
1

Pag. 1

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

Database Management Systems

Query optimization

1
DB

MG

DBMS Architecture

OPTIMIZER

MANAGEMENT OF ACCESS

METHODS

BUFFER MANAGER

CONCURRENCY CONTROL

RELIABILITY MANAGEMENT

SQL INSTRUCTION

System

Catalog

Index Files

Data Files

DATABASE

DATABASE

2

DB
MG

3

Query optimizer

It selects an efficient strategy for query execution

It is a fundamental building block of a relational
DBMS

It guarantees the data independence property

The form in which the SQL query is written does
not affect the way in which it is implemented

A physical reorganization of data does not require

rewriting SQL queries

DB
MG

4

Query optimizer

It automatically generates a query execution plan
It was formerly hard-coded by a programmer

The automatically generated execution plan is
usually more efficient

It evaluates many different alternatives

It exploits statistics on data, stored in the system
catalog, to make decisions

It exploits the best known strategies

It dynamically adapts to changes in the data
distribution

DB
MG

Query optimizer

SQL

QUERY

LEXICAL, SYNTACTIC

AND SEMANTIC

ANALYSIS

5
DB

MG
6

Lexical, syntactic and semantic analysis

Analysis of a statement to detect

Lexical errors

e.g., misspelled keywords

Syntactic errors

errors in the grammar of the SQL language

Semantic errors

references to objects which do not actually exist in
the database (e.g, attributes or tables)

information in the data dictionary is needed

2

Pag. 2

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

7

Lexical, syntactic and semantic analysis

Output

Internal representation in (extended) relational
algebra

Why relational algebra?

It explicitly represents the order in which operators
are applied

It is procedural (different from SQL)

There is a corpus of theorems and properties

exploited to modify the initial query tree

DB
MG

Query optimizer

SQL

QUERY

LEXICAL, SYNTACTIC

AND SEMANTIC

ANALYSIS

INTERNAL REPRESENTATION

BASED ON RELATIONAL ALGEBRA

ALGEBRAIC

OPTIMIZATION

DATA

DICTIONARY

8

DB
MG

9

Algebraic optimization

Execution of algebraic transformations
considered to be always beneficial

Example: anticipation of selection with respect to
join

Should eliminate the difference among different
formulations of the same query

This step is usually independent of the data
distribution

Output

Query tree in “canonical” form

DB
MG

Query optimizer

SQL

QUERY

LEXICAL, SYNTACTIC

AND SEMANTIC

ANALYSIS

INTERNAL REPRESENTATION

BASED ON RELATIONAL ALGEBRA

ALGEBRAIC

OPTIMIZATION

“CANONICAL” QUERY TREE

COST BASED

OPTIMIZATION

DATA

DICTIONARY

10

DB
MG

11

Cost based optimization

Selection of the “best” execution plan by
evaluating execution cost

Selection of

the best access method for each table

the best algorithm for each relational operator

among available alternatives

Based on a cost model for access methods and
algorithms

Generation of the code implementing the best
strategy

DB
MG

Cost based optimization

Output

Access program in executable format

It exploits the internal structures of the DBMS

Set of dependencies

conditions on which the validity of the query plan
depends

e.g., the existence of an index

12

3

Pag. 3

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

Query optimizer

SQL

QUERY

LEXICAL, SYNTACTIC

AND SEMANTIC

ANALYSIS

INTERNAL REPRESENTATION

BASED ON RELATIONAL ALGEBRA

ALGEBRAIC

OPTIMIZATION

“CANONICAL” QUERY TREE

COST BASED

OPTIMIZATION

ACCESS PROGRAM SET OF DEPENDENCIES

DATA

DICTIONARY

DATA PROFILES

(STATISTICS ON

DATA)

13
DB

MG
14

Execution modes

Compile and go

Compilation and immediate execution of the
statement

No storage of the query plan

Dependencies are not needed

DB
MG

15

Execution modes

Compile and store

The access plan is stored in the database together
with its dependencies

It is executed on demand

It should be recompiled when the data structure
changes

DB
MG

Database Management Systems

Algebraic optimization

16

DB
MG

Algebraic optimization

SQL

QUERY

LEXICAL, SYNTACTIC

AND SEMANTIC

ANALYSIS

INTERNAL REPRESENTATION

BASED ON RELATIONAL ALGEBRA

ALGEBRAIC

OPTIMIZATION

“CANONICAL” QUERY TREE

COST BASED

OPTIMIZATION

ACCESS PROGRAM SET OF DEPENDENCIES

DATA

DICTIONARY

DATA PROFILES

(STATISTICS ON

DATA)

