Database Management Systems

Database Management Systems

Triggers

2> Active Database Systems

2 Oracle Triggers

2> DB2 Triggers

2 Differences between Oracle and DB2
2> Trigger Design

Database Management Systems

Active Database Systems

~ P

Active database systems

2> Traditional DBMS operation is passive

® Queries and updates are explicitly requested by
users

® The knowledge of processes operating on data is
typically embedded into applications

> Active database systems
® Reactivity is a service provided by a normal DBMS

® Reactivity monitors specific database events and
triggers actions in response

2> Reactivity is provided by automatically executing
rules
Y Rules are in the form
® Event
® Condition
® Action
2 Also called active or ECA rules

pfe °

Active rules

2> Event

® Database modification operation
2> Condition

® Predicate on the database state

® If the condition is true, the action is executed
2> Action

® Sequence of SQL instructions or application
procedure

Elena Baralis, Silvia Chiusano

Politecnico di Torino Pag. 1

Triggers

Database Management Systems Triggers

Rule engine

3> Component of the DBMS, in charge of 2> The active rule manages reorder in an inventory
® Tracking events stock
® Executing rules when appropriate ® when the stocked quantity of a product goes
® based on the execution strategy of the DBMS below a given threshold
© Rule execution is interleaved with traditional ® a new order for the product should be issued
transaction execution 2> Event

® Update of the quantity on hand for product x
® Insert of a new product x

Example Applications of active rules
YO The active rule manages reorder in an inventory >> Internal applications
stock ® maintenance of complex integrity constraints
® when the stocked quantity of a product goes ® replication management
below a given threshold ® materialized view maintenance
® a new order for the product should be issued 3 Business Rules

2> Condition ® Incorporate into the DBMS application knowledge
® The quantity on hand is below a given threshold ® E.g., reorder rule
and there are no pending orders for product x > Alerters
2 Action ® widely used for notification
® Issue an order with given reorder quantity for
product x
pfe S pfe 10

Trigger structure

Triggers
2> Commercial products implement active rules by 2> Event
means of triggers ® Insert, delete, update of a table
25 SQL provides instructions for defining triggers ® Each trigger can only monitor events on a single
® Triggers are defined by means of the DDL table
instruction CREATE TRIGGER 2> Condition
2O Trigger syntax and semantics are covered in the ® SQL predicate (it is optional)
SQL3 standard 2 Action
® Some commercial products implement different ® Sequence of SQL instructions

features with respect to the standard ® Proprietary programming language blocks

® e.g. Oracle PL/SQL
® Java block
DB\G 11 DE\G 12

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 2

Database Management Systems Triggers

When the events take place
If the condition is true
Then the action is executed

2> Seems very simple but...
® Execution modes
® Execution granularity

pBe

Execution process

[triggering]
[evaluation]
[execution]

Execution mode

2> Immediate

® The trigger is executed immediately before or after
the triggering statement

2 Deferred
® The trigger is executed immediately before commit
25 Only the immediate option is available in
commercial systems

D&G 14

> Tuple (or row level)

2 Statement

by the triggering statement

pBe

Execution granularity

® One separate execution of the trigger for each
tuple affected by the triggering statement

® One single trigger execution for all tuples affected

Granularity example

D Table T

olN =] >
vl

¥ Transaction statement ~ UPDATE T
SET A=A+1
WHERE B<10;

2> Trigger execution
® A row level trigger executes twice
® A statement level trigger executes once

D&G 16

Database Management Systems

Oracle Triggers

Trigger syntax

CREATE TRIGGER T7riggerName
Mode Event{OR Event}

ON TargetTable

[[REFERENCING ReferenceName)
FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

D&G 18

Elena Baralis, Silvia
Politecnico di Torino

Chiusano

Pag. 3

Database Management Systems

Trigger syntax

CREATE TRIGGER 7riggerName
Mode Event{OR Event}

[ON TargetTable]
[[REFERENCING ReferenceName)
FOR EACH ROW
[WHEN Predicate]]
PL/SQL Block

