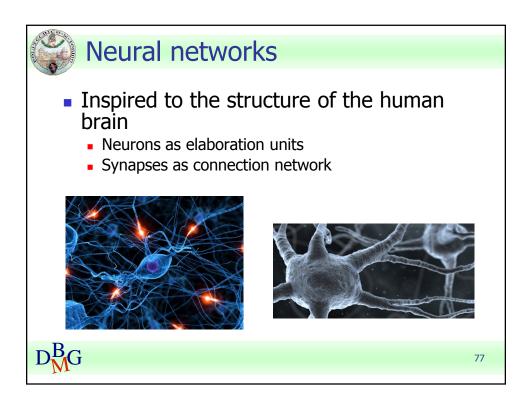
- Strong points
 - interpretable model
 - higher accuracy than decision trees
 - correlation among attributes is considered
 - efficient classification
 - unaffected by missing data
 - good scalability in the training set size
- Weak points
 - rule generation may be slow
 - it depends on support threshold
 - reduced scalability in the number of attributes
 - rule generation may become unfeasible

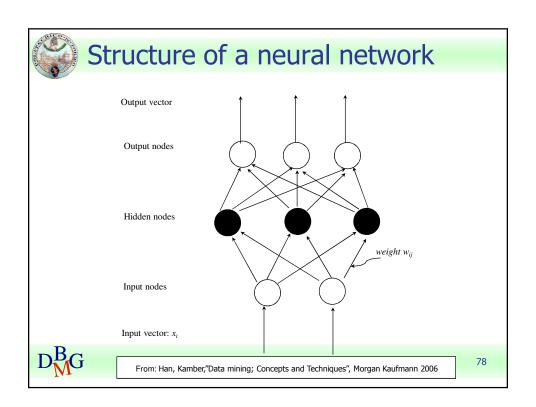
75

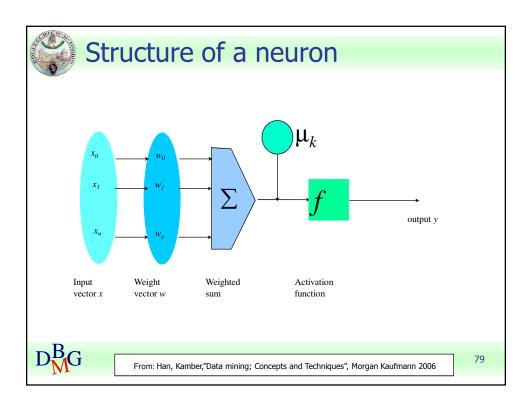
Neural networks

Elena Baralis

Politecnico di Torino







Construction of the neural network

- For each node, definition of
 - set of weights
 - offset value

providing the highest accuracy on the training data

Iterative approach on training data instances

Construction of the neural network

Base algorithm

- Initially assign random values to weights and offsets
- Process instances in the training set one at a time
 - For each neuron, compute the result when applying weights, offset and activation function for the instance
 - Forward propagation until the output is computed
 - Compare the computed output with the expected output, and evaluate error
 - Backpropagation of the error, by updating weights and offset for each neuron
- The process ends when
 - % of accuracy above a given threshold
 - % of parameter variation (error) below a given threshold
 - The maximum number of epochs is reached

81

Neural networks

Strong points

- High accuracy
- Robust to noise and outliers
- Supports both discrete and continuous output
- Efficient during classification

Weak points

- Long training time
 - weakly scalable in training data size
 - complex configuration
- Not interpretable model
 - application domain knowledge cannot be exploited in the model

