Database Management Systems

Database Management Systems

Distributed Database Management Systems

Distributed database
management systems

different machines

2> Typical advantages
® Performance improvement
® Increased availability
® Stronger reliability

pltle

ted architectures

Distribu

>~ Data and computation are distributed over

> Different levels of complexity
® Depending on the independence level of nodes

Elena Baralis, Silvia Chiusano

Politecnico di Torino Pag. 1

Database Management Systems Distributed database
management systems

2> Client/server

® Simplest and more widespread

® Server manages the database

® Client manages the user interface
> Distributed database system

® Different DBMS servers on different network nodes
® gutonomous
® able to cooperate
® Guaranteeing the ACID properties requires more
complex techniques

>> Data replication

® A replicais a copy of the data stored on a different
network node

® The replication server autonomously manages
copy update

® Simpler architecture than distributed database

DgG N

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 2

Database Management Systems

Distributed database
management systems

>> Parallel architectures
® Performance increase is the only

® Different architectures
® Multiprocessor machines
® CPU clusters
® Dedicated network connections

2> Data warehouses

Processing)

® Servers specialized in decision support

® Perform OLAP (On Line Analytical Processing)
@ different from OLTP (On Line Transaction

objective

>> Portability

® Capability of moving a program from a system to a
different system

® Guaranteed by the SQL standard

> Interoperability

on a given task

® Interaction protocols are needed
® ODBC
® X-Open-DTP

pltle

® Capability of different DBMS servers to cooperate

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 3

Database Management Systems Distributed database
management systems

Database Management Systems

Client/server Architectures

-— < - -
~ 3 ‘ : :
q' g . eben ——
L “/

Client/server architectures

2o 2-Tier
® Thick clients
® with some application logic
® DBMS server

® provides access to data @ CLIENT,

DEG 8

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 4

Database Management Systems Distributed database
management systems

2> 3-Tier
® T7hin client
CLIENT,
® Application server s
_ , : APPLICATION
® implements business logic SERVER

® typically also a web server
® DBMS Server
® provides access to data SERVER

DBMS

>> Compile & Go
® The query is sent to the server
® The query is prepared
® generation of the query plan
® The query is executed
® The result is shipped
® The query plan is not stored on the server
> Effective for one-shot query executions
® provides flexible execution of dynamic SQL

DEG 10

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 5

Database Management Systems Distributed database
management systems

‘i_"_ —

S

SQL execution

2> Compile & Store
® The query is sent to the server
® The query is prepared
® generation of the query plan
® the query plan is stored for future usage
® may continue with execution
® the query is executed
® the result is shipped
> Efficient for repeated query executions
® parametric executions of the same query

Database Management Systems

Distributed Database Systems

pSG 2

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 6

Database Management Systems Distributed database
management systems

2> Client transactions access more than one DBMS

server
® Different complexity of available distributed
services
2> Local autonomy

® Each DBMS server manages its local data in an
autonomous way

® e.g., concurrency control, recovery

D‘\B/\G 13

2> Functional advantages
® Appropriate /ocalization of data and applications
® e.g., geographical distribution
2> Technological advantages
® Increased data availability

® Total block probability is reduced
® | ocal blocks may be more frequent

® Enhanced scalability

® Provided by the modularity and flexibility of the
architecture

D‘\B/\G 14

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 7

Database Management Systems Distributed database
management systems

Database Management Systems

Distributed Database Design

pSG 15

ragmentation

2> Given a relation R, a data fragment is a subset of
R in terms of tuples, or schema, or both
> Different criteria to perform fragmentation
® horizontal
® subset of tuples
® vertical
® subset of schema
® mixed
® both horizontal and vertical together

DgG 16

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 8

Database Management Systems Distributed database
management systems

>> The horizontal fragmentation of a relation R
selects a subset of tuples in R with

® same schema of R

® obtained by means of o,
® p is the partitioning predicate

> Fragments are not overlapped

D‘\B/\G 17

Example

2> The following table is given
Employee (Emp#, Ename, DeptName, Tax)
>> Horizontal fragmentation on attribute DeptName
® card(DeptName) = N