> Mode is BEFORE or AFTER
® Also INSTEAD OF but should be avoided

Triggers

Trigger syntax

CREATE TRIGGER T7riggerName
Mode Event{OR Event}

[ON TargetTable]
[[REFERENCING ReferenceName]
FOR EACH ROW
[WHEN Predicate]]
PL/SQL Block

2> Event ON TargetTableis
® INSERT
® DELETE
® UPDATE [OF ColumnName]

D‘%\G 20

Trigger syntax

CREATE TRIGGER 7riggerName
Mode Event{OR Event}

ON T7argetTable

[[REFERENCING ReferenceName)
[WHEN Predicate]]

PL/SQL Block

2> FOR EACH ROW specifies row level execution

Trigger syntax

CREATE TRIGGER T7riggerName
Mode Event{OR Event}

ON TargetTable

[[REFERENCING ReferenceName)
[WHEN Predicate]]

PL/SQL Block

2> The old and new states of the row triggering a row
leveltrigger may be accessed by means of the
® OLD.ColumnName variable
® NEW.ColumnName variable

semantics
® If omitted, the execution semantics is statement
level
D‘\B/\G 21

D&G 22

Trigger syntax

CREATE TRIGGER 7riggerName
Mode Event{OR Event}
ON TargetTable

([[REFERENCING ReferenceName] |
FOR EACH ROW
[WHEN Predicate]]
PL/SQL Block

> To rename the state variables
® REFERENCING OLD AS OldVariableName
® similarly for NEW

DB\G 23

Trigger syntax

CREATE TRIGGER T7riggerName
Mode Event{OR Event}

ON TargetTable

[[REFERENCING ReferenceName)
FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

2> Only for row level execution semantics (i.e., FOR
EACH ROW)

® A condition may be optionally specified
® The old and new state variables may be accessed

D&G 24

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Pag. 4

Database Management Systems

Trigger syntax

CREATE TRIGGER 7riggerName
Mode Event{OR Event}

ON T7argetiable

[[REFERENCING ReferenceName)
FOR EACH ROW

[WHEN Predicate]]

PL/SQL Block

> The action is
® a sequence of SQL instructions
® a PL/SQL block
> No transactional and DDL instructions

pBe

25

Trigger semantics

2> Execution modes
® immediate before
® immediate after
2> Granularity is
® row (tuple)
® statement

2> Execution is triggered by insert, delete, or update
statements in a transactions

26

il

~

Execution algorithm
Before statement triggers are executed
For each tuple in 7argetTable affected by the
triggering statement
a) Before row triggers are executed
b) The triggering statement is executed
+ integrity constraints are checked on tuples
c) After row triggers are executed
Integrity constraints on tables are checked
After statement triggers are executed

pBe

Trigger semantics

2> The execution order for triggers with the same
event, mode and granularity is not specified
® it is a source of non determinism
2> When an error occurs
® rollback of all operations performed by the triggers

® rollback of the triggering statement in the
triggering transaction

28

il

Non termination

2> Trigger execution may activate other triggers

® Cascaded trigger activation may lead to non
termination of trigger execution

> A maximum length for the cascading trigger
execution may be set
® default = 32 triggers
¥ If the maximum is exceeded
® an execution error is returned

pBe

utating tables

2> A mutating tableis the table modified by the
statement (i.e., event) triggering the trigger
2> The mutating table
® cannot be accessed in row level triggers
® may only be accessed in statement triggers
2> Limited access on mutating tables only
characterizes Oracle applications

® accessing mutating tables is a/ways allowed in
SQL3

30

il

Triggers

Elena Baralis, Silvia Chiusano

Politecnico di Torino Pag. 5

Database Management Systems

Example

Triggers

2> Trigger to manage reorder in an inventory stock

® when the stocked quantity of a product goes
below a given threshold

® a new order for the product should be issued

2O The following database schema is given
Inventory (Part#, QtyOnHand, ThresholdQty,

ReorderQty)

PendingOrders(Part#, OrderDate, OrderedQty)

