
Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

1

Beyond relational databases

Daniele Apiletti

http://ict-ontic.eu/http://ict-mplane.euhttp://ooros.com

«NoSQL» birth

• In 1998 Carlo Strozzi’s lightweight, open-source relational
database that did not expose the standard SQL interface

• In 2009 Johan Oskarsson’s (Last.fm) organizes an event to
discuss recent advances on non-relational databases. A
new, unique, short hashtag to promote the event on
Twitter was needed.. #NoSQL

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

2

NoSQL main features

horizontal
scalability

no joins

Exam

Course number

Student ID

Mark

Student

Student ID

Name

Surname

Course

Course number

Name

Professor

schema-less
(no tables, implicit schema)

Student ID Name Surname

S123456 Mario Rossi

http://www.slideshare.net/vivekparihar1/mongodb-scalability-and-high-availability-with-replicaset

Comparison

Relational databases Non-Relational databases

Table-based, each record is a structured row Specialized storage solutions, e.g, document-based,
key-value pairs, graph databases, columnar storage

Predefined schema for each table, changes allowed
but usually blocking (expensive in distributed and live
environments)

Schema-less, schema-free, schema change is dynamic
for each document, suitable for semi-structured
or un-structured data

Vertically scalable, i.e., typically scaled by increasing
the power of the hardware

Horizontally scalable, NoSQL databases are scaled by
increasing the databases servers in the pool of
resources to reduce the load

Use SQL (Structured Query Language) for defining and
manipulating the data, very powerful

Custom query languages, focused on collection of
documents, graphs, and other specialized data
structures

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

3

Comparison

Relational databases Non-Relational databases

Suitable for complex queries, based on data joins No standard interfaces to perform complex queries, no
joins

Suitable for flat and structured data storage Suitable for complex (e.g., hierarchical) data, similar to
JSON and XML

Examples: MySql, Oracle, Sqlite, Postgres and
Microsoft SQL Server Examples: MongoDB, BigTable, Redis, Cassandra,

Hbase and CouchDB

Types of NoSQL databases

http://www.slideshare.net/Couchbase/webinar-making-sense-of-nosql-applying-nonrelational-databases-to-business-needs

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

4

Key-values databases

• Simplest NoSQL data stores
• Match keys with values
• No structure
• Great performance
• Easily scaled
• Very fast
• Examples: Redis, Riak, Memcached

Column-oriented databases

• Store data in columnar format
• A column is a (possibly-complex) attribute
• Key-value pairs stored and retrieved on key in

a parallel system (similar to indexes)
• Rows can be constructed from column values
• Column stores can produce row output

(tables)
• Completely transparent to application
• Examples: Cassandra, Hbase, Hypertable,

Amazon DynamoDB

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

5

Graph databases

• Based on graph theory
• Made up by Vertex and Edges
• Used to store information about

networks
• Good fit for several real world

applications
• Examples: Neo4J, Infinite Graph,

OrientDB

Document databases

• Database stores and retrieves documents
• Keys are mapped to documents
• Documents are self-describing

(attribute=value)
• Has hierarchical-tree nested data structures

(e.g., maps, lists, datetime, …)
• Heterogeneous nature of documents
• Examples: MongoDB, CouchDB, RavenDB.

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

6

NoSQL example

CouchDB
Cluster Of Unreliable

Commodity Hardware

CouchDB original home page
Written in Erlang, a robust
functional programming language
ideal for building concurrent
distributed systems. Erlang allows
for a flexible design that is easily
scalable and readily extensible

Provides a RESTful
JSON API than can be
accessed from any
enviroment that
allows HTTP requests

Offers incremental
replication with bi-
directional conflict
detection and
resolution

Document-oriented database
can be queried and indexed in
a MapReduce fashion

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

7

CouchDB original home page
Written in Erlang, a robust
functional programming language
ideal for building concurrent
distributed systems. Erlang allows
for a flexible design that is easily
scalable and readily extensible

Provides a RESTful
JSON API than can be
accessed from any
enviroment that
allows HTTP requests

Offers incremental
replication with bi-
directional conflict
detection and
resolution

Document-oriented database
can be queried and indexed in
a MapReduce fashion

MapReduce

a scalable distributed
programming model
to process Big Data

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

8

MapReduce
• Published in 2004 by Google

• J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters”, OSDI'04: Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA, December, 2004

• used to rewrite the production indexing system with 24 MapReduce operations (in
August 2004 alone, 3288 TeraBytes read, 80k machine-days used, jobs of 10’ avg)