17
DB

MG
18

Algebraic optimization

It is based on equivalence transformations

Two relational expressions are equivalent if they
both produce the same query result for any
arbitrary database instance

Interesting transformations

reduce the size of the intermediate result to be
stored in memory

prepare an expression for the application of a
transformation which reduces the size of the
intermediate result

4

Pag. 4

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

19

Transformations

1. Atomization of selection

sF1 Ʌ F2 (E) ≡ sF2 (sF1 (E)) ≡ sF1 (sF2 (E))

DB
MG

20

Transformations

1. Atomization of selection

sF1 Ʌ F2 (E) ≡ sF2 (sF1 (E)) ≡ sF1 (sF2 (E))

2. Cascading projections
pX(E) ≡ pX (pX,Y(E))

DB
MG

21

Transformations

1. Atomization of selection

sF1 Ʌ F2 (E) ≡ sF2 (sF1 (E)) ≡ sF1 (sF2 (E))

2. Cascading projections
pX(E) ≡ pX (pX,Y(E))

3. Anticipation of selection with respect to join
(pushing selection down)

sF (E1 E2) ≡ E1 (sF (E2))

F is a predicate on attributes in E2 only

DB
MG

22

Transformations

4. Anticipation of projection with respect to join

pL(E1 E2) ≡ pL ((pL1, J(E1)) (pL2,J(E2)))

L1 = L - Schema(E2)

L2 = L - Schema(E1)

J = set of attributes needed to evaluate join
predicate p

p p

DB
MG

23

Transformations

5. Join derivation from Cartesian product

sF (E1  E2) ≡ E1 E2

predicate F only relates attributes in E1 and E2

F

DB
MG

24

Transformations

5. Join derivation from Cartesian product

sF (E1  E2) ≡ E1 E2

predicate F only relates attributes in E1 and E2

6. Distribution of selection with respect to union

 sF(E1  E2) ≡ (sF (E1))  (sF (E2))

F

5

Pag. 5

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

25

Transformations

5. Join derivation from Cartesian product

sF (E1  E2) ≡ E1 E2

predicate F only relates attributes in E1 and E2

6. Distribution of selection with respect to union

 sF(E1  E2) ≡ (sF (E1))  (sF (E2))

7. Distribution of selection with respect to
difference

sF(E1 – E2) ≡ (sF (E1)) – (sF (E2))

 ≡ (sF (E1)) – E2

F

DB
MG

26

Transformations

8. Distribution of projection with respect to union
pX(E1  E2) ≡ (pX(E1))  (pX(E2))

DB
MG

27

Transformations

8. Distribution of projection with respect to union
pX(E1  E2) ≡ (pX(E1))  (pX(E2))

Can projection be distributed with respect to
difference?

 pX (E1 - E2) ≡ (pX(E1)) - (pX(E2))

DB
MG

28

Transformations

8. Distribution of projection with respect to union
pX(E1  E2) ≡ (pX(E1))  (pX(E2))

Can projection be distributed with respect to
difference?

 pX (E1 - E2) ≡ (pX(E1)) - (pX(E2))

This equivalence only holds if X includes the
primary key or a set of attributes with the same
properties (unique and not null)

DB
MG

29

Transformations

9. Other properties

sF1 V F2(E) ≡ (sF1 (E))  (sF2 (E))

sF1 Ʌ F2(E) ≡ (sF1 (E))  (sF2 (E))

DB
MG

30

Transformations

10.Distribution of join with respect to union
E (E1  E2) ≡ (E E1)  (E E2)

All binary operators are commutative and
associative except for difference

6

Pag. 6

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

31

Example

Tables
EMP (Emp#, ………, Dept#, Salary)

DEPT (Dept#, DName,……………)