E, = G peptName = ‘Production’ Employee

EN = OpeptName = ‘Marketing’ Employee
2> Reconstruction of the original table
Employee = E; UE, U ... U Ey

D‘\B/\G 18

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 9

Database Management Systems Distributed database
management systems

2> The vertical fragmentation of a relation R selects
a subset of schema of R

® Obtained by means of ny
® X is a subset of the schema of R

® The primary key should be included in X to allow
rebuilding R

® All tuples are included
2> Fragments are overlapping on the primary key

D‘\B/\G 19

Example

2> The following table is given
Employee (Emp#, Ename, DeptName, Tax)
2> Vertical fragmentation
El = T Emp#, Ename, DeptName Employee
E2 = T Emps#, Ename, Tax Employee
> Reconstruction of the original table
Employee = E; > E,

N
oS

pltle

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 10

10

Database Management Systems Distributed database
management systems

>> Completeness
® each information in relation R is contained in at
least one fragment R,
2> Correctness
@ the information in R can be rebuilt from its
fragments
D‘\B/\G 21

-— . =

~.

Distributed database design

2> It is based on data fragmentation
® Data distribution over different servers
2> Each fragment of a relation R is usually stored
® in a different file
® possibly, on a different server
> Relation R does not exist
® it may be rebuilt from fragments

DEG 2

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 11

11

Database Management Systems Distributed database
management systems

> The allocation schema describes how fragments
are stored on different server nodes

® Non redundant mapping if each fragment is stored
on one single node

[SITE 1 }
(SITE 2]
{ SITE T }
DgG %

® Redundant mapping if some fragments are
replicated on different servers
® increased data availability
® complex maintenance
® copy synchronization is needed

(SITE 1 1
\)
(SITE 2]
(— el -)
L SITE T+ SITE 2 J

24

pltle

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 12

12

Database Management Systems Distributed database
management systems

2> Transparency levels describe the knowledge of
data distribution

2> An application should operate differently
depending on the transparency level supported
by the DBMS
>> Transparency levels
® fragmentation transparency
® allocation transparency
® language transparency

D‘\B/\G 25

2> The following table is given
® Supplier S (S#, SName, City, Status)

2> Horizontal fragmentation on the City attribute
® domain of city = {Torino, Roma}

2> Allocation schema

Horizontal fragment Allocation schema

S1 = Oeity = “Torino' S S, @xxx.torino.it
S, = Oty = ‘Roma’ S S,@xxx.romal.it
S,@xxx.romaz2.it

DEG 26

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 13

Database Management Systems Distributed database
management systems

2> Applications know the existence of tables and not
of their fragments

® data distribution is not visible
2> Example

® The programmer only accesses table S
® not its fragments

SELECT SName
FROM S
WHERE S#=:CODE

D‘\B/\G 27

2> Applications know the existence of fragments,
but not their allocation

® not aware of replication of fragments
® must enumerate all fragments
> Example

SELECT SName

FROM S,

WHERE S# = :CODE

IF(NOT FOUND)
SELECT SName
FROM S,

WHERE S# = :CODE
D‘\B/\G 28

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 14

Database

Management Systems

Distributed database
management systems

> The programmer should select both the fragment
and its allocation

® No SQL dialects are used

2> This is the format in which higher level queries
are transformed by a distributed DBMS

2> Example seLECT SName

FROM S, @xxx.torino.it

WHERE S# = :CODE
IF (NOT FOUND)

Selection of a

specific replica of S,

SELECT SName
FROM S,@xxx.romal.it
WHERE S# = :CODE

29

D

Database Management Systems

Transaction classification

Be

30

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Pag. 15

15

Database Management Systems Distributed database
management systems

2> The client requests the execution of a transaction
to a given DBMS server

® the DBMS server is in charge of redistributing it
2> Classes define different complexity levels in the
interaction among DBMS servers

® They are based on the type of SQL instruction
which the transaction is allowed to contain

D‘\B/\G 31

2> Remote request
® Read only request
® only select statement
® Single remote server
2> Remote transaction
® Any SQL command
® Single remote server