DB\G 31

2> Trigger to manage reorder in an inventory stock

® when the stocked quantity of a product goes
below a given threshold

® a new order for the product should be issued
> Event
® Update of the quantity on hand for product x
® Insert of a new product x
2> Execution semantics
® After the modification event
® Separate execution for each row of the Inventory
table

D‘%\G 32

Trigger example

CREATE TRIGGER Reorder
AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory
FOR EACH ROW

DB\G 33

2> Trigger to manage reorder in an inventory stock

® when the stocked quantity of a product goes
below a given threshold

® a new order for the product should be issued
2> Condition
® The quantity on hand is below a given threshold

D‘%\G 34

Trigger example

CREATE TRIGGER Reorder

AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory
FOR EACH ROW

WHEN (NEW.QtyOnHand < NEW.ThresholdQty)

DB\G 35

2> Trigger to manage reorder in an inventory stock
® when the stocked quantity of a product goes
below a given threshold
® a new order for the product should be issued
2> Condition
® The quantity on hand is below a given threshold
and there are no pending orders for product x
® This part cannot be introduced into the WHEN

clause
2> Action
@ Issue an order with given reorder quantity for
Dﬁ\e product x 36

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Pag. 6

Database Management Systems Triggers

Example: Trigger body Complete trigger example

DECLARE CREATE TRIGGER Reorder
) AFTER UPDATE OF QtyOnHand OR INSERT ON Inventory
N number;
BEGIN FOR EACH ROW
. WHEN (NEW.QtyOnHand < NEW. ThresholdQty)
select count(*) into N DECLARE
from PendingOrders N number;

where Part# = :NEW.Part#;

BEGIN
If (N=0) then select count(*) into N
insert into PendingOrders(Part#,0rderedQty,OrderDate) from PendingOrders
values (:NEW.Part#, :NEW.ReorderQty, SYSDATE); WIS (R = N
end if: If (N=0) then
END: ! insert into PendingOrders(Part#,0rderedQty,OrderDate)
4 values (:NEW.Part#, :NEW.ReorderQty, SYSDATE);
end if;
DB\G 37 D‘%\G END; 38

Trigger syntax

CREATE TRIGGER T7riggerName
Mode Event
ON TargetTable

REFERENCING ReferenceName]
FOR EACH Leve/

WHEN Predicate
Procedural SQL Statements

2> Mode is BEFORE or AFTER

: 2> Eventis INSERT or DELETE or UPDATE

DB2 Triggers ® Only one eventis allowed for a single trigger

2> Levelis ROW or STATEMENT

39 DE\G 40

Database Management Systems

Trigger syntax

Trigger syntax

CREATE TRIGGER T7riggerName
Mode Event
ON T7argetTable

ON TargetTable
[REFERENCING ReferenceName] [REFERENCING ReferenceName]
FOR EACH Leve/

FOR EACH Leve/
WHEN Predicate WHEN Predicate

Procedural SQL Statements

CREATE TRIGGER T7riggerName
Mode Event

Procedural SQL Statements

2> The condition may be specified for both row and

2> State variables are available for both row and
statement triggers

statement triggers
® OLD and NEW tuple variables for row triggers

® OLD_TABLE and NEW_TABLE set variables for
statement triggers
pfe “ icle i

42

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 7

Database Management Systems

> Execution modes
® immediate before
® immediate after
> Granularity is
® row (tuple)
® statement

2> Execution is triggered by insert, delete, or update
statements in a transaction

DB\G 43

Triggers

Trigger semantics

2 Before triggers cannot modify the database

® apart from the tuples affected by the triggering
statement

@ tuple variables are used
® cannot trigger other triggers
25 The execution of row and statement triggers with
the same mode is in arbitrary order
2> When more triggers are activated on the same
event and mode
® they are executed in creation order
2> Trigger execution is deterministic
DE\G 44

Trigger semantics

2> Cascading trigger execution is allowed up to a
maximum number of triggers in the execution
chain

2> When an error occurs
® rollback of all operations performed by the triggers
® rollback of the entire transaction