• Distributed programming model
• Process large data sets with parallel algorithms on a cluster of common

machines, e.g., PCs
• Great for parallel jobs requiring pieces of computations to be executed on

all data records
• Move the computation (algorithm) to the data (remote node, PC, disk)
• Inspired by the map and reduce functions used in funcional programming

MapReduce: working principles

• Consists of two functions, a Map and a Reduce
• The Reduce is optional

• Map function
• Process each record (document)
• Return a list of key-value pairs

• Reduce function
• reduce the list of key-values returned by the map to a single value

(it can be a complex value such as a map)

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

9

Map

• Map function are called once with each document as the argument:
function(doc) {emit(key, value)}

• The function can choose to skip the document altogether or emit one
or more rows as key/value pairs

• Map function may not depend on any information outside the
document. This independence is what allows CouchDB views to be
generated incrementally and in parallel

Map example
• Example database, a collection of docs describing university exam records

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

10

Map example (1)
• List of exams and corresponding mark

Function(doc){
emit(doc.exam, doc.mark);

} Result:
Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

6 Bioinformatics 30

2 Computer architectures 24

3 Computer architectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Map example (2)
• Ordered list of exams, academic year, and date, and select their mark

Function(doc) {
key = [doc.exam, doc.AYear]
value = doc.mark
emit(key, value);

}

Result:

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

6 Bioinformatics, 2015-16 30

2 Computer architectures, 2015-16 24

3 Computer architectures, 2015-16 27

4 Database, 2014-15 26

8 Database, 2014-15 25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

11

Map example (3)
• Ordered list of students, with mark and CFU for each exam

Function(doc) {
key = doc.student
value = [doc.mark, doc.CFU]
emit(key, value);

}
Result:

Id: 3
Exam: Computer architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

doc.id Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25, 8]

Reduce

• Documents emitted by the map function are sorted by key
• some platforms (e.g. Hadoop) allow you to specifically define a shuffle phase

to manage the distribution of map results to reducers spread over different
nodes, thus providing a fine-grained control over communication costs

• Reduce inputs are the map outputs: a list of key-value documents
• Each reduce-function call outputs one key-value document
• The most simple SQL-equivalent operations performed by means of

reducers are «group by» aggregations, but reducers are very flexible
functions that can execute even complex operations

• Re-reduce: reduce functions can be called on their own results

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

12

MapReduce example (1)
• Map - List of exams and

corresponding mark
Function(doc){

emit(doc.exam, doc.mark);
}

• Reduce - Compute the
average mark for each exam

Function(key, values){
S = sum(values);
N = len(values);
AVG = S/N;
return AVG;

}

Key Value

Bioinformatics 30

Computer
architectures 25.5

Database 26.67

Software
engineering 19.5

doc.id Key Value

6 Bioinformatics 30

2 Computer architectures 24

3 Computer architectures 27

1 Database 29

4 Database 26

8 Database 25

5 Software engineering 21

7 Software engineering 18

Map Reduce

The reduce function receives:
• key=Bioinformatics, values=[30]
• …
• key=Database, values=[29,26,25]
• …

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

MapReduce example (2)

doc.id Key Value

6 Bioinformatics, 2015-16 30

2 Computer architectures, 2015-16 24

3 Computer architectures, 2015-16 27

4 Database, 2014-15 26

8 Database, 2014-15 25

1 Database, 2015-16 29

5 Software engineering, 2014-15 21

7 Software engineering, 2015-16 18

Key Value

[Bioinformatics, 2015-16] 30

[Computer architectures,
2015-16] 25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-15] 21

[Software engineering, 2015-16] 18

Map Reduce

• Map - List of exams and
corresponding mark

Function(doc){
emit(

[doc.exam, doc.AYear],
doc.mark

);
}

• Reduce - Compute the average
mark for each
exam and academic year

Function(key, values){
S = sum(values);
N = len(values);
AVG = S/N;
return AVG;

}

The reduce function receives:
• key=[Database, 2014-15], values=[26,25]
• key=[Database, 2015-16], values=[29]
• …

id: 1 DOC
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Reduce is the same as before