SQL query

SELECT DISTINCT DName

FROM EMP, DEPT

WHERE EMP.Dept#=DEPT.Dept#

AND Salary > 1000;

DB
MG

32

Example: Algebraic transformations

pDName (sEMP.Dept#=DEPT.Dept# Ʌ Salary >1000 (EMP  DEPT))

DB
MG

33

pDName (sEMP.Dept#=DEPT.Dept# Ʌ Salary >1000 (EMP  DEPT))

 Prop #1

pDName(sSalary >1000 (sEMP.Dept#=DEPT.Dept# (EMPDEPT))

Example: Algebraic transformations

DB
MG

34

pDName (sEMP.Dept#=DEPT.Dept# Ʌ Salary >1000 (EMP  DEPT))

 Prop #1

pDName(sSalary >1000 (sEMP.Dept#=DEPT.Dept# (EMPDEPT))

 Prop #5

pDName(sSalary >1000 (EMP DEPT)

Example: Algebraic transformations

DB
MG

pDName(sSalary >1000 (EMP DEPT)

 Prop #3

pDName(sSalary >1000 (EMP)) DEPT)

35

Example: Algebraic transformations

DB
MG

pDName(sSalary >1000 (EMP DEPT)

 Prop #3

pDName(sSalary >1000 (EMP)) DEPT)

 Prop #2 and #4

pDName ((pDept# (sSalary >1000(EMP)) (pDept#,DName(DEPT)))

36

Example: Algebraic transformations

7

Pag. 7

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

37

Example: Query tree

DEPT

pDName

Final query tree

pDept#,DName

EMP

sSalary>1000

pDept#

DB
MG

38

Example: Cardinalities

Cardinality (EMP) ≈ 10,000

Cardinality (DEPT) ≈ 100

Cardinality (EMP where Salary > 1000) ≈ 50

DB
MG

Database Management Systems

Cost based optimization

39
DB

MG

Cost based optimization

SQL

QUERY

LEXICAL, SYNTACTIC

AND SEMANTIC

ANALYSIS

INTERNAL REPRESENTATION

BASED ON RELATIONAL ALGEBRA

ALGEBRAIC

OPTIMIZATION

“CANONICAL” QUERY TREE

COST BASED

OPTIMIZATION

ACCESS PROGRAM SET OF DEPENDENCIES

DATA

DICTIONARY

DATA PROFILES

(STATISTICS ON

DATA)

40

DB
MG

Cost based optimization

 It is based on

Data profiles

statistical information describing data distribution for
tables and intermediate relational expressions

Approximate cost formulas for access operations

Allow evaluating the cost of different alternatives for
executing a relational operator

41 DB
MG

Database Management Systems

Data profiles

42

8

Pag. 8

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

Table profiles

Quantitative information on the characteristics of
tables and columns

cardinality (# of tuples) in each table T

also estimated for intermediate relational
expressions

size in bytes of tuples in T

size in bytes of each attribute Aj in T

number of distinct values of each attribute in T

cardinality of the active domain of the attribute

min and max values of each attribute Aj in T

43
DB

MG
44

Table profiles

Table profiles are stored in the data dictionary

Profiles should be periodically refreshed by re-
analyzing data in the tables

Update statistics command

Executed on demand

immediate execution during transaction processing

would overload the system

DB
MG

45

Data profiles

Table profiles are exploited to estimate the size
of intermediate relational expressions

For the selection operator

Card (sAi = v (T)) ≈ Card (T)/ Val (Ai in T)

Val (Ai in T) = # of distinct values of Ai in T (active
domain)

 It holds only under the hypothesis of uniform
distribution

DB
MG

Database Management Systems

Access operators

46

DB
MG

Query tree

Internal representation of the relational
expression as a query tree

47

DEPT

pDName

pDept#,DName

EMP

sSalary>1000

pDept#

DB
MG

48

Query tree

Leaves correspond to the physical structures

tables, indices

Intermediate nodes are operations on data
supported by the given physical structure

e.g., scan, join, group by

9

Pag. 9

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

49

Sequential scan

Executes sequential access to all tuples in a table

also called full table scan

Operations performed during a sequential scan

Projection

discards unnecessary columns

Selection on a simple predicate (Ai=v)