DB\G 45

~

Execution algorithm

2> Transaction T contains a statement S which
generates event E

1. T's execution is suspended and its state is saved
into a stack

2. Old and new values of E are computed

Before triggers on E are executed

4. New values are applied to the DB (the
modification due to E is actually performed)
® Constraints are checked

® compensative actions may trigger other triggers,
hence cause a recursive invocation of the same
execution procedure

w9

46

il

~

Execution algorithm

5. After triggers triggered by E are executed

® If any trigger contains an action A which triggers
other triggers

® the same execution procedure is recursively invoked
onA

6. The execution state of T is extracted from the
stack and T is resumed

DB\G 47

2> The trigger
® monitors the Inventory table
® inserts into an audit table the information on
® the user performing updates on the table
® the update date and number of updated tuples
2> The following table is given
InventoryAudit (UserName, Date, Update#)

D‘%G 48

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Pag. 8

Database Management Systems Triggers

Example Trigger example
P
el CREATE TRIGGER UpdateAudit

® Update of the Inventory table AFTER UPDATE ON Inventory
2> Execution semantics FOR EACH STATEMENT

® After the modification event insert into InventoryAudit (UserName, Date, Update#)

® Separate execution for each update instruction values (USER, SYSDATE,

® Statement semantics (select count(*) from OLD_TABLE));

> No condition for execution

DB\G 49 DE\G 50

Oracle DB2
Reference to Old_Table and New_Table in No Yes
statement triggers
When clause in statement triggers No Yes
Execution order between row and statement Specified Arbitrary
g = triggers with same mode
Execution order between triggers with same Unspecified Creation
Database Management Systems event, mode and granularity Order
More than one triggering event allowed Yes No
; q Yes for row No
= = Forbidden access to the mutating table .
Comparing Oracle and DB2 Triggers triggers
Availability of the instead semantics Yes No
& Database modifications allowed in before Yes Only NEZW
D‘%\G triggers variab?es

Trigger design

2> The design of a single trigger is usually simple
® Identify
® execution semantics
® event
@ condition (optional)
® action

Database Management Systems

Trigger Design

D‘\B/\G 53 D‘%\G 54

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 9

Database Management Systems Triggers

Trigger design Trigger execution properties
© Understanding mutual interactions among 2 Termination
triggers is more complex ® For an arbitrary database state and user
® The action of one trigger may be the event of a transaction, trigger execution terminates in a final
different trigger state (also after an abort)
® Cascaded execution 2> Confluence
> If mutual triggering occurs ® For an arbitrary database state and user

transaction, trigger execution terminates in a
unigue final state, independently of the execution
order of triggers

2> Termination is the most important property

2> Confluence is enforced by deterministic trigger

execution
DB\G 55 DE\G 56

® Infinite execution is possible

Guaranteeing termination

2> Termination is guaranteed at run time by 2> Trigger managing salary amounts
aborting trigger execution after a given cascading ® When a given average salary value is exceeded, a
length salary reduction is automatically enforced
2O Termination may be verified at design time by 2> The following table is given
means of the triggering graph Employee (Emp#, Ename, ..., Salary)
® a node for each trigger > Event

® a directed edge T, —>T; if trigger T; is performing an
action triggering trigger T;

2> A cycle in the graph shows potential non
terminating executions N
T T

J
D B\G _/‘ 57 D E\G 58

® Update of the Salary attribute in Employee
® Insert into Employee
® Will write only trigger for update

Example
> Trigger managing sa'ary amounts CREATE TRIGGER SaIaryMonitor
® When a given average salary value is exceeded, a AFTER UPDATE OF Salary ON Employee
salary reduction is automatically enforced FOR EACH STATEMENT

BEGIN

2 The followin le is given
e following table Is give update Employee

Employee (Emp#, Ename, ..., Salary) set Salary = Salary * K

L Execution semantics where 2500 < (select AVG (Salary) from Employee);
® After the modification events END;
® Separate execution for each update instruction

. . The value of K may be
2> No condition for execution y

K = 0.9 — execution terminates SalaryMonitor
K = 1.1 — infinite execution

DB\G 59 D‘%G 60

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 10

Database Management Systems

Trigger applications

> Internal applications
® maintenance of complex integrity constraints
® replication management
® materialized view maintenance