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

13

Rereduce
• Average mark the for each exam (group level=1) – same Reduce as before

doc.id Key Value

6 Bioinformatics, 2015-16, 18-
09-2016 30

2 Computer architectures, 2015-
16, 03-07-2015 24

3 Computer architectures, 2015-
16, 26-01-2016 27

4 Database, 2014-1015, 26-07-
2015 26

8 Database, 2014-15, 28-06-
2015 25

1 Database, 2015-16, 31-01-
2016 29

5 Software engineering, 2014-
15, 14-02-2015 21

7 Software engineering, 2015-
16, 28-06-2016 18

Key Value

[Bioinformatics, 2015-16] 30

[Computer architectures,
2015-16] 25.5

[Database, 2014-15] 25.5

[Database, 2015-16] 29

[Software engineering, 2014-15] 21

[Software engineering, 2015-16] 18

Id: 3
Exam: Computer
architectures
Student: s654321
AYear: 2015-16
Date: 26-01-2016
Mark=27
CFU=10

Id: 4
Exam: Database
Student: s654321
AYear: 2014-15
Date: 26-07-2015
Mark=26
CFU=8

Id: 1
Exam: Database
Student: s123456
AYear: 2015-16
Date: 31-01-2016
Mark=29
CFU=8

Id: 2
Exam: Computer
architectures
Student: s123456
AYear: 2015-16
Date: 03-07-2015
Mark=24
CFU=10

Id: 5
Exam: Software
engineering
Student: s123456
AYear: 2014-15
Date: 14-02-2015
Mark=21
CFU=8

Id: 6
Exam: Bioinformatics
Student: s123456
AYear: 2015-16
Date: 18-09-2016
Mark=30
CFU=6

Id: 7
Exam: Software
engineering
Student: s654321
AYear: 2015-16
Date: 28-06-2016
Mark=18
CFU=8

Id: 8
Exam: Database
Student: s987654
AYear: 2014-15
Date: 28-06-2015
Mark=25
CFU=8

Map ReduceDB

Key Value

Bioinformatics 30

Computer architectures 25.5

Database 27.25

Software engineering 19.5

Rereduce

MapReduce example (3a)
• Map - Ordered list of students, with

mark and CFU for each exam
Function(doc) {

key = doc.student
value = [doc.mark, doc.CFU]
emit(key, value);

}

• Reduce - Average CFU-weighted
mark for each student

Function(key, values){
S = sum([X*Y for X,Y in values]);
N = sum([Y for X,Y in values]);
AVG = S/N;
return AVG;

}

doc.id Key Value

1 S123456 [29, 8]

2 S123456 [24, 10]

5 S123456 [21, 8]

6 S123456 [30, 6]

3 S654321 [27, 10]

4 S654321 [26, 8]

7 S654321 [18, 8]

8 s987654 [25, 8]

Map

Key Value

S123456 25.6

S654321 23.9

s987654 25

Reduce

The reduce function receives:
• key=S123456,

values=[(29,8), (24,10), (21,8)…]
• …
• key=s987654, values=[(25,8)]

key = S123456,
values = [(29,8), (24,10), (21,8)…]
X = 29, 24, 21, … mark
Y = 8, 10, 8, … CFU

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

14

MapReduce example (3b)
• Compute the number of exams for each student
• Technological view of data distribution among different nodes

Id: 3 Exam: Computer architectures Student: s654321
AYear: 2015-16 Date: 26-01-2016 Mark=27 CFU=10

Id: 4 Exam: Database Student: s654321
AYear: 2014-15 Date: 26-07-2015 Mark=26 CFU=8

Id: 1 Exam: Database Student: s123456
AYear: 2015-16 Date: 31-01-2016 Mark=29 CFU=8

Id: 2 Exam: Computer architectures Student: s123456
AYear: 2015-16 Date: 03-07-2015 Mark=24 CFU=10

Id: 5 Exam: Software engineering Student: s123456
AYear: 2014-15 Date: 14-02-2015 Mark=21 CFU=8

Id: 6 Exam: Bioinformatics Student: s123456
AYear: 2015-16 Date: 18-09-2016 Mark=30 CFU=6

Id: 7 Exam: Software engineering Student: s654321
AYear: 2015-16 Date: 28-06-2016 Mark=18 CFU=8

Id: 8 Exam: Database Student: s987654
AYear: 2014-15 Date: 28-06-2015 Mark=25 CFU=8

DB
doc.id Key Value

1 S123456 [29, 1]

2 S123456 [24, 1]

5 S123456 [21, 1]

6 S123456 [30, 1]

3 S654321 [27, 1]

4 S654321 [26, 1]

7 S654321 [18, 1]

8 s987654 [25, 1]

Map

Key Value

S123456 3

S123456 1

S654321 3

s987654 1

Reduce

Key Value

S123456 4

S654321 3

s987654 1

Rereduce

Views (indexes)