Sorting based on an attribute list

Insert, update, delete

DB
MG

50

Sorting

Classical algorithms in computer science are
exploited

e.g., quick sort

Size of data is relevant

memory sort

sort on disk

DB
MG

Predicate evaluation

If available, it may exploit index access

B+-tree, hash, or bitmap

Simple equality predicate Ai=v

Hash, B+-tree, or bitmap are appropriate

Range predicate v1 ≤ Ai ≤ v2

only B+-tree is appropriate

For predicates with limited selectivity full table
scan is better

if available, consider bitmap

51
DB

MG

B+-tree versus bitmap

52

Bitmap VS B-Tree

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45
NK

D
is

k
 s

p
a
c
e
 (

M
B

)

B-Tree Bitmap

Courtesy of Golfarelli, Rizzi,
”Data warehouse, teoria e
pratica della progettazione”,
McGraw Hill 2006

B-tree NRLen(Pointer)
Bitmap NR  NK  1 bit

Len(Pointer) = 48 bit

DB
MG

53

Predicate evaluation

Conjunction of predicates Ai= v1 Ʌ Aj= v2

The most selective predicate is evaluated first

Table is read through the index

Next the other predicates are evaluated on the
intermediate result

Optimization

First compute the intersection of bitmaps or RIDs
coming from available indices

Next table read and evaluation of remaining
predicates

DB
MG

54

Example: Predicate evaluation

Which female students living in Piemonte are
exempt from enrollment fee?

RID Gender Exempt Region

1 M Y Piemonte

2 F Y Liguria

3 M N Puglia

4 M N Sicilia

5 F Y Piemonte

Gender

0

1

0

0

1

Exempt

1

1

0

0

1

Piemonte

1

0

0

0

1

RID 5

10

Pag. 10

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

55

Disjunction of predicates Ai= v1 V Aj= v2

Index access can be exploited only if all predicates
are supported by an index

otherwise full table scan

Predicate evaluation

DB
MG

56

Join operation

A critical operation for a relational DBMS

connection between tables is based on values

instead of pointers

size of the intermediate result is typically larger
than the smaller table

Different join algorithms

Nested loop

Merge scan join

Hash join

Bitmapped join

DB
MG

57

A

a

Outer table Inner table

join
attribute

a

a

a

external
scan

internal
or direct scan

A

Nested loop

DB
MG

58

Nested loop

A single full scan is done on the outer table

For each tuple in the outer table

a full scan of the inner table is performed, looking
for corresponding values

Also called “brute force”

DB
MG

59

Nested loop

Efficient when

inner table is small and fits in memory

optimized scan

join attribute in the inner table is indexed

index scan

Execution cost

The nested loop join technique is not symmetric

The execution cost depends on which table takes
the role of inner table

DB
MG

60

Merge scan

Left table Right table

join
attribute

left
scan

b
b

A A

right
scan

b

a a

c

d

e
e

11

Pag. 11

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

61

Merge scan

Both tables are sorted on the join attributes

The two tables are scanned in parallel

tuple pairs are generated on corresponding values

Execution cost

The merge scan technique is symmetric

requires sorting both tables

may be sorted by a previous operation

may be read through a clustered index on join

attributes

More used in the past

efficient for large tables, because sorted tables
may be stored on disk

DB
MG

62

Hash Join

d
e

a
c

j
p

e
m

a
w

j
z

Join

Attribute

Buckets for
left table

Buckets for
right table

HASH(a)

From
left table

HASH(a)

From
right table

DB
MG

63

Hash join

Application of the same hash function to the join
attributes in both tables

Tuples to be joined end up in the same buckets

collisions are generated by tuples yielding the same
hash function result with different attribute value

A local sort and join is performed into each bucket

Very fast join technique

DB
MG

64

Bitmapped join index

Bit matrix that precomputes the join between
two tables A and B

One column for each RID in table A

One row for each RID in table B

Position (i, j) of the matrix is

1 if tuple with RID j in table A joins with tuple with
RID i in table B

0 otherwise

Updates may be slow

RID 1 2 … n

1 0 0 … 1

2 0 1 … 0

3 0 0 … 1

4 1 0 … 0

… … … … 0

DB
MG

65

Bitmapped join

Typically used in OLAP queries

joining several tables with a large central table

Example

Exam table, joined to Student and Course tables

Exploits one or more bitmapped join indices

One for each pair of joined tables

Access to the large central table is the last step

DB
MG

66

Bitmapped join

Complex queries may exploit jointly

bitmapped join indices

bitmap indices for predicates on single tables

12

Pag. 12

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

67

Example: Bitmapped join

Average score of male students for exams of
courses in the first year of the master degree