2D Business Rules

® Incorporate into the DBMS application knowledge
® E.g., reorder rule

2 Alerters
® widely used for notification

DB\G 61

2 Triggers are exploited to enforce complex
integrity constraints
2> Design procedure
1. Write the constraint as a SQL predicate
® Tt provides a condition for the trigger execution

2. Identify the events which may violate the
constraint

® j.e. the condition

3. Define the constraint management technique in
the action

D‘%\G 62

Desigh example (1)

2O The following tables are given
® Supplier S (S#, SName, ...)
® Part P (P#, PName, ...)
® Supply SP (S#, P#, Qty)

2 Constraint to be enforced

® A part may be supplied by at most 10 different
suppliers

DB\G 63

D‘%\G 64

Desigh example (1)

2> Constraint predicate
select P#
from SP
group by P#
having count(*) > 10

® set of parts violating the constraint
2> Events

® insert on SP

® update of P# on SP
2> Action

® reject the violating transaction

Designh example (1)

2> Execution semantics
® after the modification
® statement level

® to capture the effect of the entire modification
® (Oracle) to allow access to the mutating table
2> (Oracle) No condition

® The condition cannot be specified in the WHEN
clause

® It is checked in the trigger body
2> Design for Oracle trigger semantics

Designh example (1)

CREATE TRIGGER TooManySuppliers

AFTER UPDATE OF P# OR INSERT ON SP
DECLARE

N number;
BEGIN
select count(*) into N
from SP
where P# IN (select P# from SP
group by P#
having count(*) > 10);
if (N <> 0) then
raise_application_error (xxx, ‘constraint violated’);

Triggers

end if;

ofie * pBc END; 8

Elena Baralis, Silvia Chiusano

Politecnico di Torino Pag. 11

11

Database Management Systems Triggers

Design example (2) " Design example (2)

D The following tables are given 2> Constraint predicate
® Supplier S (S#, SName, ...) ® Qty > 1000
® Part P (P#, PName, ...) ® It is also the trigger condition
® Supply SP (S#, P#, Qty) 2 Bvents
© Constraint to be enforced ® insert on SP
® The quantity of a product supply cannot be larger ® update of Qty on SP
than 1000. If it is larger, trim it to 1000. 2> Action
2 Check constraints do not allow compensating ® Qty = 1000
actions
® Implement with a trigger
D‘\B/\G 67 D‘%\G 68

Design example (2)

20 Execution semantics
® before the modification takes place
® its effect can be changed before the constraint is

CREATE TRIGGER ExcessiveQty
BEFORE UPDATE OF Qty OR INSERT ON SP

checked FOR EACH ROW
® row level WHEN (NEW.Qty > 1000)
® each tuple is modified separately BIEEI'V\I -
END;
D‘\B/\G LS D‘%\G 70

YO Materialized views are queries persistently stored 2> Tables
in the database ® Student S (SId, SName, DCId)
® provide increased performance ® Degree course DC (DCId, DCName)
® contain redundant information > Materialized view
® e.g., aggregate computations ® Enrolled students ES (DCId, TotalStudents)
2 Triggers are exploited to maintain redundant data ® For each degree course, TotalStudents counts the
® Propagate data modifications on tables to total number of enrolled students
materialized view ® Defined by query
SELECT DCId, COUNT(*)
FROM S
GROUP BY DCId;
DB\G s DE\G 72

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 12

Database Management Systems

2> Tables
® Student
® Degree course
2> Materialized view
® Enrolled students ES (DCId, TotalStudents)

S (SId, SName, DCId)
DC (DCId, DCName)

total number of enrolled students

student quits it

pBe

® For each degree course, TotalStudents counts the

® A new degree course is inserted in materialized
view ES when the first student is enrolled in it

® A degree course is deleted from ES when the last

73

Design example (3)

Design example (3)

2> Database schema
S (SId, SName, DCId)
DC (DCId, DCName)
ES (DCId, TotalStudents)
2> Propagate modifications on table S to
materialized view (table) ES
® Inserting new tuples into S
® Deleting tuples from S