• The only way to query CouchDB is to build a view on the data
• A view is produced by a MapReduce
• The predefined view for each database has

• the document ID as key,
• the whole document as value
• no Reduce

• CouchDB views are materialized as values sorted by key
• allows the same DB to have multiple primary indexes

• When writing CouchDB map functions, your primary goal is to build
an index that stores related data under nearby keys

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

15

Replication

Same data
in different places

(content and schema)

Replication

• Same data
• portions of the whole dataset (chunks)

• in different places
• local and/or remote servers, clusters, data centers

• Goals
• Redundancy helps surviving failures (availability)
• Better performance

• Approaches
• Master-Slave replication
• A-Synchronous replication

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

16

Master-Slave replication

• Master-Slave
• A master server takes all the

writes, updates, inserts
• One or more Slave servers take all

the reads (they can’t write)
• Only read scalability
• The master is a single point of

failure

• CouchDB supports
Master-Master replication

Master

Slave Slave Slave Slave

… …

Only read operations

Read-write operations

Synchronous replication
• Before committing a transaction, the Master waits for (all) the Slaves to commit
• Similar in concept to the 2-Phase Commit in relational databases
• Performance killer, in particular for replication in the cloud
• Trade-off: wait for a subset of Slaves to commit, e.g., the majority of them

Master

Slave Slave Slave Slave

… …

Replicate

It’s ready to commit
new transaction

Wait for all slaves

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

17

Asynchronous replication

• The Master commits locally, it does not wait for any Slave
• Each Slave independently fetches updates from Master, which may fail…

• IF no Slave has replicated, then you’ve lost the data committed to the Master
• IF some Slaves have replicated and some haven’t, then you have to reconcile

• Faster and unreliable

Master

Slave Slave Slave Slave

… …

Replicate

Can commit other
transactions

Distributed databases

Different autonomous
machines, working

together to manage
the same dataset

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

18

Key features of distributed databases

• There are 3 typical problems in distributed databases:
• Consistency

• All the distributed databases provide the same data to the application
• Availability

• Database failures (e.g., master node) do not prevent survivors from
continuing to operate

• Partition tolerance
• The system continues to operate despite arbitrary message loss,

when connectivity failures cause network partitions

CAP Theorem
• The CAP theorem, also known as Brewer's theorem,

states that it is impossible for a distributed system to
simultaneously provide all three of the previous
guarantees

• The theorem began as a conjecture made by
University of California in 1999-2000

• Armando Fox and Eric Brewer, “Harvest, Yield and Scalable
Tolerant Systems”, Proc. 7th Workshop Hot Topics in
Operating Systems (HotOS 99), IEEE CS, 1999, pg. 174-178.

• In 2002 a formal proof was published,
establishing it as a theorem

• Seth Gilbert and Nancy Lynch, “Brewer's conjecture and
the feasibility of consistent, available, partition-tolerant
web services”, ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51-59

• In 2012, a follow-up by Eric Brewer, “CAP twelve
years later: How the "rules" have changed”

• IEEE Explore, Volume 45, Issue 2 (2012), pg. 23-29.

http://guide.couchdb.org/editions/1/en/consistency.html#figure/1

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

19

CAP Theorem
• The easiest way to understand CAP is to think of two

nodes on opposite sides of a partition.
• Allowing at least one node to update state will cause

the nodes to become inconsistent, thus forfeiting C.
• If the choice is to preserve consistency, one side of

the partition must act as if it is unavailable, thus
forfeiting A.

• Only when no network partition exists, is it possible
to preserve both consistency and availability, thereby
forfeiting P.

• The general belief is that for wide-area systems,
designers cannot forfeit P and therefore have a
difficult choice between C and A.

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

CAP Theorem

http://blog.flux7.com/blogs/nosql/cap-theorem-why-does-it-matter

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

20

CA without P (local consistency)

• Partitioning (communication breakdown) causes a failure.
• We can still have Consistency and Availability of the data shared by agents

within each Partition, by ignoring other partitions.
• Local rather than global consistency / availability

• Local consistency for a partial system, 100% availability for the partial
system, and no partitioning does not exclude several partitions from
existing with their own “internal” CA.

• So partitioning means having multiple independent systems with 100% CA
that do not need to interact.

CP without A (transaction locking)

• A system is allowed to not answer requests at all (turn off “A”).
• We claim to tolerate partitioning/faults, because we simply block all

responses if a partition occurs, assuming that we cannot continue to
function correctly without the data on the other side of a partition.

• Once the partition is healed and consistency can once again be verified, we
can restore availability and leave this mode.