DEG %

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 16

16

Database Management Systems Distributed database
management systems

2> Distributed transaction
® Any SQL command

® Fach SQL statement is addressed to one single
server

® Global atomicity is needed
® 2 phase commit protocol
2> Distributed request

® Each SQL command may refer to data on different
servers

® Distributed optimization is needed

® Fragmentation transparency is in this class only
33

Example

2> The following table is given
® Account (Acc#, Name, Balance)

2> Fragments and allocation schema

Horizontal fragmentation Allocation schema
A, = Gaeex < 10000 ACCOUN Node 1
Az = Gacc# >=10000 Account NOde 2
D‘\B/\G 34

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 17

17

Database Management Systems Distributed database
management systems

2> Money transfer transaction

BoT (Beginning of transaction)
UPDATE Account

SET Balance = Balance - 100
WHERE Acc# = 3000

UPDATE Account
SET Balance = Balance + 100
WHERE Acc# = 13000

EoT (End of transaction)

D‘\B/\G 35

Example

>> What is the class of the transaction?

® Distributed request because Account is not
explicitly partitioned
> If instead the update instructions reference
explicitly A; and A,

® Distributed transaction

2> If both update instructions reference only A,
® e.g., second update with WHERE Acc#=9000
® Remote transaction

DEG %

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 18

Database Management Systems Distributed database
management systems

Database Management Systems

Distributed DBMS Technology

pSG 7

ACID properties

> Atomicity
® [t requires distributed techniques
® 2 phase commit

>~ Consistency

® Constraints are currently enforced only locally
2> Isolation

® It requires strict 2PL and 2 Phase Commit
2> Durability

® It requires the extension of local procedures to
manage atomicity in presence of failure

DgG %8

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 19

Database Management Systems Distributed database
management systems

2> Distributed query optimization is performed by
the DBMS receiving the query execution request
® It partitions the query in subqueries, each
addressed to a single DBMS

® [t selects the execution strategy

® order of operations and execution technique

® order of operations on different nodes

® transmission cost may become relevant
® (optionally) selection of the appropriate replica

® [t coordinates operations on different nodes and
information exchange

D‘\B/\G 39

Atomicity

2> All nodes (i.e., DBMS servers) participating to a
distributed transaction must implement the same
decision (commit or rollback)

® Coordinated by 2 phase commit protocol
>~ Failure causes
® Node failure

® Network failure which causes lost messages
® Acknowledgement of messages (ack)
® Usage of timeout

® Network partitioning in separate subnetworks

D‘\B/\G 40

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 20

Database Management Systems Distributed database
management systems

>~ Obijective
® Coordination of the conclusion of a distributed
transaction
2> Parallel with a wedding
® Priest celebrating the wedding
® Coordinates the agreement
® Couple to be married
® Participate to the agreement

D‘\B/\G 41

2> Distributed transaction

® One coordinator
® Transaction Manager (TM)
® Several DBMS servers which take part to the
transaction
® Resource Managers (RM)
> Any participant may take the role of TM
® Also the client requesting the transaction execution

D‘\B/\G 42

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 21

Database Management Systems Distributed database
management systems

>>TM and RM have separate private logs
> Records in the TM log

® Prepare

® it contains the identity of all RMs participating to the
transaction (Node ID + Process ID)

® Global commit/abort
® final decision on the transaction outcome

® Complete
® written at the end of the protocol

D‘\B/\G 43

>> New records in the RM log
® Ready

® The RM is willing to perform commit of the
transaction

® The decision cannot be changed afterwards

® The node has to be in a reliable state
® WAL and commit precedence rules are enforced
® Resources are locked

® After this point the RM /oses its autonomy for the
current transaction

44

pltle

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 22

Database Management Systems Distributed database
management systems

RM ™

Prepare Msg

D‘\B/\G 45

Phase 1
1. The TM

® Writes the prepare record in the log

® Sends the prepare message to all RM
(participants)