STUDENT (Reg#, SName, Gender)

COURSE (Course#, CName, CourseYear)

EXAM (Reg#, Course#, Date, Grade)

SELECT AVG (Grade)

FROM STUDENT S, EXAM E, COURSE C

WHERE E.Reg# = S.Reg#

AND E.Course# = C.Course#

AND CourseYear = ‘1M’

AND Gender = ‘M’;

DB
MG

Bitmapped join

RID … 1M
… …

1 0 1 … 0

2 0 0 … 0

3 0 0 … 1

4 0 1 … 0

5 1 0 … 0

Bitmap for CourseYear attribute

1

0

0

0

1

…

RID 1 … 4 …

1 0 … 1 1

2 0 … 1 0

3 0 … 0 1

4 1 … 0 0

… … … … …

Bitmapped join index
for Course-Exams join

4

1

1

0

0

…

OR

RIDs 1 and 4

RIDCY

1

1

0

1

…

=

… FROM EXAM E, COURSE C

WHERE E.Course# = C.Course#

AND CourseYear = ‘1M’ …

68

DB
MG

Bitmapped join

RID

1

0

0

1

…

AND

RIDCY

1

1

0

1

…

=

RIDG

1

0

0

1

…

RIDs of Exam table
for tuples to be read

bitmap for Course-Exam
predicates and join

bitmap for Student-Exam
predicates and join

69
DB

MG
70

Group by

Sort based

Sort on the group by attributes

Next compute aggregate functions on groups

Hash based

Hash function on the group by attributes

Next sort each bucket and compute aggregate

functions

Materialized views may be exploited to improve
the performance of aggregation operations

DB
MG

Database Management Systems

Execution plan selection

71
DB

MG

Cost based optimization

 Inputs

Data profiles

Internal representation of the query tree

Output

“Optimal” query execution plan

Set of dependencies

It evaluates the cost of different alternatives for

reading each table

executing each relational operator

It exploits approximate cost formulas for access
operations

72

13

Pag. 13

Database Management Systems Query optimization

Elena Baralis, Silvia Chiusano
Politecnico di Torino

DB
MG

General approach to optimization

The search for the optimal plan is based on the
following dimensions

The way data is read from disk

e.g., full scan, index

The execution order among operators

e.g., join order between two join operations

The technique by means of which each operator is
implemented

e.g., the join method

When to perform sort (if sort is needed)

73
DB

MG

General approach to optimization

The optimizer builds a tree of alternatives in
which

each internal node makes a decision on a variable

each leaf represents a complete query execution
plan

74

DB
MG

Example

 Given 3 tables

R, S, T

Compute the join

R S T

Execution alternatives

4 join techniques to evaluate (for both joins)

3 join orders

In total, at most

 4 * 4 * 3 = 48 different alternatives

75

DB
MG

Example

R S T
1 2

R S T
1 2

S T R
1 2

R T S
1 2

NESTED LOOP
1

R INNER

1
NESTED LOOP

S INNER

MERGE SCAN
 1

2
NESTED LOOP

T INNER

2
NESTED LOOP

T OUTER

HASH JOIN
 1

LEAF NODE

76

DB
MG

Best execution plan selection

The optimizer selects the leaf with the lowest
cost

General formula

 CTotal = CI/O x nI/O + Ccpu x ncpu

nI/O is the number of I/O operations

ncpu is the number of CPU operations

The selection is based on operation research
optimization techniques

e.g., branch and bound

77
DB

MG

Best execution plan selection

The final execution plan is an approximation of
the best solution

The optimizer looks for a solution which is of the
same order of magnitude of the “best” solution

 For compile and go

it stops when the time spent in searching is
comparable to the time required to execute the

current best plan

78