• In this configuration there are global consistency, and global correct
behaviour in partitioning is to block access to replica sets that are not in
synch.

• In order to tolerate P at any time, we must sacrifice A at any time for global
consistency.

• This is basically the transaction lock.

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

21

AP without C (best effort)

• If we don't care about global consistency (i.e. simultaneity), then every part of
the system can make available what it knows.

• Each part might be able to answer someone, even though the system as a whole
has been broken up into incommunicable regions (partitions).

• In this configuration without consistency means without the assurance of global
consistency at all times.

A consequence of CAP

“Each node in a system should be able to make decisions purely based on
local state. If you need to do something under high load with failures

occurring and you need to reach agreement, you’re lost. If you’re
concerned about scalability, any algorithm that forces you to run

agreement will eventually become your bottleneck. Take that as a given.”
Werner Vogels, Amazon CTO and Vice President

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

22

Beyond CAP

• The "2 of 3" view is misleading on several fronts.
• First, because partitions are rare, there is little reason to forfeit C or A when the

system is not partitioned.
• Second, the choice between C and A can occur many times within the same

system at very fine granularity; not only can subsystems make different choices,
but the choice can change according to the operation or even the specific data or
user involved.

• Finally, all three properties are more continuous than binary. Availability is
obviously continuous from 0 to 100 percent, but there are also many levels of
consistency, and even partitions have nuances, including disagreement within the
system about whether a partition exists.

ACID versus BASE

• ACID and BASE represent two design philosophies at opposite ends of
the consistency-availability spectrum

• ACID properties focus on consistency and are the traditional
approach of databases

• BASE properties focus on high availability and to make explicit both
the choice and the spectrum

• BASE: Basically Available, Soft state, Eventually consistent, work well
in the presence of partitions and thus promote availability

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

23

ACID

• The four ACID properties are:
• Atomicity (A) All systems benefit from atomic operations, the database

transaction must completely succeed or fail, partial success is not allowed
• Consistency (C) During the database transaction, the database progresses

from a valid state to another. In ACID, the C means that a transaction pre-
serves all the database rules, such as unique keys. In contrast, the C in CAP
refers only to single copy consistency.

• Isolation (I) Isolation is at the core of the CAP theorem: if the system requires
ACID isolation, it can operate on at most one side during a partition, because
a client’s transaction must be isolated from other client’s transaction

• Durability (D) The results of applying a transaction are permanent, it must
persist after the transaction completes, even in the presence of failures.

BASE

• Basically Available: the system provides availability, in terms of the
CAP theorem

• Soft state: indicates that the state of the system may change over
time, even without input, because of the eventual consistency model.

• Eventual consistency: indicates that the system will become
consistent over time, given that the system doesn't receive input
during that time

• Example: DNS – Domain Name Servers
• DNS is not multi-master

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

24

How the rules have changed
• Any networked shared-data system can have only 2 of 3 desirable properties at the same

time
• Explicitly handling partitions, designers can optimize consistency and availability, thereby

achieving some trade-off of all three
• CAP prohibits only a tiny part of the design space:

• perfect availability (A) and consistency (C)
• in the presence of partitions (P), which are rare

• Although designers need to choose between consistency and availability when partitions
are present, there is an incredible range of flexibility for handling partitions and
recovering from them

• Modern CAP goal should be to maximize combinations of
consistency (C) and availability (A) that make sense for the specific application

Conflict resolution problem

• There are two customers, A and B
• A books a hotel room, the last avaible

room
• B does the same, on a different node of

the system, which was not consistent

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

25

Conflict resolution problem

• The hotel room document is affected by
two conflicting updates

• Applications should solve the conflict with
custom logic (it’s a business decision)

• The database can
• Detect the conflict
• Provide a local solution, e.g., latest version is

saved as the winning version

Conflict

• CouchDB guarantees that each instance that sees the same
conflict comes up with the same winning and losing
revisions.

• It does so by running a deterministic algorithm to pick the
winner.
• The revision with the longest revision history list becomes the

winning revision.
• If they are the same, the _rev values are compared in ASCII sort

order, and the highest wins.