® Sets a timeout, defining maximum waiting time for
RM answer

D‘\B/\G 46

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 23

23

Database

Management Systems Distributed database
management systems

RM ™

Prepare Msg

. // Prepare
eady
: =

eady/not ready msgq

47

2. The RMs
® Wait for the prepare message
® \When they receive it
® If they are in a reliable state
® Write the ready record in the log
® Send the ready message to the TM
® If they are not in a reliable state
® Send a not ready message to the TM
® Terminate the protocol
@ Perform local rollback
® If the RM crashed
® No answer is sent

Phase I

pltle 48
Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 24

24

Database Management Systems

Distributed database

management systems

RM ™

Prepare Msg

Gloval dedision

// Prepare
=
Ready/not ready m,
g
*‘

Global

49

3. The TM

® If it receives ready from a// RMs
log
timeout expires

log

pltle

® (ollects all incoming messages from the RMs

® The commit global decision record is written in the
® If it receives one or more not ready or the

® The abort global decision record is written in the

Phase I

50

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 25

25

Database Management Systems Distributed database
management systems

Phase 11

1. The TM
® Sends the global decision to the RMs
® Sets a timeout for the RM answers

51

Prepare msg

Prepare
Ready <//
Readyn
Ot ready mgg Global
Commit/Abort
06 |

Gloval dedision
W

DEG >

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 26

26

Database Management Systems

Distributed database
management systems

2. The RM
® Waits for the global decision
® When it receives it

® The database is updated
® An ACK message is sent to th

® The commit/abort record is written in the log

Phase 11

eTM

53

Prepare Msg
Ready
)

|I| S~ Ready/not reaqdy Mmsg

Gloval dedision
W

Global

Commit/Abort
106

Complete

54

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 27

27

Database Management Systems

Distributed database

management systems

3. The TM

® (ollects the ACK messages from the RMs

® If a//ACK messages are received

® The complete record is written in the log
® If the timeout expires and some ACK messages

are missing
® A new timeout is set

® The global decision is resent to the RMs which did

not answer
until all answers are received

Phase 11

55

RM ™
Prepare Msg

R

uncertainty
window

Global deds ™l

Commit/Abort

W
\

Global

ead
Y/not ready msg
Commit/Abort
~]

9
=5
Q
Complete 0
[¢)
-
=

Elena Baralis, Silvia Chiusano
Politecnico di Torino

Pag. 28

28

Database Management Systems Distributed database
management systems

>> Each RM is affected by an uncertainty window
® Start after ready msg is sent
® End upon receipt of global decision

> Local resources in the RM are locked during the
uncertainty window

® It should be small

D‘\B/\G 57

L

:.q,:‘ Zaben i=! .v' '\\ g

Failure of a participant (RM)

>> The warm restart procedure is modified with a
new case
® If the last record in the log for transaction T is

“ready”, then T does not know the global decision
of its TM

> Recovery

® READY list
® new list collecting the IDs of all transactions in ready
state
® For all transactions in the ready list, the global
decision is asked to the TM at restart
® Remote recovery request

DEG >

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 29

29

Database Management Systems

Distributed database
management systems

2> Messages that can be lost

® Prepare (outgoing)

® Ready (incoming) } 1 Azt

® Global decision (outgoing) } IT Phase
> Recovery

® If the last record in the TM log is prepare

® The global abort decision is written in the log and
sent to all participants

® Alternative: redo phase I (not implemented)
® If the last record in the TM log is the global
decision
® Repeat phase II 59

2> Any network problem in phase I causes global
abort

® The prepare or the ready msg are not received

2> Any network problem in phase II causes the
repetition of phase II

® The global decision or the ACK are not received

DEG *0

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 30

30

Database Management Systems Distributed database
management systems

Database Management Systems

X-Open-DTP

pSG 61

X-Open-DTP

2> Protocol for the coordination of distributed
transactions

2> It guarantees interoperability of distributed
transactions on heterogeneous DBMSs
® i.e., different DBMS products
2> Based on
® One client
® One TM
® Several RMs

DgG 62

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 31

Database Management Systems Distributed database
management systems

Interfaces

2> X-Open-DTP defines interfaces for the
communication

® between client and TM
® TM interface
® between TM and RM
® XA interface
2> DBMS servers provide the XA interface
> Specialized products implement the TM and
provide the TM interface
® E.g., BEA tuxedo