Bayesian Classification

Elena Baralis Politecnico di Torino

Bayes theorem

Let C and X be random variables

$$P(C,X) = P(C|X) P(X)$$

$$P(C,X) = P(X|C) P(C)$$

Hence

$$P(C|X) P(X) = P(X|C) P(C)$$

and also

$$P(C|X) = P(X|C) P(C) / P(X)$$

Bayesian classification

- Let the class attribute and all data attributes be random variables
 - C = any class label
 - $X = \langle x_1, ..., x_k \rangle$ record to be classified
- Bayesian classification
 - compute P(C|X) for all classes
 - probability that record X belongs to C
 - assign X to the class with maximal P(C|X)
- Applying Bayes theorem

$$P(C|X) = P(X|C) \cdot P(C) / P(X)$$

- P(X) constant for all C, disregarded for maximum computation
- P(C) a priori probability of C

$$P(C) = N_c/N$$

85

Bayesian classification

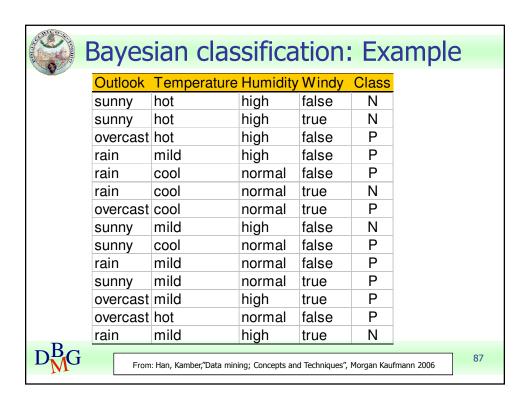
- How to estimate P(X|C), i.e. $P(x_1,...,x_k|C)$?
- Naïve hypothesis

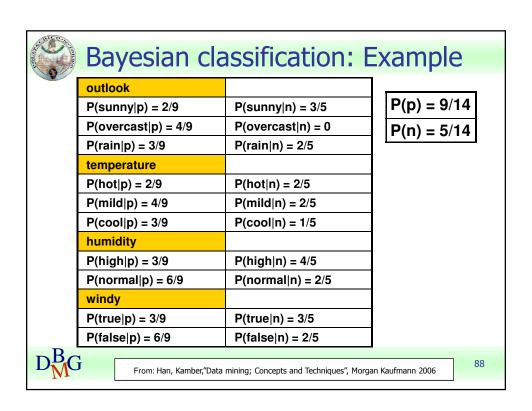
$$P(x_1,...,x_k|C) = P(x_1|C) P(x_2|C) ... P(x_k|C)$$

- statistical independence of attributes x₁,...,x_k
- not always true
 - model quality may be affected
- Computing P(x_k|C)
 - for discrete attributes

$$P(x_k|C) = |x_{kC}|/N_c$$

- where $|x_{kC}|$ is number of instances having value x_k for attribute k and belonging to class C
- for continuous attributes, use probability distribution
- Bayesian networks
 - allow specifying a subset of dependencies among attributes





Bayesian classification: Example

- Data to be labeled
 - $X = \langle rain, hot, high, false \rangle$
- For class p
 - $P(X|p) \cdot P(p) =$
 - = P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p)
 - $= 3/9 \cdot 2/9 \cdot 3/9 \cdot 6/9 \cdot 9/14 = 0.010582$
- For class n
 - $P(X|n)\cdot P(n) =$
 - = P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n)
 - $= 2/5 \cdot 2/5 \cdot 4/5 \cdot 2/5 \cdot 5/14 = 0.018286$

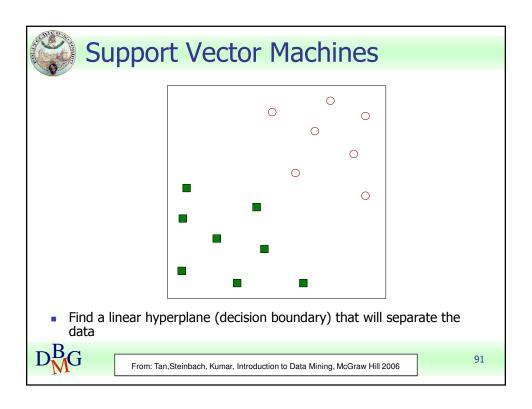
From: Han, Kamber,"Data mining; Concepts and Techniques", Morgan Kaufmann 2006