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

26

HTTP API

a «web» database,
no ad-hoc client

required

HTTP RESTful API

• How to get a document? Use your browser and write its URL
• http://localhost:5984/test/some_doc_id

• Any application and language can access web data
• GET /somedatabase/some_doc_id HTTP/1.0
• HEAD /somedatabase/some_doc_id HTTP/1.0

• HTTP/1.1 200 OK

• Write a document by means of PUT HTTP request
(specify revision to avoid conflicts)

• PUT /somedatabase/some_doc_id HTTP/1.0
• HTTP/1.1 201 Created
• HTTP/1.1 409 Conflict

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

27

HTTP RESTful API

• Delete a document
• DELETE /somedatabase/some_doc_id?rev=1582603387

• HTTP/1.1 200 OK

• Parametric multi-document fetch
• GET /somedatabase/_alldocs?startkey=doc2&endkey=doc3
• GET /somedatabase/_alldocs?startkey=doc2&limit=2&descending=true..

• All that were updated and deleted,
in the order these actions were executed (LOG)

• GET /somedatabase/_all_docs_by_seq

MongoDB

The leading
NoSQL database
currently on the

market

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

28

MongoDB - intro

• Full of features,
beyond NoSQL

• High performance
and natively
scalable

• Open source
• 311$ millions in

funding
• 500+ employees
• 2000+ customers

http://www.slideshare.net/mongodb/introduction-to-mongodb-56807822

MongoDB - why

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

29

MongoDB – Document Data Design

• High-level, business-ready representation of the
data

• Flexible and rich, adapting to most use cases
• Mapping into developer-language objects

• year, month, day, timestamp,
• lists, sub-documents, etc.

• BUT
• Relations among documents / records are

inefficient, and leads to de-normalization
• Object(ID) reference, with no native join

• Temptation to go too much schema-free / non-
relational even with structured relational data

«So, which database should I choose?»

• If you're building an app today, then there might be a need for using two or
more databases at the same time

• If your app does (text) search you might have to implement ElasticSearch
• for non-relational data-storage,

MongoDB works the best
• if you're building an IoT

which has sensors pumping out
a ton of data, shoot it into Cassandra

• Implementing multiple databases
to build one app is called
"Polyglot Persistence"

https://blog.cloudboost.io/why-you-should-not-use-only-mongodb/

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

30

A design recipe

A notable example of NoSQL design

Design recipe: banking account

• Banks are serious business
• They need serious databases to store serious transactions and serious

account information
• They can’t lose or create money
• A bank must be in balance all the time

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

31

Design recipe: banking example

Say you want to give $100 to your cousin Paul for Christmas.
You need to:

decrease your account balance by 100$ increase Paul’s account balance by 100$
{
_id: "account_123456",
account:"bank_account_001",
balance: 900,
timestamp: 1290678353,45,
categories: ["bankTransfer"…],
…
}

{
_id: "account_654321",
account:"bank_account_002",
balance: 1100,
timestamp: 1290678353,46,
categories: ["bankTransfer"…],
…
}

• What if some kind of failure occurs between the two separate updates to the two
accounts?

decrease your account balance by 100$

increase Paul’s account balance by 100$

Send

Bank

Design recipe: banking example

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

32

Design recipe: banking example

• What if some kind of failure occurs between the two separate updates to the two
accounts?

decrease your account balance by 100$

increase Paul’s account balance by 100$

Send

Message lost during
transmission

Bank

Design recipe: banking example

• What if some kind of failure occurs between the two separate updates to the two
accounts?

• CouchDB cannot guarantee the bank balance.
• A different strategy (design) must be adopted.

decrease your account balance by 100$

increase Paul’s account balance by 100$

Send

Message lost during
transmission

Bank

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

33

Banking recipe solution

• What if some kind of failure occurs between the two separate
updates to the two accounts?

• CouchDB cannot guarantee the bank balance.
• A different strategy (design) must be adopted.

id: transaction001
from: "bank_account_001",
to: "bank_account_002",
qty: 100,
when:1290678353.45,
…

Design recipe: banking example
• How do we read the current account balance?
• Map

function(transaction){
emit(transaction.from, transaction.amount*-1);
emit(transaction.to, transaction.amount);

}
• Reduce

function(key, values){
return sum(values);

}
• Result
{rows: [{key: "bank_account_001", value: 900}]
{rows: [{key: "bank_account_002", value: 1100}]

The reduce function receives:
• key= bank_account_001,

values=[1000, -100]
• …
• key= bank_account_002,

values=[1000, 100]
• …

Database Management Systems
Politecnico di Torino

Daniele Apiletti
Data Base and Data Mining group

02/12/2016

34

Beyond relational databases
Daniele Apiletti

Data Base and Data Mining group
Politecnico di Torino

http://dbdmg.polito.it

http://ict-ontic.eu/ http://ict-mplane.eu http://ooros.com