® Updating the DCId attribute in one or more tuples
of S

D‘%\G 74

data modification
® Insert trigger, delete trigger, update trigger

2> Execution semantics
® after the modification takes place

® row level

® Separate execution for each tuple of table S
® significantly simpler to implement

pBe

® All triggers share the same execution semantics

2 Design three triggers to manage separately each

® Table ES is updated after table S has been modified

75

Desigh example (3)

2> Event
® inserton S
>> No condition

® [t is always executed
2> Action

® if table ES contains the DCId in which the student
is enrolled

® increment TotalStudents
® otherwise

® add a new tuple in table ES for the degree course,
with TotalStudents set to 1

D‘%\G 76

CREATE TRIGGER InsertNewStudent
AFTER INSERT ON S

FOR EACH ROW

DECLARE

N number;

BEGIN

--- check if table ES contains the tuple for the degree
--- course NEW.DCId in which the student enrolls
select count(*) into N

from ES

where DCId = :NEW. DCId;

pBe

7

D‘%G 78

if (N <> 0) then
--- the tuple for the NEW.DCId degree course is
--- available in ES
update ES
set TotalStudents = TotalStudents +1
where DCId = :NEW.DCId;
else
--- no tuple for the NEW.DCId degree course is
--- available in ES
insert into ES (DCId, TotalStudents)
values (:NEW.DCId, 1);
end if;
END;

Elena Baralis, Silvia Chiusano

Politecnico di Torino

Pag. 13

Triggers

13

Database Management Systems

2 Event
® delete from S
> No condition

Triggers

CREATE TRIGGER DeleteStudent
AFTER DELETE ON S
FOR EACH ROW

4 DECLARE
® It is always executed N number;
2> Action BEGIN

® if the student was the only student enrolled in the
degree course

® delete the corresponding tuple from ES
® otherwise
® decrement TotalStudents

D‘\B/\G 79

--- read the number of students enrolled on
--- the degree course OLD.DCId

select TotalStudents into N

from ES

where DCId = :0LD.DCId;

D‘%\G 80

pBe

if (N > 1) then
--- there are many enrolled students
update ES
set TotalStudents = TotalStudents — 1
where DCId = :0LD.DCId;

else
--- there is a single enrolled student
delete from ES
where DCId = :0LD.DCId;

end if;

END;

81

Update trigger (3)

2> Event
® Update of DCId on S
2> No condition
® [t is always executed
2> Action
® update table ES for the degree course where the
student was enrolled
® decrement TotalStudents, or delete tuple if last
student
® update table ES for the degree course where the
student /s currently enrolled

® increment TotalStudents, or insert new tuple if first
student

D‘%\G 82

pBe

CREATE TRIGGER UpdateDegreeCourse
AFTER UPDATE OF DCId ON S

FOR EACH ROW

DECLARE set TotalStudents = TotalStudents — 1
N number; where DCId = :0LD.DCId;
BEGIN

--- read the number of students enrolled in
--- degree course OLD.DCId

select TotalStudents into N

from ES

where DCId = :0LD.DCId;

83

il

Update trigger (3)

if (N > 1) then
--- there are many enrolled students
update ES

else
--- there is a single enrolled student
delete from ES
where DCId = :0LD.DCId;

end if;

84

Elena Baralis, Silvia Chiusano

Politecnico di Torino Pag. 14

Database Management Systems Triggers

Update trigger (3) Update trigger (3)
--- check if table ES contains the tuple for the degree if (N <> 0) then
--- course NEW.DCId in which the student is enrolled --- the tuple for the NEW.DCId degree course is available in ES
select count(*) into N
from ES

update ES

set TotalStudents = TotalStudents +1
where DCId = :NEW.DCId;

where DCId = :NEW. DCId;

else

--- no tuple for the NEW.DCId degree course is available in ES
insert into ES (DCId, TotalStudents)
values (:NEW.DCId, 1);

end if;

END;

pBe

85

il

86

Elena Baralis, Silvia Chiusano

Politecnico di Torino Pag. 15

15