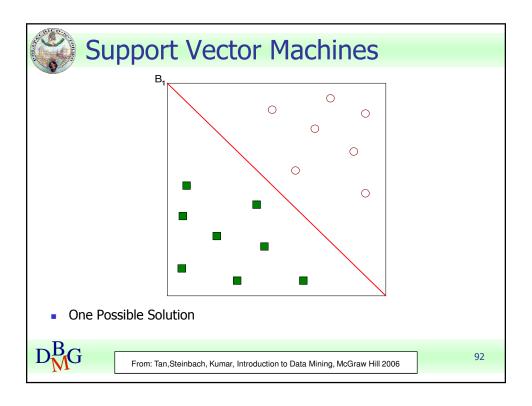
89

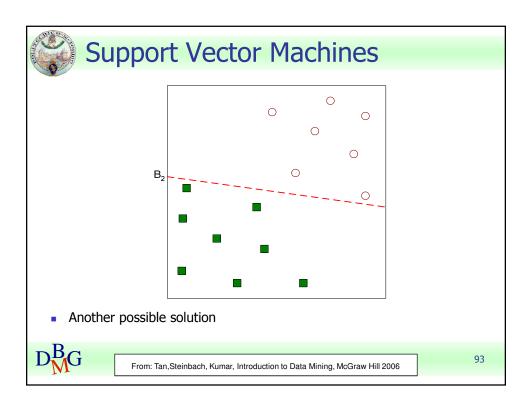
Support Vector Machines

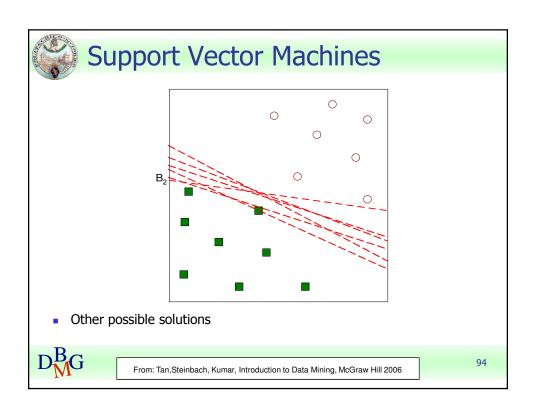
Elena Baralis

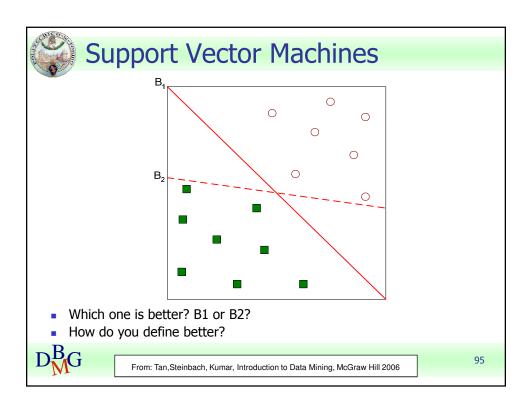
Politecnico di Torino

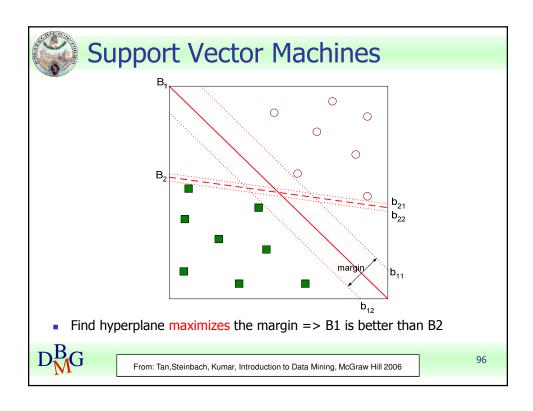


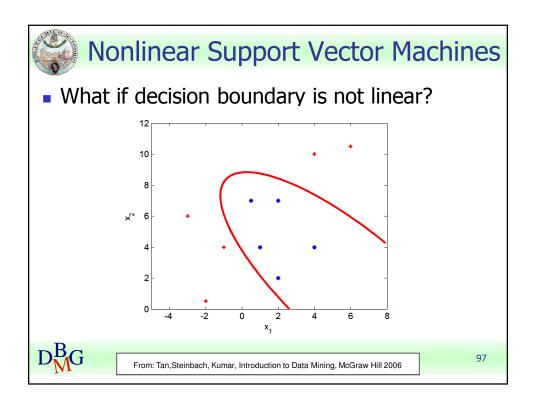


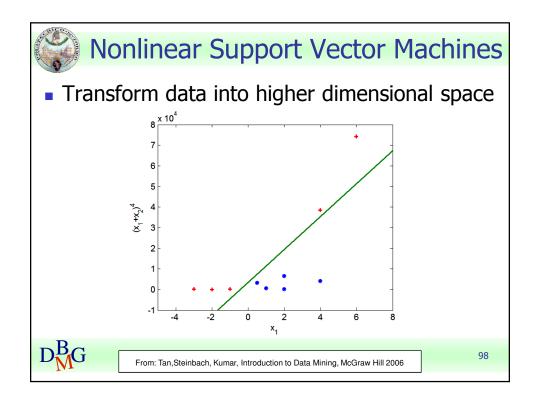




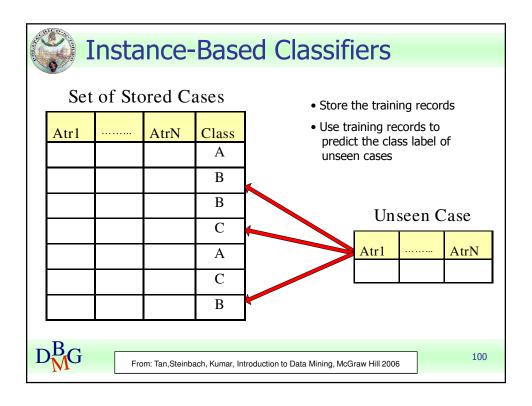