63

2> RMs are passive and only answer to remote
procedure invocations from the TM

>> The control of the protocol is embedded in the
™

2> The protocol implements two optimizations of 2
Phase Commit

® Presumed abort
® Read only

2 Heuristic decision to allow controlled transaction
evolution in presence of failures

D‘\B/\G 64

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 32

32

Database Management Systems Distributed database
management systems

>> The TM, when no information is available in the
log, answers abort to a remote recovery request
by a RM
® Reduces the number of synchronous log writes
® prepare, global abort, complete are not synchronous
® Synchronous writes are still needed
® global commit in TM log
® ready, commit in RM log

D‘\B/\G 65

Read only

2> Exploited by a RM that did not modify its
database during the transaction
>> The RM
® answers read only to the prepare request
® does not write the log
® |ocally terminates the protocol

>> The TM will ignore the RM in phase II of the
protocol

DgG 06

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 33

Database Management Systems Distributed database
management systems

2> Allows transaction evolution in presence of TM
failures

® During the uncertainty window, a RM may be
blocked because of a TM failure

® L ocked resources are blocked until TM recovery

> The blocked transaction evolves locally under
operator control

® Transaction end is forced by the operator

® Typically rollback, rarely commit

® Heuristic decision, because actual transaction
outcome is not known

@ Blocked resources are released
67

2> During TM recovery, decisions are compared to
the actual TM decisions

® If TM decision and RM heuristic decision are
different, atomicity is lost

® The protocol guarantees that the inconsistency is
notified to the client process
2> Resolving inconsistencies caused by a heuristic
decision is up to user applications

DgG 08

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 34

34

Database Management Systems Distributed database
management systems

Client ™ RM
(TM Interface) (XA Interface)
TM.Init() N

5 S TM.Open > XA.Open() S
8 c TM.Beagin) | xastart) .
'c o . >
g c g . c
5 = 5 TM.Commit() g
O— u— Q& : > XA.Precom() ~ S
= % =]
= XA.Abort() =
. XA.Commit() [
o XAEnd) | |
© — TM.Term() XA.Close()

. TMEXIt) |

D ‘I\BI\ G 69

Database Management Systems

Parallel DBMS

pSG 70

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 35

Database Management Systems Distributed database
management systems

Parallelism

>> Parallel computation increases DBMS efficiency
2> Queries can be effectively parallelized

® Examples

® |arge table scan performed in parallel on different
portions of data
® data is fragmented on different disks
® group by on a large dataset
® partitioned on different processors
® group by result merged

> Different technological solutions are available
® Multiprocessor systems

® Computer clusters o

> Different queries are scheduled on different
processors
2> Used in OLTP systems
> Appropriate for workloads characterized by
® simple, short transactions

® high transaction load
® 100-1000 tps

2> Load balancing on the pool of available
processing units

DEG e

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 36

36

Database Management Systems Distributed database

management systems

2> Subparts of the same query are executed on
different processors
2> Used in OLAP systems
2> Appropriate for workloads characterized by
® complex queries
® reduced query load
>> Complex queries are partitioned in subqueries

® cach subquery performs one or more operations
on a subset of data
® group by and join are easily parallelizable

® pipelining operations is possible
73

D

Database Management Systems

‘\B/\G 74

DBMS benchmarks

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 37

37

Database Management Systems Distributed database
management systems

2> Benchmarks describe the conditions in which
performance is measured for a system

>> DBMS benchmarks are standardized by the TPC
(Transaction Processing Council)
> Each benchmark is characterized by
® Transaction load
® distribution of arrival time of transactions
® Database size and content
® randomized data generation
® Transaction code
® Techniques to measure and certify performance

D‘\B/\G 75

> TPCC

® Order entry transactions

® It simulates the behavior of an OLTP system

® New evolution is TPC E
> TPCH

® Decision support (OLAP)

® It is a mix of complex queries and some updates
2> TPC App

® Transactions on the web

® Simulation of an e-commerce site

D‘\B/\G 76

Elena Baralis, Silvia Chiusano
Politecnico di Torino Pag. 38