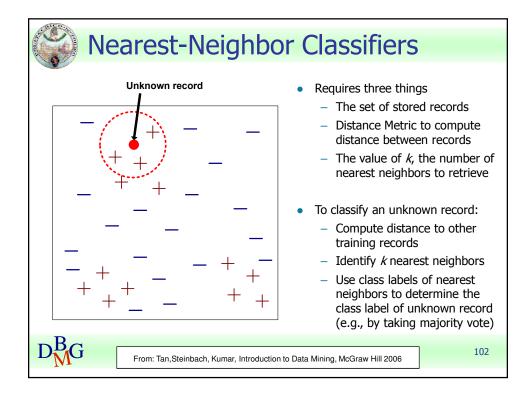


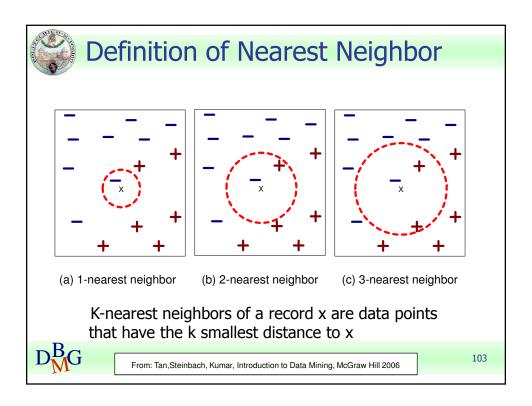


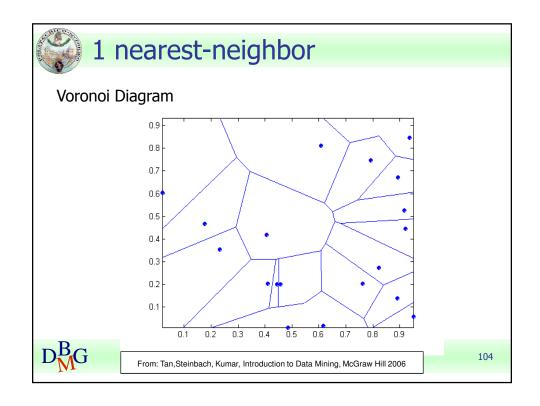
Instance Based Classifiers

- Examples
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006







Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

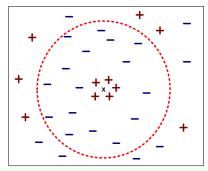
- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d²

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

105

Nearest Neighbor Classification

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes



From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

Nearest Neighbor Classification

- Scaling issues
 - Attribute domain should be normalized to prevent distance measures from being dominated by one of the attributes
 - Example: height [1.5m to 2.0m] vs. income [\$10K to \$1M]
- Problem with distance measures
 - High dimensional data
 - curse of dimensionality

107

Model evaluation

Elena Baralis

Politecnico di Torino

Model evaluation

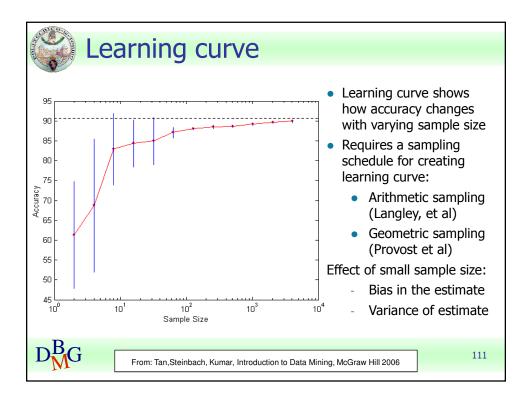
- Methods for performance evaluation
 - Partitioning techniques for training and test sets
- Metrics for performance evaluation
 - Accuracy, other measures
- Techniques for model comparison
 - ROC curve

109

Methods for performance evaluation

- Objective
 - reliable estimate of performance
- Performance of a model may depend on other factors besides the learning algorithm
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006



Methods of estimation

- Partitioning labeled data in
 - training set for model building
 - test set for model evaluation
- Several partitioning techniques
 - holdout
 - cross validation
- Stratified sampling to generate partitions
 - without replacement
- Bootstrap
 - Sampling with replacement

Holdout

- Fixed partitioning
 - reserve 2/3 for training and 1/3 for testing
- Appropriate for large datasets
 - may be repeated several times
 - repeated holdout

113

Cross validation

- Cross validation
 - partition data into k disjoint subsets (i.e., folds)
 - k-fold: train on k-1 partitions, test on the remaining one
 - repeat for all folds
 - reliable accuracy estimation, not appropriate for very large datasets
- Leave-one-out
 - cross validation for k=n
 - only appropriate for very small datasets

Metrics for model evaluation

- Evaluate the predictive accuracy of a model
- Confusion matrix
 - binary classifier

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

115

Accuracy

 Most widely-used metric for model evaluation

 $Accuracy = \frac{Number of correctly classified objects}{Number of classified objects}$

Not always a reliable metric

For a binary classifier

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

117

Limitations of accuracy

- Consider a binary problem
 - Cardinality of Class 0 = 9900
 - Cardinality of Class 1 = 100
- Model

()
$$\rightarrow$$
 class 0

- Model predicts everything to be class 0
 - accuracy is 9900/10000 = 99.0 %
- Accuracy is misleading because the model does not detect any class 1 object

Limitations of accuracy

- Classes may have different importance
 - Misclassification of objects of a given class is more important
 - e.g., ill patients erroneously assigned to the healthy patients class
- Accuracy is not appropriate for
 - unbalanced class label distribution
 - different class relevance

119

Class specific measures

Evaluate separately for each class

Recall (r)= $\frac{\text{Number of objects correctly assigned to C}}{\text{Number of objects belonging to C}}$

Precision (p)= $\frac{\text{Number of objects correctly assigned to C}}{\text{Number of objects assigned to C}}$

Maximize

F - measure (F) =
$$\frac{2rp}{r+p}$$

Class specific measures

- For a binary classification problem
 - on the confusion matrix, for the positive class

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F - measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

From: Tan, Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

121

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - characterizes the trade-off between positive hits and false alarms
- ROC curve plots
 - TPR, True Positive Rate (on the y-axis)

$$TPR = TP/(TP+FN)$$

against

FPR, False Positive Rate (on the x-axis)

$$FPR = FP/(FP + TN)$$

